SPLITTINGS OF MANIFOLDS WITH BOUNDARY AND RELATED INVARIANTS (*)

by Alberto Cavicchioli and Beatrice Ruini (in Modena) (**)

SOMMARIO. - Si costruiscono speciali decomposizioni in manici di una n-varietà PL compatta, connessa e con bordo non vuoto e si studiano alcuni invarianti topologici associati. Come conseguenza, si ottiene una caratterizzazione del nodo banale n-dimensionale in \mathbb{S}^{n+2} $(n \leq 2)$ come l'unico n-nodo il cui complementare ha genere uno. Infine, si espone una semplice dimostrazione geometrica del teorema di non cancellazione per n-nodi PL in \mathbb{S}^{n+2} , $n \leq 2$.

SUMMARY. - We construct special handle decompositions for a compact connected PL manifold with non empty boundary and study the associated topological invariants. As a consequence, we characterize the unknot in \mathbb{S}^{n+2} ($n \leq 2$) as the unique n-knot whose complement has genus one. Then we obtain a simple geometric proof of the non cancellation theorem for tame n-knots in \mathbb{S}^{n+2} , $n \leq 2$.

1. Introduction.

Let M^n be a compact connected (orientable) triangulated n-manifold with non empty boundary ∂M . We construct special handle decompositions of M and define the concept of regular splitting of M. Then we describe regular Heegaard diagrams of M (n=3) and relate them to another known 3-manifold representation, named P-graph theory (see [19] and [23]). As a consequence, we obtain nice properties about (geometric)

Work performed under the auspices of the G.N.S.A.G.A. of the C.N.R. (National Research Council) of Italy and financially supported by the Ministero della Universitá e della Ricerca Scientifica e Tecnologica of Italy within the project "Geometria Reale e Complessa".

^(*) Pervenuto in Redazione il 28 dicembre 1993 ed in versione definitiva il 18 aprile 1994.

^(**) Indirizzo degli Autori: Dipartimento di Matematica, Università di Modena, Via Campi 213/B, 41100 Modena (Italia).

finite presentations of $\Pi_1(M)$ which arise from regular Heegaard diagrams of M. Then we extend the notion of Heegaard genus of a closed 3-manifold to the boundary case, also considering higher dimensions. The concept of genus yields a nice characterization of cubes with handles among bordered 3-manifolds. As a consequence, we also characterize the unknot in \mathbb{S}^3 as the unique 1-knot whose complement has genus one. This gives a simple alternative proof of the classical non cancellation theorem for 1-knots in \mathbb{S}^3 (see for example [20]). Then we extend these results to dimension four. More precisely, we characterize the unknot in \mathbb{S}^4 as the unique 2-knot whose complement has genus one and obtain a geometric proof of the non cancellation theorem for tame 2-knots in \mathbb{S}^4 . Some examples complete the paper.

2. Handle Decompositions.

Throughout the paper we work in the piecewise linear category in the sense of [12] and [21]. For convenience, we assume that any considered (pseudo) manifold is orientable. Recall that a cube with n handles is a 3-manifold V which contains n pairwise disjoint properly embedded 2-cells such that the result of cutting V along them is a 3-cell. The integer n is called the genus of V, written g(V).

Let M^3 be a connected compact (orientable) 3-manifold with non-empty boundary components $\partial_1 M, \partial_2 M, \ldots, \partial_h M$. We define the concept of "regular" splitting of M as follows. A pair (V_1, V_2) of cubes with handles is said to be a (regular) Heegaard splitting of M if it satisfies the following properties:

- 1) $V_1 \cup V_2 = M$
- 2) $V_2 \cap \partial_i M$ is a closed 2-cell D_i for i = 1, 2, ..., h
- 3) $V_1 \cap V_2 = \partial V_1 \cap \partial V_2 = \partial V_2 \setminus \bigcup_{i=1}^h \mathring{D}_i$
- 4) $\partial V_1 = \partial V_2 \# \partial_1 M \# \dots \# \partial_h M$.

As a consequence, we have the relation $g(V_1) = g(V_2) + \sum_{i=1}^h g(\partial_i M)$, where g also denotes the genus of a closed surface. The genus of the regular splitting (V_1, V_2) is defined to be $g(V_1)$. The (regular) Heegaard genus of M is the minimum n for which M admits regular splittings of genus n. Obviously this concept extends to the boundary case the usual Heegaard

genus of a closed (orientable) 3-manifold as $g(V_1) = g(V_2)$ whenever ∂M is a 2-sphere.

The following existence theorem was first proved in [4], Proposition 4, for manifolds with connected boundary and successively extended to the general case in [11], Proposition 12; we shall present an alternative proof of the result, which follows closely a construction contained in [24] (section 8.3.6, pp. 260-261).

THEOREM 1. Let M^3 be a compact connected (orientable) 3-manifold with non empty boundary components $\partial_1 M, \partial_2 M, \ldots, \partial_h M$. Then M admits a regular Heegaard splitting.

Proof. Let K be a simplicial triangulation of M and Sd^rK the r-th barycentric subdivision of K. Let us denote by Γ_1 and Γ_2 the 1-skeleton and the dual 1-skeleton of K respectively. Recall that Γ_2 is the maximal 1-subcomplex of Sd^1K disjoint from Γ_1 . We consider a derived simplicial neighbourhood H_i of Γ_i in Sd^2K . Then the polyhedron underlying H_i , also named H_i , is a tubular neighbourhood of Γ_i in M. Obviously we have that $M = H_1 \cup H_2$ and $H_1 \cap H_2 = \partial H_1 \cap \partial H_2$. Furthermore, H_1 and H_2 are not identified along their whole boundaries as the points where ∂H_1 and ∂H_2 are not identified constitute ∂M . The pieces of $\partial_i M$ on ∂H_2 are 2-cells e_i , $j=1,2,\ldots,\alpha(i)$, arising from the middle of the faces in the triangulation of $\partial_i M$. By doing isotopies inside a collar of ∂M in M, we push the 2-cells e_j into the interior of a 2-cell f_i of $\partial_i M$ for any $i=1,2,\ldots,h$. Let C_i be a 3-cell such that $C_i \cap M = \partial C_i \cap \partial M = f_i$ and $\partial C_i \setminus f_i$ is the 2-cell D_i . Then the manifold $\widetilde{M} = M \cup \bigcup_{i=1}^h C_i$ is homeomorphic to M. Now \widetilde{M} splits into two cubes with handles $V_2 = H_2 \cup \bigcup_{i=1}^h C_i$ and $V_1 = \operatorname{cl}(\widetilde{M} \setminus V_2) \cong$ $cl(M \setminus H_2) \cong H_1$. Here we have also denoted by the same symbol the image of H_i under the above mentioned isotopies. Finally the pair (V_1, V_2) satisfies the statement.

By Theorem 1 we can analyze the bordered 3-manifolds in terms of the manner in which the pieces are attached and thus we reduce the study of these 3-manifolds to problems about 2-manifolds.

Suppose we have a (regular) Heegaard splitting (V_1, V_2) of a 3-manifold M with non empty boundary components $\partial_1 M, \partial_2 M, \ldots, \partial_h M$. Render V_2 simply connected by removing suitable meridian plates $P_k, k = 1, 2, \ldots, m$. More precisely, let $\{B_1, B_2, \ldots, B_m\}$ be any collection of pairwise disjoint properly embedded 2-cells in V_2 which cut V_2 into

a 3-cell. The pairwise disjoint 1-spheres $\{J_1, J_2, \ldots, J_m\}$, $J_k = \partial B_k$, cut ∂V_2 into a 2-sphere with 2m holes. The plates P_k are precisely $B_k \times I \subset V_2$, where I = [0, 1]. Since the pieces of ∂M on ∂V_2 are the 2-cells D_i , $i = 1, 2, \ldots, h$, we can place the plates P_k so that they do not meet ∂M by pushing their rims $\partial B_k \times I = J_k \times I$ away from the discs D_i where necessary.

Let V_2' be the result of cutting V_2 along $\bigcup_{k=1}^m B_k$. Then V_2' is a 3-cell as $g(V_2) = m$. Furthermore V_2' meets $\partial_i M$ along the 2-cell D_i . For any $i = 1, 2, \ldots, h-1$ cut a plate $P_i' = B_i' \times I$ from V_2' which has D_i as its top face and its rim $\partial B_i' \times I = J_i' \times I$ is an annulus common to ∂V_1 and ∂V_2 .

We call the system $(V_1; J_1, J_2, \ldots, J_m, J'_1, J'_2, \ldots, J'_{h-1})$ a (regular) Heegaard diagram of M. We can recover M from a (regular) Heegaard diagram of it. Conversely, every set of disjoint simple closed curves on a cube V_1 with n handles determines a bordered 3-manifold M. Indeed, M is obtained by glueing plates to annular neighbourhoods of the curves.

Given a (regular) Heegaard diagram $(V_1; J_1, J_2, \ldots, J_m, J'_1, J'_2, \ldots, J'_{h-1})$ as above we can construct a presentation for $\Pi_1(M)$ as follows. Choose a free basis $\{x_1, x_2, \ldots, x_n\}$ for the free group $\Pi_1(V_1) \simeq \star_n \mathbb{Z}$, where $n = g(V_1)$. For $k = 1, 2, \ldots, m$ and $i = 1, 2, \ldots, h-1$, let r_k and r'_i be words in x_1, x_2, \ldots, x_n representing the elements of $\Pi_1(V_1)$ determined by J_k and J'_i respectively. These words are unique up to inversion and conjugation. By Van Kampen's theorem we have that

$$< x_1, x_2, \ldots, x_n; r_1, r_2, \ldots, r_m, r'_1, r'_2, \ldots, r'_{h-1} >$$

is a presentation for $\Pi_1(M)$.

In particular, we obtain the following result:

THEOREM 2. Let M^3 be a compact connected (orientable) 3-manifold with non empty boundary components $\partial_1 M, \partial_2 M, \ldots, \partial_h M$. Then the fundamental group $\Pi_1(M)$ has a finite presentation of deficiency

$$\sum_{i=1}^{h} g(\partial_{i} M) - h + 1 = 1 - \chi(M).$$

Proof. By Theorem 1, we have

$$\Pi_1(M) \cong \langle x_1, x_2, \dots, x_n; r_1, r_2, \dots, r_m, r'_1, r'_2, \dots, r'_{h-1} \rangle$$

where $n = g(V_1) = g(V_2) + \sum_{i=1}^{h} g(\partial_i M)$ and $m = g(V_2)$. Thus the deficiency d of the presentation is

$$d = n - m - (h - 1) = \sum_{i=1}^{h} g(\partial_i M) - h + 1$$
.

Now let D(M) be the closed 3-manifold which is the double of M. Then we have $\chi(D(M)) = 2\chi(M) - \chi(\partial M) = 0$, i.e.

$$2\chi(M) = \sum_{i=1}^{h} \chi(\partial_i M) = 2h - 2\sum_{i=1}^{h} g(\partial_i M).$$

This implies that $\chi(M) = h - \sum_{i=1}^{h} g(\partial_i M)$, hence $d = -\chi(M) + 1$ as requested

Define:

- 1) rk(M) the minimum rank of $\Pi_1(M)$;
- 2) d(M) the minimum deficiency over all presentations of $\Pi_1(M)$.

The following facts are straightforward:

PROPOSITION 3. Let M^3 be a compact connected (orientable) 3-manifold with non empty boundary components $\partial_1 M, \partial_2 M, \ldots, \partial_h M$. Then we have:

- 1) $g(M) \ge g(\partial M)$.
- 2) g(M) > rk(M).
- 3) $0 < d(M) < g(\partial M) h + 1 = 1 \chi(M)$.
- 4) $d(M)+\beta_2(M) \leq \beta_1(M)$ where $\beta_i(M)$ is the *i*-th Betti number of M. In particular, if d(M) > 0, then $H_1(M)$ (and hence $\Pi_1(M)$) is an infinite group.
- 5) g(M) = 0 if and only if M is a punctured 3-cell, i.e. a manifold which becomes a 3-sphere by capping off each 2-sphere component of ∂M with a 3-cell.

Now we prove a nice characterization of cubes with handles among 3-manifolds with non empty connected boundary.

THEOREM 4. Let M^3 be a compact connected (orientable) 3-manifold with non empty connected boundary ∂M . Then M is a cube with n handles if and only if $g(M) = g(\partial M) = n$.

Proof. The necessity is clear. For sufficiency, let (V_1, V_2) be a (regular) Heegaard splitting of M such that $g(M) = g(V_1) = g(V_2) + g(\partial M) = g(\partial M)$. By hypothesis, it follows that $g(V_2) = 0$, hence V_2 is a 3-cell. Furthermore V_2 meets V_1 in a 2-cell in the boundary of each as $\partial M \cap V_2 = D$, a 2-cell, and $V_1 \cap V_2 = \partial V_1 \cap \partial V_2 = \partial V_2 \setminus \stackrel{\circ}{D}$ is a 2-cell. Hence M is the 3-manifold obtained from the cube with handles V_1 by attaching a 3-cell along a 2-cell in their boundaries. Thus $M \cong_{PL} V_1$ as required \diamondsuit

Note that Theorem 4 gives a simple (non combinatorial) proof of the main theorem of [3]. Indeed the regular genus $\tilde{g}(M)$ of a 3-manifold M with boundary, used in [3], satisfies the relation $\tilde{g}(M) \geq g(M) \geq g(\partial M) = \tilde{g}(\partial M)$ as one can easily verify.

COROLLARY 5. Let K be a tame knot in \mathbb{S}^3 and M the knot manifold of K, i.e. M is the closed complement of a regular neighbourhood of K in \mathbb{S}^3 . Then K is the trivial knot if and only if $g(M) = g(\partial M) = 1$.

PROPOSITION 6. Let K_i be a tame knot in \mathbb{S}^3 , M_i the knot manifold of K_i , i = 1, 2, and K the composite knot $K_1 \# K_2$. If M is the knot manifold of K, then we have $g(M) = g(M_1) + g(M_2) - 1$.

Proof. For composite knots it is convenient to use a new view of the knot manifold as described in [1] and [2], chp. 15, part B. One looks at the complement M_1 of a regular neighbourhood of the knot $K_1 \subset \mathbb{S}^3$ from the centre of a ball in the regular neighbourhood. Now M_1 looks like a cube with a knotted hole (for details see the quoted papers). Suppose W_2 is a regular neighbourhood of K_2 in \mathbb{S}^3 such that $M_1 \subset W_2$ and $M_1 \cap M_2 = \partial M_1 \cap \partial M_2$ is an annulus A, where $M_2 = \mathbb{S}^3 \setminus \mathring{W}_2$. Then $M_1 \cup_A M_2$ is just the knot complement of the composite knot $K = K_1 \# K_2$ if the annulus A is meridional with respect to K_1 and K_2 . Let $(V_1^{(i)}, V_2^{(i)})$, i = 1, 2, be a minimal regular Heegaard splitting of M_i , i.e. $g(M_i) = g(V_2^{(i)}) + 1$. By isotopy there exist closed 2-cells $D_2^{(i)}$, $C_2^{(i)}$, B_2 which satisfy the following properties:

$$1) \quad V_2^{(i)} \cap \partial M_i = D_2^{(i)}$$

2)
$$V_2^{(i)} \cap A = B_2 \subset D_2^{(i)}$$

3)
$$V_2^{(i)} \cap (\partial M_i \setminus \overset{\circ}{A}) = C_2^{(i)} \subset D_2^{(i)}$$

4)
$$B_2 \cup C_2^{(i)} = D_2^{(i)}$$

5) $B_2 \cap C_2^{(i)} = \partial B_2 \cap \partial C_2^{(i)}$ is an 1-arc properly embedded in $D_2^{(i)}$.

It follows that the pair $(V_1^{(1)} \cup_{A \setminus B_2} V_1^{(2)}, V_2^{(1)} \cup_{B_2} V_2^{(2)})$ is a regular Heegaard splitting of M. Then we have

$$g(M) \le g(V_2^{(1)} \cup_{B_2} V_2^{(2)}) + 1 = g(V_2^{(1)}) + g(V_2^{(2)}) + 1 =$$

= $g(M_1) + g(M_2) - 1$.

Conversely, let (V_1,V_2) be a minimal regular Heegaard splitting of M, i.e. $g(M)=g(V_2)+1$. By the general position theorem we can always assume that V_2 transversely intersects the annulus A in a finite number of disjoint closed 2-cells e_j . Then $V_2^{(i)}=V_2\cap M_i$ and $V_1^{(i)}=V_1\cap M_i$ are cubes with handles. Now we cut a plate $B_j^{(i)}\times I$ from $V_2^{(i)}$ which has the 2-cell e_j as its top face and its rim $\partial B_j^{(i)}\times I$ is an annulus in $\partial V_2^{(i)}$. Repeating this process yields a cube with handles, $\overline{V}_2^{(i)}$ say, which has the same genus of $V_2^{(i)}$. Moreover, attaching the plates $B_j^{(i)}\times I$ to $V_1^{(i)}$ gives a homeomorphic cube with handles, $\overline{V}_1^{(i)}$ say. By construction the pair $(\overline{V}_1^{(i)}, \overline{V}_2^{(i)})$ is a regular Heegaard splitting of M_i such that $g(\overline{V}_2^i)=g(V_2^{(i)})$. Finally we have $g(M)=g(V_2)+1\geq g(V_2^{(1)})+g(V_2^{(2)})+1=g(\overline{V}_2^{(1)})+g(\overline{V}_2^{(2)})+1\geq g(M_1)+g(M_2)-1$. This proves the statement.

Corollary 5 and Proposition 6 yield a simple alternative proof of the classical non cancellation theorem for 1-knots in \mathbb{S}^3 (see for example [2] and [20]).

COROLLARY 7. (The non cancellation theorem for 1-knots in \mathbb{S}^3). The composite knot $K_1 \# K_2$ is trivial if and only if K_1 and K_2 are trivial.

Proof. If $K_1 \# K_2$ is unknotted, then g(M) = 1. Because $g(M) = g(M_1) + g(M_2) - 1$ and $g(M_i) \ge g(\partial M_i) = 1$, it follows that $g(M_i) = 1$, i = 1, 2, and hence K_i is trivial by Corollary 5.

Now we shall apply Theorem 5.2 of [15] and the additivity of the genus ([13] and [14]) to obtain the following result:

Proposition 8. Let M^3 be a compact connected orientable 3-manifold with nontrivial free fundamental group. If g(M) = rk(M), then M is homeomorphic to a connected sum whose factors are cubes with handles and copies of $\mathbb{S}^1 \times \mathbb{S}^2$.

Proof. Let $\partial_1 M$, $\partial_2 M$,..., $\partial_h M$ be the boundary components of M and let us denote the genus of $\partial_i M$ by g_i , $i=1,2,\ldots,h$. By Theorem 5.2 and Corollary 5.3 of [15] the manifold M is a connected sum of type $\Sigma \# H_1 \# \cdots \# H_h \# \Lambda_1 \# \cdots \# \Lambda_s$, where H_i is a cube with g_i handles, Λ_j is a copy of $\mathbb{S}^1 \times \mathbb{S}^2$ and Σ is a homotopy 3-sphere. Furthermore, the following relation

$$s = rk(M) - \sum_{i=1}^{h} g_i = rk(M) - g(\partial M)$$

is verified. To prove the result we have to show that Σ is really a 3-sphere. Let (V_1,V_2) be a minimal regular Heegaard splitting of M, i. e. $g(M)=g(V_1)=g(V_2)+g(\partial M)=g(V_2)+rk(M)-s$. Then the hypothesis of the statement implies that $g(V_2)=s$. Let H_i' be a copy of H_i so that the union $H_i\cup H_i'$ is a connected sum of g_i factors of type $\mathbb{S}^1\times\mathbb{S}^2$. Let M' be the closed orientable 3-manifold obtained from M by capping off each boundary component $\partial_i M=\partial H_i$ with H_i' . Then M' is homeomorphic to a connected sum $\Sigma\#p(\mathbb{S}^1\times\mathbb{S}^2)$, where $p=s+g(\partial M)$. Haken's theorem on the additivity of the Heegaard genus in the closed case (see [13] and [14]) implies that

$$g(M') = g(\Sigma) + s + g(\partial M) = g(\Sigma) + g(V_2) + g(\partial M) = g(\Sigma) + g(M).$$

Because V_2 meets each boundary component $\partial_i M = \partial H_i$ in a 2-cell, the union $V_2' = V_2 \cup \bigcup_{i=1}^h H_i'$ is a cube with handles whose genus is

$$g(V_2') = g(V_2) + \sum_{i=1}^h g_i = g(V_2) + g(\partial M) = g(V_1) = g(M).$$

Thus the closed 3-manifold M' admits the Heegaard splitting (V_1, V_2') , in the usual sense, of genus g(M). This implies that $g(M') \leq g(M)$ and hence $g(\Sigma)$ vanishes as $g(M') = g(\Sigma) + g(M)$. Thus Σ must be a genuine 3-sphere and the proof is complete. \diamondsuit

COROLLARY 9. g(M) = 1 if and only if M^3 is either a punctured lens space (including $\mathbb{S}^1 \times \mathbb{S}^2$) or $M = \mathbb{S}^1 \times D^2$ (cube with 1-handle).

Examples of genus two 3-manifolds with toroidal boundary components are given by the closed complements of small regular neighbourhoods of certain knots and links in \mathbb{S}^3 (see the next section).

3. P-graphs.

Let M be a connected compact (orientable) 3-manifold with non empty boundary ∂M . In this section we relate the concept of (regular) Heegaard diagram of M to another known 3-manifold representation, named P-graph theory (see for example [19] and [23]). As a consequence, we obtain a nice property about the finite presentations of $\Pi_1(M)$, which arise from (regular) Heegaard diagrams of M. In order to do this, we recall some definitions and results about P-graphs, listed in the quoted papers. Let φ be a group presentation with n generators and m relators, n > m, i.e. $\varphi = \langle x_1, x_2, \dots, x_n : r_1, r_2, \dots, r_m \rangle$. By $K\varphi$ we denote the canonical 2complex associated to φ . Then $K\varphi$ is a 2-dimensional CW-complex with one vertex v and n 1-cells (resp. m 2-cells) corresponding to generators (resp. relators) of φ . Each 1-cell of $K\varphi$ will be labelled by the associated generator x_i of φ , for i = 1, 2, ..., n. Every presentation φ determines a unique P-graph $P\varphi$ obtained as the boundary of a regular neighbourhood of the vertex v in $K\varphi$. If $x_i \cap P\varphi = \{e_i^+, e_i^-\}$, then the points (vertices) on the boundary of regular neighbourhoods of e_i^+ , e_i^- in $P\varphi$ will be denoted by e_{ij}^+ , e_{ij}^- respectively $(i = 1, 2, ..., n; j = 1, 2, ..., k_i)$. Then we set $E_i^{\varepsilon} = \{e_{ij}^{\varepsilon}: j=1,2,\ldots,k_i\}$ and $E = \bigcup_{i,\varepsilon} E_i^{\varepsilon}$ for $\varepsilon = +$ or -. Now let $B = B(\varphi)$ be the involutory permutation of E, defined by $B(e_{ij}^+) =$

 e_{ij}^{-} . If $P\varphi$ is embedded into the 2-sphere \mathbb{S}^2 , then walking clockwise around each vertex of E_i^{ε} induces a permutation $C = C(\varphi)$ of E, whose orbits are the sets E_i^{ε} . An embedding $f: P\varphi \longrightarrow \mathbb{S}^2$ is said to be faithful if B = CBC. In this case, we say that φ fits.

A basic result of P-graph theory is the following representation theorem (see [18], [19] and [23]).

Theorem 10. Let M be a connected compact orientable 3-manifold (with or without boundary). Suppose φ is a finite presentation of $\Pi_1(M)$. Then φ fits if and only if $K\varphi$ is a spine of M, i.e. there exists an embedding $K\varphi \subset M$ such that $M \setminus K\varphi$ is homeomorphic to $\partial M \times [0,1[$. Moreover, the manifold M is uniquely determined by the faithful embedding of $P\varphi$ in \mathbb{S}^2 .

Now we are going to construct a Heegaard diagram of M from a faithfully embedded P-graph $(P\varphi, f)$. We consider the disc $B_i^{\varepsilon} \subset \mathbb{S}^2$ with center e_i^{ε} and such that $E_i^{\varepsilon} \subset \partial B_i^{\varepsilon}$. Since B = CBC, there exists an orientation reversing homeomorphism $\psi_i: \partial B_i^+ \longrightarrow \partial B_i^-$ such that $\psi_i(e_i^+) = e_i^-$ for

 $i=1,2,\ldots,n$. Let Σ denote the closed complement of $\bigcup_{i,\varepsilon} B_i^{\varepsilon}$ in \mathbb{S}^2 . Then the quotient space obtained from Σ by identifying each ∂B_i^+ with ∂B_i^- via ψ_i is the closed orientable surface S of genus n, standardly embedded in the euclidean 3-space \mathbb{R}^3 . Let $H = H(\varphi, f)$ denote the orientable cube with n handles, in \mathbb{R}^3 , such that $\partial H = S$. Let $\gamma = \gamma(\varphi, f)$ be the set of simple disjoint closed curves in ∂H obtained from $f(P\varphi) \cap \Sigma$ via the natural projection $\pi: \Sigma \longrightarrow S$. Now the pair (H, γ) is a Heegaard diagram of M, called the diagram induced by $(P\varphi, f)$. This construction can be reversed as follows. Let (H, γ) be a (regular) Heegaard diagram of M and let φ denote the group presentation of $\Pi_1(M)$ arising from (H, γ) . We construct a faithfully embedded P-graph $(P\varphi, f)$ such that the induced diagram $(H(\varphi, f), \gamma(\varphi, f))$ coincides with (H, γ) . For this, it is convenient to take the usual representation of the diagram in the euclidean plane as shown in [22]. Let \mathbb{S}^2 be the 2-sphere, represented as the (x, y)-plane plus a point at infinity. For i = $1,2,\ldots,n$, let $e_i^+\equiv (i,+1),\ e_i^-\equiv (i,-1)$ and B_i^{ε} the 2-cell of radius 1/4and center at e_i^{ε} , where $\varepsilon = +$ or -. As usual, Σ denotes the bordered surface $\mathbb{S}^2 \setminus \bigcup_{i,\varepsilon} B_i^{\varepsilon}$. Let $\pi: \Sigma \longrightarrow \partial H$ be a map, one-to-one everywhere except that each point of $\pi(\partial \Sigma)$, has two points, one of ∂B_i^+ and one of ∂B_i^- , as inverse image. Let Σ^+ (resp. Σ^-) be the subset of Σ consisting of all the points with non negative (resp. non positive) ordinate, plus the point at infinity. By isotoping, if necessary, the curves of $\gamma \subset \partial H$, we can suppose that the following conditions are satisfied:

- 1) for each j = 1, 2, ..., m, $\pi^{-1}(\gamma_j)$ is the disjoint union of a finite set of arcs $\{\alpha_{jr}\}$, each meeting a circle only at its endpoints;
- 2) $\alpha_{jr} \cap \Sigma^{\varepsilon}$ is either empty or the disjoint union of a finite set of arcs $\{\beta_{jrs}^{\varepsilon}\}$, none of which meets the x-axis (plus ∞) at an inner point.

Each circle $\partial B_i^{\varepsilon}$ is split by the endpoints of the arcs $\beta_{jrs}^{\varepsilon}$ into the union of a finite set of arcs with ends e_{ik}^{ε} . We can consider the pseudo-graph G = (V, E) (multiple edges and loops may occur) where:

- 1) $V = \{e_i^{\varepsilon}, e_{ik}^{\varepsilon}\}_{ik\varepsilon}$ is the vertex-set;
- 2) two vertices $v, w \in V$ are joined by an edge in E if either they are the endpoints of the same arc α_{jr} or $\{v, w\} = \{e_i^{\varepsilon}, e_{ik}^{\varepsilon}\}.$

The pseudo-graph G is the desired P-graph $P\varphi$ associated to φ . Moreover, G is faithfully embedded in \mathbb{S}^2 and the induced diagram coincides with (H, γ) .

Thus Theorem 4.1 of [19] applies to obtain the following result:

THEOREM 11. Let M be a connected compact orientable 3-manifold (with or without boundary), (H, γ) a (regular) Heegaard diagram of M and φ the finite presentation of $\pi_1(M)$ arising from the diagram. Suppose that x is an arbitrary generator of φ and that $\{x^{m_1}, x^{m_2}, \ldots, x^{m_s}\}$ is the set of x-syllabes in the relators of φ . Then there exist relatively prime integers m_x, p_x such that the absolute value $|m_t|$ of m_t , $t = 1, 2, \ldots, s$, belongs to the set $\{m_x, p_x, m_x + p_x\}$.

Now we illustrate our constructions showing Heegaard diagrams and faithfully embedded P-graphs of certain classical knot and link complements.

Let us consider the figure-eight knot (see for example [20]) in \mathbb{S}^3 , shown in figure 1.

Fig. 1 - The figure-eight knot K.

We prove the following result:

Proposition 12. Let φ be the finite presentation

$$< x, y : xyxy^{-1}x^{-1}yxyx^{-1}y^{-1} > .$$

Then the complement of the figure-eight knot is the unique orientable prime 3-manifold with connected boundary which has the canonical 2-complex $K\varphi$ as spine.

Proof. Let us denote the oriented 1-cells of $K\varphi$ by x,y and the unique 2-cell of $K\varphi$ by c. Then there exists an attaching map $\partial B^2 \longrightarrow x \vee y$ (one point union) given by the relator of φ . The set E consists of exactly 20 elements, two for each occurrence of a generator in the relator of φ . Suppose we denote these elements by $e_{1,1}^+, e_{1,2}^+, \ldots, e_{1,5}^+, e_{2,6}^+, e_{2,7}^+, \ldots, e_{2,10}^+, e_{1,1}^-, e_{1,2}^-, \ldots, e_{2,6}^-, e_{2,7}^-, \ldots, e_{2,10}^-, e_{2,10}^-,$

$$B = B(\varphi) = (1 \ \bar{1})(2 \ \bar{2})(3 \ \bar{3})(4 \ \bar{4})(5 \ \bar{5})(6 \ \bar{6})(7 \ \bar{7})(8 \ \bar{8})(9 \ \bar{9})(10 \ \bar{10}).$$

Now the P-graph $P\varphi$, determined by φ , is embedded in the 2-sphere \mathbb{S}^2 , as shown in figure 2.

Then walking clockwise around each vertex of $E_i^{\varepsilon},\ i=1,2,$ induces the permutation

$$C = C(\varphi) = (1\ 3\ 4\ 5\ 2)(6\ 7\ 9\ 8\ 10)(\bar{2}\ \bar{5}\ \bar{4}\ \bar{3}\ \bar{1})(\bar{10}\ \bar{8}\ \bar{9}\ \bar{7}\ \bar{6}).$$

Obviously the presentation φ fits, i.e. the embedding of $P\varphi$ in \mathbb{S}^2 satisfies the relation B = CBC as one can easily verify. Now we apply Theorem 10. The unicity of the manifold follows from the Whitten rigidity theorem, (see [9], [25] and [26]).

Fig. 2 - A P-graph of the complement of the figure-eight knot.

The Heegaard diagram (full outside) of the complement of the figure-eight knot, induced from the above-mentioned faithfully embedded P-graph, is shown in figure 3.

Fig. 3 - A Heegaard diagram of the knot complement of the figure-eight knot.

Let us consider the link $L \subset \mathbb{S}^3$ with two components shown in figure 4.

Fig. 4 - A link L with two components J, K.

As before, one can prove the following result:

Proposition 13. Let φ be the finite presentation

$$< x, y : xyx^{-1}yx^{-1}y^{-1}xy^{-1} > .$$

Then the complement of the link L is the unique orientable prime 3-manifold with two toroidal boundary components, which has the canonical 2-complex $K\varphi$ as spine.

The faithfully embedded P-graph $P\varphi$, induced by φ , is shown in figure 5.

Walking clockwise around each vertex of E_i^{ε} , i=1,2, yields the permutation

$$C = C(\varphi) = (1\ 3\ 4\ 2)(5\ 8\ 6\ 7)(\bar{2}\ \bar{4}\ \bar{3}\ \bar{1})(\bar{7}\ \bar{6}\ \bar{8}\ \bar{5}).$$

Because the permutation $B = B(\varphi)$ is given by

$$B = (1 \ \bar{1})(2 \ \bar{2})(3 \ \bar{3})(4 \ \bar{4})(5 \ \bar{5})(6 \ \bar{6})(7 \ \bar{7})(8 \ \bar{8}),$$

one can easily verify that the relation B = CBC holds. The unicity of the manifold follows from the fact that the above $C = C(\varphi)$ is the unique permutation for which φ fits. Finally the Heegaard diagram, induced by the P-graph of figure 5, is shown in figure 6.

Fig. 5 - A P-graph of the knot space of L.

Fig. 6 - A Heegaard diagram of the knot space of L.

4. Results in Higher Dimension.

In this section we partially extend some results, proved for bordered 3-manifolds, to higher dimension. As a consequence, we obtain a simple geometric proof of the non cancellation theorem for tame 2-knots embedded into the 4-sphere \mathbb{S}^4 .

Let M^n be a compact connected (PL) *n*-manifold with h boundary components $\partial_1 M, \partial_2 M, \ldots, \partial_h M$. A handle of dimension n and index p (briefly a p-handle) H^p is a homeomorph of $D^p \times D^{n-p}$ ($0 \le p \le n$), D^j being a closed j-cell.

Given a p-handle $H = D^p \times D^{n-p}$, let us consider a (PL) homeomorphism $\psi: \partial D^p \times D^{n-p} \longrightarrow \partial M$. Then $M \cup_{\psi} H$ is the manifold obtained from M by attaching a p-handle H via ψ . Attaching disjoint 1-handles to a closed n-cell yields an n-cube with handles (compare section 2 for n=3), also named n-handlebody.

A handle decomposition of M is a presentation

$$M = H_0 \cup H_1 \cup \ldots \cup H_t ,$$

where H_0 is a closed *n*-cell and H_i is a handle attached to $M_{i-1} = \bigcup \{H_j : j \leq i-1\}$. It is well-known that any (PL) *n*-manifold with non void

boundary admits a handle decomposition with one 0-handle and no n-handles ([21]).

Let K be a simplicial triangulation of M. Let us denote by Γ_1 and Γ_2 the (n-2)-skeleton and the dual 1-skeleton of K respectively. Now one can directly repeat the arguments developed in the proof of Theorem 1 to obtain the following natural extension.

Proposition 14. Let M^n be a compact connected (orientable) n-manifold with h boundary components $\partial_1 M, \partial_2 M, \ldots, \partial_h M$. Then there exists a pair (V_1, V_2) of bordered connected n-manifolds satisfying the following properties:

- 1) $V_1 \cup V_2 = M$,
- 2) $V_2 \cap \partial_i M$ is a closed (n-1)-cell D_i , for $i=1,2,\ldots,h$;
- 3) $V_1 \cap V_2 = \partial V_1 \cap \partial V_2 = \partial V_2 \setminus \bigcup_{i=1}^h \mathring{D}_i;$
- 4) V_1 admits a handle decomposition with handles of index $\leq n-2$;
- 5) V_2 is an *n*-dimensional handlebody;
- 6) $\partial V_1 = \partial V_2 \# \partial_1 M \# \dots \# \partial_h M$.

According to section 2, any pair (V_1, V_2) with the properties of Proposition 14 is called a (regular) splitting of M. From now on, we suppose that M is a compact connected orientable 4-manifold with h boundary components. The genus of a splitting (V_1, V_2) of M is defined to be the Heegaard genus of the closed orientable 3-manifold ∂V_1 . As usual, the genus of M^4 is the minimum m for which M admits splittings of genus m. By [11] it follows that $g(M^4) \geq g(\partial M)$ since $g(M) = g(\partial V_1) = g(\partial V_2) + g(\partial M)$ for any splitting (V_1, V_2) of minimal genus. We also observe that the genus $g(M^4)$ equals the following expression

$$\alpha_1(M^4) - h + 1 + \sum_{i=1}^h g(\partial_i M^4)$$

where $\alpha_1(M^4)$ is the minimum number of 1-handles in V_2 among all regular splittings (V_1, V_2) of M^4 and $g(\partial_i M^4)$ is the Heegaard genus of $\partial_i M^4$. For instance, suppose that M^4 is a compact connected orientable 4-manifold with non empty connected boundary ∂M . Then $g(M) = g(\partial M)$ if and

only if $\alpha_1(M^4) = 0$, i. e. V_2 is a 4-cell and M^4 is homeomorphic to V_1 . In particular, if M^4 is a cube with n handles, then $g(M) = g(\partial M) = n$.

Given a regular splitting (V_1,V_2) of a compact connected orientable 4-manifold M^4 , let $V_1 = H^0 \cup \lambda H^1 \cup \mu H^2$ and let $\psi_j: (\partial D^2 \times D^2)_j \longrightarrow \partial (H^0 \cup \lambda H^1) \simeq \#_\lambda \mathbb{S}^1 \times \mathbb{S}^2$ be the attaching map of the j-th handle of index 2. We consider the set γ of simple closed curves $\gamma_j = \psi_j(\partial D^2 \times 0)$. Then the pair $(\#\lambda(\mathbb{S}^1 \times \mathbb{S}^2), \gamma)$ is a Heegaard diagram of the bordered orientable 4-manifold M in the sense of [17]. This extends the results of the quoted paper to the boundary case. Now we are going to study some application about knot theory.

PROPOSITION 15. Let K be a tame (PL or smooth) 2-knot in the 4-sphere \mathbb{S}^4 . Let $M \subset \mathbb{S}^4$ be the knot manifold of K. Then K is unknotted if and only if g(M) = 1.

Proof. If K is trivial, then $M \simeq_{PL} D^3 \times \mathbb{S}^1$, hence g(M) = 1. Conversely, let (V_1, V_2) be a regular splitting of M of minimal genus. By [13] and [14] it follows that $g(M) = g(\partial V_1) = g(\partial V_2) + g(\partial M)$. Because $\partial M \simeq \partial(\mathbb{S}^2 \times D^2) \simeq \mathbb{S}^2 \times \mathbb{S}^1$ and $g(\mathbb{S}^2 \times S^1) = 1$, we have $g(M) = g(\partial V_2) + 1$. Hence g(M) = 1 implies that $g(\partial V_2) = 0$, i.e. V_2 is a 4-cell as V_2 is a handle-body. Thus $M \simeq_{PL} V_1$. Because $H_1(M) \cong \mathbb{Z}$ and $H_2(M) \cong 0$, the Mayer-Vietoris sequence of the pair $(H^0 \cup \lambda H^1, \mu H^2)$, where $V_1 = H^0 \cup \lambda H^1 \cup \mu H^2$, yields $\lambda = 1$, hence $\pi_1(V_1) \simeq \pi_1(M) \simeq \mathbb{Z}$. By [8] the manifold M is homotopy equivalent to $\mathbb{S}^1 \times D^3$. Thus the results of [6], [7], [10] and [16] get that M is (TOP) homeomorphic to $\mathbb{S}^1 \times D^3$. Hence K is trivial. \diamondsuit

PROPOSITION 16. Let K_i be a tame 2-knot in the 4-sphere \mathbb{S}^4 , i=1,2, and M_i the knot manifold of K_i . If M is the knot manifold of the connected sum $K_1 \# K_2$, then we have $g(M) = g(M_1) + g(M_2) - 1$.

Proof. By definition of connected sum there exists a tame 3-sphere $\Sigma \subset \mathbb{S}^4$ which divides \mathbb{S}^4 into two 4-balls B_1 , B_2 containing K_1 , K_2 respectively. Furthermore, $K_1 \cap K_2$ is a closed 2-cell C, tamely embedded in Σ , and $K = K_1 \# K_2$ is just the union of K_1 , K_2 minus the interior of C. Let W be a regular neighbourhood of the unknotted 1-sphere ∂C in Σ and let W' denote the closed complement of W in Σ . Then the pair (W, W') of solid tori represents the standard genus one splitting of Σ . If we set $K_i' = K_i \setminus \mathring{C}$, i = 1, 2, then the composite knot K is $K_1' \cup K_2'$ and its knot manifold M is $M_1' \cup M_2'$, where M_i' denotes the closed complement of a small regular neighbourhood of K_i' in B_i , i = 1, 2. Moreover, the intersection of M_1' with

 M_2' is just the solid torus W'. Thus, according to notation of Proposition 6, there exists a 3-dimensional annulus $A = \mathbb{S}^1 \times D^2 \cong_{PL} W'$ such that $M = M_1 \cup_A M_2$. Furthermore, A is properly embedded essential annulus in ∂M , i.e. the inclusion induced homomorphism $\Pi_1(A) \longrightarrow \Pi_1(\partial M)$ is monic. Now we can repeat the arguments discussed in the proof of Proposition 6 to obtain the result.

The next result gives a partial solution to a problem stated in [5].

COROLLARY 17. (The non cancellation theorem for 2-knots in \mathbb{S}^4 .) Suppose a connected sum $K = K_1 \# K_2$ of two tame 2-knots is unknotted in \mathbb{S}^4 . Then both K_1 and K_2 are themselves unknotted.

References

- BING R.H. and MARTIN J.M., Cubes with knotted holes, Trans. Amer. Math. Soc. 155 (1971), 217-231.
- [2] BURDE G. and ZIESCHANG H., Knots, Walter de Gruyter Ed., Berlin-New York, 1985.
- [3] CASALI M.R., Una caratterizzazione dei corpi di manici 3-dimensionali, Boll. Un. Mat. Ital. 4-B (1990), 517-539.
- [4] CAVICCHIOLI A., A new handlebody decomposition of 3-manifolds with connected boundary and their fundamental group, Boll. Un. Mat. Ital. 18-B (1981).131-149.
- [5] CAVICCHIOLI A., A genus for N-dimensional knots and links, Collectanea Math. 36 (1985), 229-242.
- [6] CAVICCHIOLI A., A combinatorial characterization of $\mathbb{S}^3 \times \mathbb{S}^1$ among closed 4-manifolds, Proc. Amer. Math. Soc. 105 (1989), 1008-1014.
- [7] CAVICCHIOLI A., On the genus of smooth 4-manifolds, Trans. Amer. Math. Soc. 331 (1992), 203-214.
- [8] CAVICCHIOLI A. and HEGENBARTH F., On 4-manifolds with free fundamental group, Forum Math. 6 (1994), 415-429.
- [9] FEUSTEL C.D. and WHITTEN W., Groups and complements of knots, Canadian J. Math. 30 (1978), 1284-1295.
- [10] FREEDMAN M. and QUINN F., Topology of 4-manifolds, Princeton Univ. Press, Princeton, New Jersey, 1990.
- [11] GAGLIARDI C., Regular genus: the boundary case, Geometriae Dedicata 22 (1987) 261-281.
- [12] GLASER L.C., Geometrical combinatorial topology, Van Nostrand Reinhold Math. Studies, New York, 1970.
- [13] HAKEN W., Theorie der Normal Flächen, Acta Math. 105 (1961), 245-375.
- [14] HAKEN W., Some results on surfaces in 3-manifolds, Studies in Modern Topology Math. Assoc. Amer., (Prentice Hall, 1968), 34-98.
- [15] HEMPEL J., 3-manifolds, Princeton Univ. Press (Princeton, New Jersey, 1976).
- [16] HILLMAN J., 2-knots and their groups, Australian Math. Soc. Lecture Series 5, Cambridge Univ. Press (Cambridge, 1989).
- [17] MONTESINOS J.M., Heegaard diagrams for closed 4-manifolds, Geometric Topology Proc. 1977 Georgia Conference, Academic Press (1979), 219-237.
- [18] NEUWIRTH L.P., An algorithm for the construction of 3-manifolds from 2complexes, Proc. Cambridge Philos. Soc. 64 (1968), 603-613.
- [19] OSBORNE R.P. and STEVENS R.S., Group presentations corresponding to spines of 3-manifolds, I Amer. J. Math. 96 (1974), 454-471; II, III Trans. Amer. Math. Soc. 234 (1977), 213-243; 245-251.
- [20] ROLFSEN D., Knots and Links, Publish or Perish Ed., Boston-Massachussets, 1976.
- [21] ROURKE C.P. and SANDERSON B.J., Introduction to piecewise-linear topology, Springer-Verlag Ed., Berlin-Heidelberg-New York, 1972.
- $[22] \ \ SINGER \ J., \ Three-dimensional \, manifolds \, and \, their \, Heegaard \, diagrams, \, Trans.$

- Amer. Math. Soc. **35** (1933), 88-111.
- [23] STEVENS R.S., Classification of 3-manifolds with certain spines, Trans. Amer. Math. Soc. **205** (1975), 151-166.
- [24] Stillwell J., Classical topology and combinatorial group theory, Springer-Verlag Ed., Berlin-Heidelberg-New York, 1980.
- [25] WHITTEN W., Rigidity among prime knot complements, Bull. Amer. Math. Soc. 14 (1986), 299-300.
- [26] WHITTEN W., Knot Complements and Groups, Topology 26 (1987), 41-44.