SPLITTINGS OF MANIFOLDS WITH BOUNDARY AND
RELATED INVARIANTS (*)

by ALBERTO CaviccHIOLI and BEATRICE RUINI (in Modena)(**)

SOMMARIO. - Si costruiscono speciali decomposizioni in manici di una n-varieta
PIL compatta, connessa e con bordo non vuoto e st studiano alcuni invari-
anti topologict associati. Come conseguenza, st oltiene una caratterizzazione
del nodo banale n-dimensionale in S™T2 (n < 2) come 'unico n-nodo il cui
complementare ha genere uno. Infine, si espone una semplice dimostrazione
geometrica del teorema di non cancellazione per n-nodi PL in S™?, n < 2.

SUMMARY. - We construct special handle decompositions for a compact con-
nected P manifold with non empty boundary and study the associated topo-
logical invariants. As a consequence, we characterize the unknot in S™t?
(n < 2) as the unique n-knot whose complement has genus one. Then we
obtain a simple geometric proof of the non cancellation theorem for tame
n-knots in S"*?, n < 2.

1. Introduction.

Let M"™ be a compact connected (orientable) triangulated n-manifold
with non empty boundary M. We construct special handle decomposi-
tions of M and define the concept of regular splitting of M. Then we
describe regular Heegaard diagrams of M (n = 3) and relate them to an-
other known 3-manifold representation, named P-graph theory (see [19]
and [23]). As a consequence, we obtain nice properties about (geometric)

Work performed under the auspices of the G.N.S.A.G.A. of the C.N.R. (National Re-
search Council) of Italy and financially supported by the Ministero della Universita e
della Ricerca Scientifica e Tecnologica of Italy within the project “Geometria Reale e
Complessa”.

(*) Pervenuto in Redazione il 28 dicembre 1993 ed in versione definitiva il 18 aprile
1994.

(**) Indirizzo degli Autori: Dipartimento di Matematica, Universita di Modena, Via
Campi 213/B, 41100 Modena (Italia).



68 A. CAVICCHIOLI and B. RUINI

finite presentations of TI; (M) which arise from regular Heegaard diagrams
of M. Then we extend the notion of Heegaard genus of a closed 3-manifold
to the boundary case, also considering higher dimensions. The concept of
genus yields a nice characterization of cubes with handles among bordered
3-manifolds. As a consequence, we also characterize the unknot in S3 as
the unique 1-knot whose complement has genus one. This gives a sim-
ple alternative proof of the classical non cancellation theorem for 1-knots
in S (see for example [20]). Then we extend these results to dimension
four. More precisely, we characterize the unknot in S$* as the unique 2-knot
whose complement has genus one and obtain a geometric proof of the non
cancellation theorem for tame 2-knots in §*. Some examples complete the

paper.

2. Handle Decompositions.

Throughout the paper we work in the piecewise linear category in the
sense of [12] and [21]. For convenience, we assume that any considered
(pseudo) manifold is orientable. Recall that a cube with n handles is a
3-manifold V' which contains n pairwise disjoint properly embedded 2-cells
such that the result of cutting V along them is a 3-cell. The integer n is
called the genus of V, written g(V').

Let M3 be a connected compact (orientable) 3-manifold with non-empty
boundary components 01 M, 0: M, ..., 0p M. We define the concept of “reg-
ular” splitting of M as follows. A pair (V4, V3) of cubes with handles is
said to be a (regular) Heegaard splitting of M if it satisfies the following
properties:

1) ViuVsa =M

2) VanNo;M is a closed 2-cell D; fori=1,2,...,h

3) VinVi=aVinavy =aVs\ UL, Di

4y OVi = OVafO I M# .. . #0x M.
As a consequence, we have the relation g(V1) = g(Vg)—i—Z?:l 9(0i M), where
g also denotes the genus of a closed surface. The genus of the regular
splitting (V1, V2) is defined to be g(Vi). The (regular) Heegaard genus of

M is the minimum n for which M admits regular splittings of genus n.
Obviously this concept extends to the boundary case the usual Heegaard
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genus of a closed (orientable) 3-manifold as g(V1) = g(V2) whenever dM is
a 2-sphere.

The following existence theorem was first proved in [4], Proposition 4,
for manifolds with connected boundary and successively extended to the
general case in [11], Proposition 12; we shall present an alternative proof
of the result, which follows closely a construction contained in [24] (section

8.3.6, pp. 260-261).

THEOREM 1. Let M?® be a compact connected (orientable)
3-manifold with non empty boundary components O1M,0,M,...,
OnM. Then M admits a regular Heegaard splitting.

Proof. Let K be a simplicial triangulation of M and Sd"K the r-th
barycentric subdivision of K. Let us denote by I'y and I's the 1-skeleton
and the dual 1-skeleton of K respectively. Recall that I's is the maximal
1-subcomplex of Sd' K disjoint from I'y. We consider a derived simplicial
neighbourhood H; of T; in Sd? K. Then the polyhedron underlying H;, also
named H;, is a tubular neighbourhood of T'; in M. Obviously we have that
M = HiUHs and HiNHy = 0H1 NOH4. Furthermore, H; and H- are not
identified along their whole boundaries as the points where dH; and 0H,
are not identified constitute M. The pieces of §; M on 9H, are 2-cells e;,
J=1,2,... (i), arising from the middle of the faces in the triangulation
of 9; M. By doing isotopies inside a collar of M in M, we push the 2-cells
e; into the interior of a 2-cell f; of ;M for any ¢ = 1,2,...,h. Let C;

be a 3-cell such that C; N M = 0C; NOM = f; and 0C; \ }Z i1s the 2-cell
D;. Then the manifold M = M U Uk_, C; is homeomorphic to M. Now M
splits into two cubes with handles V5 = Hy UU!_, C; and V; :cl(ﬁ\ Va) =
cl(M \ Hy) = H,. Here we have also denoted by the same symbol the
image of H; under the above mentioned isotopies. Finally the pair (V7, V2)
satisfies the statement. &

By Theorem 1 we can analyze the bordered 3-manifolds in terms of the
manner in which the pieces are attached and thus we reduce the study of
these 3-manifolds to problems about 2-manifolds.

Suppose we have a (regular) Heegaard splitting (V7, V2) of a 3-manifold
M with non empty boundary components 01 M, 0:M
..., OhM. Render V5 simply connected by removing suitable meridian
plates Py, k = 1,2,...,m. More precisely, let {B1, Bs, ..., Bm} be any col-
lection of pairwise disjoint properly embedded 2-cells in Vo which cut V5 into
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a 3-cell. The pairwise disjoint 1-spheres {Ji,Ja2,..., Jm}, Jx = 0B, cut
0V5 into a 2-sphere with 2m holes. The plates Py are precisely B x I C V3,
where I = [0,1]. Since the pieces of M on 0V are the 2-cells D;,
i=1,2,...,h, we can place the plates Py so that they do not meet oM
by pushing their rims 0B x I = Ji x I away from the discs D; where
necessary.

Let V3 be the result of cutting V5 along U7, Bx. Then V3 is a 3-cell
as ¢(Va) = m. Furthermore VJ meets 9; M along the 2-cell D;. For any
i=1,2,...,h—1 cut a plate P/ = B} x I from Vj which has D; as its top
face and its rim 0B} x I = J! x I is an annulus common to dV; and 0Va.

We call the system (V1;.J1,Ja, ..., Jm, J1,J4, ..., J;_;) a (regular) Hee-
gaard diagram of M. We can recover M from a (regular) Heegaard diagram
of it. Conversely, every set of disjoint simple closed curves on a cube V; with
n handles determines a bordered 3-manifold M. Indeed, M is obtained by
glueing plates to annular neighbourhoods of the curves.

Given a (regular) Heegaard diagram (V1; J1, Jo, ..., Jm, J1, J5, -, Jh_q)
as above we can construct a presentation for IT; (M) as follows. Choose a

free basis {z1,23,...,2,} for the free group II; (V1) ~ *,Z, where n =
g(V1). For k=1,2,...;mand i = 1,2,...,h — 1, let 74 and r} be words
in 21, 22, ..., T, representing the elements of TT; (V1) determined by Ji and

J! respectively. These words are unique up to inversion and conjugation.
By Van Kampen’s theorem we have that

. ! ! /
< X1, .. X T, T2 o oy Ty T3 Ty oy T >

is a presentation for Ty (M).

In particular, we obtain the following result:

THEOREM 2. Let M?® be a compact connected (orientable)
3-manifold with non empty boundary components 01M,0,M,...,
OnM. Then the fundamental group II1(M) has a finite presentation of
deficiency

h

> g(diM)—h+1=1-x(M).

i=1

Proof. By Theorem 1, we have

. / ! !
T (M) =< 21,20, ..o, Bn P12y e ooy Py P, Ty ooy Th_q >
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where n = g(V1) = g(Va) + Zleg(aiM) and m = g(V2). Thus the defi-

ciency d of the presentation is

d=n-m—(h—1)=> g(&:;M)—h+1.

i=1
Now let D(M) be the closed 3-manifold which is the double of M. Then
we have x(D(M)) = 2x(M) — x(OM) = 0, i.e.

(M) =Y x(O:M) =20 — 2" g(d: M).

i=1 i=1

This implies that x(M) = h — Zleg(aiM), hence d = —x(M) + 1 as
requested &

Define:
1) k(M) the minimum rank of TI; (M);

2) d(M) the minimum deficiency over all presentations of TIy (M).

The following facts are straightforward:

PROPOSITION 3.  Let M3 be a compact connected (orientable)
3-manifold with non empty boundary components 01 M,0,M,...,
O, M. Then we have:

1) g(M) 2 g(0M).

) g(M) > rk(M).

0<d(M)<gOM)—h+1=1—x(M).

d(M)+p2(M) < p1(M) where B;(M) is the i-th Betti number

of M.

In particular, if d(M) > 0, then Hy(M) (and hence II; (M)) is an

infinite group.

5) ¢g(M) =0 if and only if M is a punctured 3-cell, i.e. a manifold
which  becomes a  3-sphere by capping off each

[\

w

)
4)

2-sphere component of M with a 3-cell.

Now we prove a nice characterization of cubes with handles among 3-
manifolds with non empty connected boundary.
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THEOREM 4. Let M? be a compact connected (orientable)

3-manifold with non empty connected boundary OM. Then M is a cube
with n handles if and only if g(M) = g(OM) = n.

Proof. The necessity is clear. For sufficiency, let (V1, V3) be a (regular)
Heegaard splitting of M such that g(M) = g(V1) = g(Va) + g(0M) =
g(0M). By hypothesis, it follows that g(V2) = 0, hence V3 is a 3-cell.
Furthermore V5 meets V7 in a 2-cell in the boundary of each as OM NV, = D,
a 2-cell, and Vi NV, = V3 NV, = 0V4 \ [o) is a 2-cell. Hence M 1is the
3-manifold obtained from the cube with handles V; by attaching a 3-cell
along a 2-cell in their boundaries. Thus M =py V; as required &

Note that Theorem 4 gives a simple (non combinatorial) proof of the
main theorem of [3]. Indeed the regular genus gG(M) of a
3-manifold M with boundary, used in [3], satisfies the relation
G(M) > g(M) > g(OM) = §g(OM) as one can easily verify.

COROLLARY 5. Let K be a tame knot in S® and M the knot manifold
of K, 1.e. M 1is the closed complement of a reqular neighbourhood of K in
S3. Then K is the trivial knot if and only if g(M) = g(OM) = 1.

PROPOSITION 6. Let K; be a tame knot in S3, M; the knot manifold of
K;, 1 =1,2, and K the composite knot K\#Ky. If M 1s the knot manafold
of K, then we have g(M) = g(Mq) + g(Ms) — 1.

Proof. For composite knots it is convenient to use a new view of the
knot manifold as described in [1] and [2], chp. 15, part B. One looks at the
complement M; of a regular neighbourhood of the knot K; C S3 from the
centre of a ball in the regular neighbourhood. Now M; looks like a cube
with a knotted hole (for details see the quoted papers). Suppose W3 is a
regular neighbourhood of K5 in §3 such that M; C Wy and M; N M, =
OM; NOMs is an annulus A, where My = §3\ V?/'z. Then M7 Uy M is just
the knot complement of the composite knot K = K,# K5 if the annulus
A is meridional with respect to K1 and Ks. Let (Vl(i), V;i)), 1=1,2, be
a minimal regular Heegaard splitting of M;, i.e. g(M;) = g(V;i)) + 1. By
isotopy there exist closed 2-cells Dgi), C’éi), By which satisfy the following
properties:

1 v nom; =pi
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2) V{nA=B,c Dl

3) v @M\ 4) =cf c pf)

4) Byucy =pf

5) By N Céi) =0By N 305“ is an l-arc properly embedded in Dgi).

It follows that the pair (Vl(l) UA\}% Vl(z), V;UUB2 V2(2)) is a regular Heegaard
splitting of M. Then we have

g(M) < gV Up, Vi) + 1= (Vi) + (Vi) +1 =

= g(My) +g(Ms) — 1.
Conversely, let (V1,V5) be a minimal regular Heegaard splitting of M, i.e.
g(M) = g(V2) + 1. By the general position theorem we can always assume
that V5 transversely intersects the annulus A in a finite number of disjoint
closed 2-cells e;. Then V;i) = Vo N M; and Vl(i) = Vi N M; are cubes with
handles. Now we cut a plate B](»i) x I from Vz(i) which has the 2-cell ¢; as
its top face and its rim 63]@ x I 1s an annulus in 6V2(i). Repeating this

process yields a cube with handles, VS) say, which has the same genus of
V2(Z). Moreover, attaching the plates BJ(»Z) x I to Vl(l) gives a homeomorphic
cube with handles, V(ll) say. By construction the pair (ng),v(;)) is a
regular Heegaard splitting of M; such that g(V;) = g(V;Z)). Finally we
have g(M) = g(Va) + 1> g(V{") + g(Vi") + 1= g(7) + (7)) +1 >
g(M1) + g(Ms2) — 1. This proves the statement. &

Corollary 5 and Proposition 6 yield a simple alternative proof of the
classical non cancellation theorem for 1-knots in S® (see for example [2]

and [20]).

COROLLARY 7. (The non cancellation theorem for 1-knots in S3). The
composite knot Ky1# Ko 1s trivial if and only if K1 and Ky are trivial.

Proof. Tf K14 K5 is unknotted, then g(M) = 1. Because g(M) =
g(My1) + g(M2) — 1 and g(M;) > g(0M;) = 1, it follows that g(M;) = 1,
i = 1,2, and hence Kj; is trivial by Corollary 5.

Now we shall apply Theorem 5.2 of [15] and the additivity of the genus
([13] and [14]) to obtain the following result:



74 A. CAVICCHIOLI and B. RUINI

ProprosiTION 8. Let M3 be a compact connected orientable
3-manifold with nontrivial free fundamental group. If g(M) = rk(M), then
M is homeomorphic to a connected sum whose factors are cubes with han-
dles and copies of ST x S2.

Proof. Let 1M, 02M,...,0hM be the boundary components of M
and let us denote the genus of ;M by ¢;, ¢ = 1,2,...,h. By Theorem
5.2 and Corollary 5.3 of [15] the manifold M is a connected sum of type
SH#HH - -#FHR#AMF - F#A, where H; is a cube with g; handles, Aj isa
copy of S x S? and ¥ is a homotopy 3-sphere. Furthermore, the following
relation

s =rk(M)— Zgi =rk(M) — g(OM)

is verified. To prove the result we have to show that X is really a
3-sphere. Let (V1,V2) be a minimal regular Heegaard splitting of M, i.
e. g(M) =g(W) =g(Va)+9(OM) = g(Va) + rk(M) —s. Then the hypoth-
esis of the statement implies that g(V2) = s. Let H] be a copy of H; so that
the union H; U H! is a connected sum of g; factors of type S x S2. Let M’
be the closed orientable 3-manifold obtained from M by capping off each
boundary component 8; M = dH; with H]. Then M’ is homeomorphic to a
connected sum E#p(Sl X Sz), where p = s + g(0M). Haken’s theorem on
the additivity of the Heegaard genus in the closed case (see [13] and [14])
implies that

g(M') = g(Z) + 5+ g(OM) = g(Z) + g(Va) + g(OM) = g(X) + g(M).

Because V2 meets each boundary component 9; M = JH; in a 2-cell, the
union V4 = V5 U U?Il H! is a cube with handles whose genus is

h
g(V3) = g(Va) + Y _ g = 9(Va) + 9(0M) = g(Vi) = g(M).
i=1
Thus the closed 3-manifold M’ admits the Heegaard splitting
(V1, V3), in the usual sense, of genus g(M). This implies that g(M’) <
g(M) and hence g(X) vanishes as g(M’) = g(X) + ¢(M). Thus ¥ must be
a genuine 3-sphere and the proof is complete. &

COROLLARY 9. g(M) = 1 if and only if M? is either a punctured lens
space (including S x §?) or M = S' x D? (cube with 1-handle).
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Examples of genus two 3-manifolds with toroidal boundary components
are given by the closed complements of small regular neighbourhoods of
certain knots and links in S (see the next section).
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3. P-graphs.

Let M be a connected compact (orientable) 3-manifold with non empty
boundary dM. In this section we relate the concept of (regular) Heegaard
diagram of M to another known 3-manifold representation, named P-graph
theory (see for example [19] and [23]). As a consequence, we obtain a
nice property about the finite presentations of T (M), which arise from
(regular) Heegaard diagrams of M. In order to do this, we recall some
definitions and results about P-graphs, listed in the quoted papers. Let
@ be a group presentation with n generators and m relators, n > m, i.e.
@ =< T1,T9,...,Ty 171,72, ...,Tm >. By K¢ we denote the canonical 2-
complex associated to ¢. Then Ky is a 2-dimensional C'W-complex with
one vertex v and n l-cells (resp. m 2-cells) corresponding to generators
(resp. relators) of . Each 1-cell of K¢ will be labelled by the associated
generator z; of ¢, for i = 1,2,...,n. Every presentation ¢ determines a
unique P-graph Py obtained as the boundary of a regular neighbourhood

F,e7 1, then the points (vertices) on

of the vertex v in K. If 2; N Py = {e
the boundary of regular neighbourhoods of €;, e; in Py will be denoted
by efj, €5 respectively (i = 1,2,...,n;j = 1,2,...,k;). Then we set
Ef ={ef;:j=1,2,...,k;} and E:UiygEf for e = + or —.

Now let B = B(¢) be the involutory permutation of E, defined by B(e;-;-) =
€;;- If Py is embedded into the 2-sphere S?, then walking clockwise around
each vertex of Ef induces a permutation C' = C(¢) of E, whose orbits
are the sets Ef. An embedding f : P — S? is said to be faithful if
B = CBC'. In this case, we say that ¢ fits.

A basic result of P-graph theory is the following representation theorem

(see [18], [19] and [23]).

THEOREM 10. Let M be a connected compact orientable 3-manifold
(with or without boundary). Suppose ¢ is a finite presentation of TI1(M).
Then ¢ fits if and only if Ky is a spine of M, i.e. there exists an embedding
K¢ C M such that M \ K¢ is homeomorphic to OM x [0,1[. Moreover,
the manifold M 1is uniquely determined by the faithful embedding of Py in
sz

Now we are going to construct a Heegaard diagram of M from a faithfully
embedded P-graph (P, f). We consider the disc Bf C S? with center €5
and such that Ei C 0B;. Since B = C'BC, there exists an orientation
reversing homeomorphism t; : 9B} — 9B; such that v;(e}) = e for



SPLITTINGS OF MANIFOLDS WITH BOUNDARY etc. 77

i=1,2,...,n. Let ¥ denote the closed complement of | J; . Bf in S2. Then
the quotient space obtained from X by identifying each 8Bj' with 0B; via
1); 18 the closed orientable surface S of genus n, standardly embedded in the
euclidean 3-space R3. Let H = H(¢p, f) denote the orientable cube with n
handles, in R?, such that 9H = S. Let v = v(¢p, f) be the set of simple dis-
joint closed curves in 9 H obtained from f(Py)NX via the natural projection
m: 3% — S. Now the pair (H,7) is a Heegaard diagram of M, called the
diagram induced by (P, f). This construction can be reversed as follows.
Let (H, %) be a (regular) Heegaard diagram of M and let ¢ denote the group
presentation of TTy (M) arising from (H,~). We construct a faithfully em-
bedded P-graph (P, f) such that the induced diagram (H (e, f), (¢, f))
coincides with (H, ). For this, it is convenient to take the usual represen-
tation of the diagram in the euclidean plane as shown in [22]. Let S% be the
2-sphere, represented as the (z,y)-plane plus a point at infinity. For ¢ =
1,2,...,n, let ef = (4,41), e = (i,—1) and B the 2-cell of radius 1/4

and center at e, where ¢ = + or —. As usual, ¥ denotes the bordered

i
surface S%\ Uz’,a B% Let m : ¥ — OH be a map, one-to-one everywhere
except that each point of m(JX), has two points, one of 8BZ»+ and one of
0B,
of all the points with non negative (resp. non positive) ordinate, plus the

as inverse image. Let ¥F (resp. ¥7) be the subset of ¥ consisting

point at infinity. By isotoping, if necessary, the curves of v C dH, we can
suppose that the following conditions are satisfied:

1) foreach j =1,2,...,m, 7= 1(v;) is the disjoint union of a finite
set of arcs {a;j,}, each meeting a circle only at its endpoints;

2)  aj NX° is either empty or the disjoint union of a finite set of
arcs {3, }, none of which meets the z-axis (plus co) at an inner
point.

Each circle B; is split by the endpoints of the arcs B;ys 1nto the union
of a finite set of arcs with ends ej,. We can consider the pseudo-graph
G = (V, E) (multiple edges and loops may occur) where:

1) V= {e5, €54 bike 1s the vertex-set;

2) two vertices v, w € V are joined by an edge in E if either they
are the endpoints of the same arc a;, or {v,w} = {€f, €5, }.

The pseudo-graph G is the desired P-graph Py associated to ¢. More-
over, G is faithfully embedded in S? and the induced diagram coincides
with (H,7).
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Thus Theorem 4.1 of [19] applies to obtain the following result:

THEOREM 11. Let M be a connected compact orientable 3-manifold
(with or without boundary), (H,~) a (regular) Heegaard diagram of M and
@ the finite presentation of w1(M) arising from the diagram. Suppose that
x 1s an arbitrary generator of ¢ and that {z™! ™2, ... 2™} is the set of
z-syllabes in the relators of ¢. Then there exist relatively prime integers
My, pe such that the absolute value |m¢| of my, t = 1,2,...,s, belongs to

the set {mgy, ps, My + ps }-

Now we illustrate our constructions showing Heegaard diagrams and
faithfully embedded P-graphs of certain classical knot and link comple-
ments.

Let us consider the figure-eight knot (see for example [20]) in S? shown in

figure 1.

Fig. 1 - The figure-eight knot K.
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We prove the following result:

ProrosITION 12. Let ¢ be the finite presentation

<z,y: mymy‘lm_lymym_ly_l > .
Then the complement of the figure-eight knot is the unique orientable prime
3-manifold with connected boundary which has the canonical 2-complex K ¢
as spine.

Proof. Let us denote the oriented 1-cells of K¢ by z, y and the unique
2-cell of K¢ by c. Then there exists an attaching map B* — x V y (one
point union) given by the relator of ¢. The set E consists of exactly 20
elements, two for each occurrence of a generator in the relator of ¢. Sup-
pose we denote these elements by eil, eiz, R eiS, 6;6, 6;7, - 6;10, €11,

€12 €15 €36 €a7s o

€5 1o which 1s more convenient to identify with 1,2,...,5,6,7,...,10, 1,2,...

Assume this numbering chosen so that an appropriate closed curve parallel
to and near dc intersects 1, 1, 6, 6, 2,2, 7,7, 3, 3,8,8,4,4,9,9, 5, 5, 10,
10 in this order. Then we have the involutory permutation

B=B(p) = (11)(22)(33)(42)(55)(6 6)(7 7)(8 8)(9 9)(10 10).

Now the P-graph Py, determined by ¢, is embedded in the 2-sphere S2,
as shown in figure 2.

Then walking clockwise around each vertex of Ef, ¢ = 1,2, induces the
permutation

Obviously the presentation ¢ fits, i.e. the embedding of Py in S satisfies
the relation B = C'BC' as one can easily verify. Now we apply Theorem
10. The unicity of the manifold follows from the Whitten rigidity theorem,
(see [9], [25] and [26]). &
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Fig. 2 - A P-graph of the complement of the figure-eight knot.

The Heegaard diagram (full outside) of the complement of the figure-
eight knot, induced from the above-mentioned faithfully embedded P-
graph, is shown in figure 3.

Fig. 3 - A Heegaard diagram of the knot complement
of the figure-eight knot.
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Let us consider the link L C $3 with two components shown in figure 4.

Fig. 4 - A link L with two components J, K.

As before, one can prove the following result:

ProrosITION 13. Let ¢ be the finite presentation

<zy: J;ym_ly:tz_ly_lmy_l > .
Then the complement of the link L 1s the unique orientable prime 3-manifold
with two toroidal boundary components, which has the canonical 2-complex
K¢ as spine.

The faithfully embedded P-graph Py, induced by ¢, is shown in figure

Walking clockwise around each vertex of F;, ¢ = 1,2, yields the permu-
tation

C=C(p)=(1342)(5867)(2431)(7685).

Because the permutation B = B(¢p) is given by

B=(11)(22)(33)(44)(55)(6 6)(7 7)(8 8),
one can easily verify that the relation B = C'BC' holds. The unicity of
the manifold follows from the fact that the above C' = C'(¢) is the unique

permutation for which ¢ fits. Finally the Heegaard diagram, induced by
the P-graph of figure 5, is shown in figure 6.
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Fig. 5 - A P-graph of the knot space of L.

Fig. 6 - A Heegaard diagram of the knot space of L.

4. Results in Higher Dimension.

In this section we partially extend some results, proved for bordered
3-manifolds, to higher dimension. As a consequence, we obtain a simple
geometric proof of the non cancellation theorem for tame 2-knots embedded
into the 4-sphere S*.

Let M™ be a compact connected (PL) n-manifold with A boundary

components 1 M,0:M,...,0,M. A handle of dimension n and index p
(briefly a p-handle) HP is a homeomorph of DP x D"~F (0 < p < n), DJ
being a closed j-cell.
Given a p-handle H = DP x D®7P let us consider a (PL) homeomorphism
0D x D"7P — M. Then M Uy H is the manifold obtained from M
by attaching a p-handle H via ¢. Attaching disjoint 1-handles to a closed
n-cell yields an n-cube with handles (compare section 2 for n = 3), also
named n-handlebody.

A handle decomposition of M 1s a presentation

M=HyUHU...UH, ,

where Hj is a closed n-cell and H; is a handle attached to M;_; = |J{H; :
J < i—1}. Tt is well-known that any (PL) n-manifold with non void



SPLITTINGS OF MANIFOLDS WITH BOUNDARY etc. 83

boundary admits a handle decomposition with one 0-handle and no n-
handles ([21]).

Let K be a simplicial triangulation of M. Let us denote by I'; and T’y
the (n — 2)-skeleton and the dual 1-skeleton of K respectively. Now one
can directly repeat the arguments developed in the proof of Theorem 1 to
obtain the following natural extension.

ProposITION 14. Let M™ be a compact connected (orientable) n-
manifold with h boundary components O1M,0:M, ... 0nM. Then there
exists a pair (Vi,Va) of bordered connected n-manifolds satisfying the fol-
lowing properties:

1) Viuve =M,

2) Vand;M is aclosed (n — 1)-cell D;, fori=1,2,... h;

3) VinVe=aVinavs =ava\U", D;;

4) V1 admits a handle decomposition with handles of index < n—2;
5) Vs is an n-dimensional handlebody;

6) OVi = OVaftO L M# .. #0nM.

According to section 2, any pair (V4, Va) with the properties of Proposi-
tion 14 is called a (regular) splitting of M. From now on, we suppose that
M is a compact connected orientable 4-manifold with A boundary compo-
nents. The genus of a splitting (V1, Va2) of M is defined to be the Heegaard
genus of the closed orientable 3-manifold V. As usual, the genus of M*
is the minimum m for which M admits splittings of genus m. By [11] it
follows that g(M*) > g(OM) since g(M) = g(0V1) = g(dVz) + g(OM) for
any splitting (V4,V2) of minimal genus. We also observe that the genus
g(M*) equals the following expression

h
ar (M) —h+ 1+ g(oiM*?)

i=1

where a3 (M*) is the minimum number of 1-handles in V5 among all regular
splittings (V1, Va) of M* and g(9; M*) is the Heegaard genus of 9; M*. For
instance, suppose that M* is a compact connected orientable 4-manifold
with non empty connected boundary M. Then g(M) = g(dM) if and
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only if a3 (M*) =0, i. e. V5 is a 4-cell and M* is homeomorphic to Vi. In
particular, if M* is a cube with n handles, then g(M) = g(dM) = n.

Given a regular splitting (V1, V2) of a compact connected orientable 4-
manifold M?*,  let V) = H° U AH' U pH? and let
¥j: (0D* x D?); — O(H°UAXH') ~ #,S' x S? be the attaching map of
the j-th handle of index 2. We consider the set v of simple closed curves
v; = ¥j(8D? x 0). Then the pair (#A(S' x §?),) is a Heegaard diagram
of the bordered orientable 4-manifold M in the sense of [17]. This extends
the results of the quoted paper to the boundary case. Now we are going to
study some application about knot theory.

ProrosITION 15. Let K be a tame (PL or smooth) 2-knot in the 4-
sphere S*. Let M C S* be the knot manifold of K. Then K is unknotted if
and only if (M) = 1.

Proof. If K is trivial, then M ~py D3 x S!, hence g(M) = 1. Con-
versely, let (V1,V5) be a regular splitting of M of minimal genus. By
[13] and [14] it follows that g(M) = g(0V1) = ¢g(0V2) + g(OM). Because
OM ~ §(S?x D?) ~ S?x St and g(S?xS') = 1, we have g(M) = g(dVa)+1.
Hence g(M) = 1implies that g(0V3) = 0, i.e. V3 is a 4-cell as V3 is a handle-
body. Thus M ~py V7. Because Hy(M) = 7 and Hy(M) = 0, the Mayer-
Vietoris sequence of the pair (H°UAH', pH?), where Vi = HOUAH'UpH?,
yields A = 1, hence m1(V1) ~ m1 (M) ~ Z. By [8] the manifold M is homo-
topy equivalent to ST x D3. Thus the results of [6], [7], [10] and [16] get
that M is (TOP) homeomorphic to S x D3. Hence K is trivial. &

PROPOSITION 16. Let K; be a tame 2-knot in the 4-sphere S*, i = 1,2,
and M; the knot manifold of K;. If M is the knot manifold of the connected
sum K1# Ko, then we have g(M) = g(M1) + g(M2) — 1.

Proof. By definition of connected sum there exists a tame 3-sphere ¥ C
S* which divides S* into two 4-balls By, By containing K;, Ko respectively.
Furthermore, K1 N K5 is a closed 2-cell C, tamely embedded in X, and
K = K1#K, is just the union of K1, K» minus the interior of C. Let W
be a regular neighbourhood of the unknotted 1-sphere dC' in ¥ and let W'
denote the closed complement of W in X. Then the pair (W, WI) of solid
tori represents the standard genus one splitting of X. If we set K; =K; \é’,
1 = 1,2, then the composite knot K is Ki U K; and its knot manifold M
is Mll U MQI, where MZI denotes the closed complement of a small regular
neighbourhood of K; in B;, 1 = 1,2. Moreover, the intersection of M{ with
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M; is just the solid torus W'. Thus, according to notation of Proposition
6, there exists a 3-dimensional annulus A = S x D? =p;, W' such that
M = M; Uy Ms. Furthermore, A is properly embedded essential annulus
in @M, i.e. the inclusion induced homomorphism TT;(A) — TI; (M)
is monic. Now we can repeat the arguments discussed in the proof of

Proposition 6 to obtain the result. &
The next result gives a partial solution to a problem stated in [5].

CoROLLARY 17. (The non cancellation theorem for 2-knots in S*.)
Suppose a connected sum K = K1# Ky of two tame 2-knots 1s unknotted
in S*. Then both K, and K+ are themselves unknotted.
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