## ESH WHICH INDUCE $\beta N$ (\*)

by Alessandro Caterino (in Perugia) (\*\*)

SOMMARIO. - In questo lavoro si studiano compattificazioni di Hausdorff di spazi localmente compatti che possono ottenersi a partire da ESH (abbreviazione di Essential Semilattice Homomorphism, vedi [1]). In particolare, si studiano gli ESH che inducono  $\beta N$  e si prova che non esistono ESH definiti sulla famiglia di tutti i sottoinsiemi aperti di  $\beta N \setminus N$  che inducono  $\beta N$ . Usando un teorema di Van Douwen, il precedente risultato viene esteso al caso di spazi non pseudocompatti.

SUMMARY. - This is a paper on Hausdorff compactifications of locally compact spaces which can be obtained by mean of ESH (Essential Semilattice Homomorphism, see [1]). We study the ESH which induce  $\beta N$  and we prove that there is no ESH defined on the family of all the open subsets of  $\beta N \setminus N$  which induces  $\beta N$ . Using a theorem of Van Douwen, we extend the previous result to non-pseudocompact spaces.

### Introduction.

Let X be a locally compact Hausdorff space and K a compact Hausdorff space. A map  $f: X \to K$  is said to be singular if the inverse images of all nonempty open subsets of K are not relatively compact in X. Singular maps may be used to obtain compactifications of locally compact Hausdorff spaces. In fact, if  $f: X \to K$  is singular, we can construct a Hausdorff compactification of X by putting on  $X \cup K$  the topology generated by the open subsets of X and the sets of the form  $U \cup (f^{-1}(U) \setminus F)$ , where U is open in K and F is a compact subspace of X.

Since every singular map is dense, the Stone-Čech compactification  $\beta \mathbf{N}$  of the discrete space  $\mathbf{N}$  of the natural numbers, is not singular, that is, it cannot be obtained in the manner just described. More generally, if X is not pseudocompact then  $\beta X$  is not singular.

The following generalization of the previous construction is presented in [1]. Let  $\mathcal{B}$  be a basis for the open subsets of K, closed with respect to finite unions

<sup>(\*)</sup>Pervenuto in Redazione il 4 gennaio 1994.

<sup>&</sup>lt;sup>(\*\*)</sup>Indirizzo dell'Autore: Dipartimento di Matematica, Università di Perugia, Via Vanvitelli 1, 06100 Perugia (Italia).

and let  $\mathcal{N}_X$  be the set of all open non-relatively compact subsets of X together with the empty set. Then  $\pi: \mathcal{B} \to \mathcal{N}_X$  with  $\pi(U) \neq \emptyset$  for every  $U \neq \emptyset$  is said to be an essential semilattice homomorphism (ESH for short) if the following conditions are satisfied:

- ESH1)  $X \pi(K)$  is compact;
- ESH2) the symmetric difference  $\pi(U \cup V)\Delta(\pi(U) \cup \pi(V))$  is relatively compact, for every  $U, V \in \mathcal{B}$ ;
- ESH3) if  $U, V \in \mathcal{B}$  and  $\overline{U} \cap \overline{V} = \emptyset$ , then  $\pi(U) \cap \pi(V)$  is relatively compact.

Now, a compactification of X is attached to any essential semilattice homomorphism, considering on  $X \cup K$  the topology generated by the open subsets of X and the sets of the form  $U \cup (\pi(U) \setminus F)$  with  $U \in \mathcal{B}$  and F a compact subset of X. Such a compactification, denoted by  $X \cup_{\pi} K$ , is called an ESH-compactification. Also, we say that  $\pi$  induces  $X \cup_{\pi} K$ .

In [1], it is proved that, if  $\alpha X$  is a compactification of X and  $\alpha X \setminus X$  is 0-dimensional, then  $\alpha X$  is an ESH-compactification. The same conclusion holds if  $\beta X$  is the Stone-Cech compactification of a paracompact space X. Thus,  $\beta \mathbf{N}$  is an ESH-compactification which is not singular. Following the proof of Thm. 5 (or Thm. 4) in [1], it is possible to obtain  $\beta \mathbf{N}$  from an ESH defined on the family of all the clopen subsets of  $\beta \mathbf{N} \setminus \mathbf{N}$ .

The first section of the present paper is concerned with the essential semilattice homomorphisms which induce  $\beta \mathbf{N}$  and, more generally, compactifications with 0-dimensional remainders. From these results, we shall deduce that there is no ESH defined on the family of all the open subsets of  $\beta \mathbf{N} \setminus \mathbf{N}$  which induce  $\beta \mathbf{N}$ . In section two, we prove, using a theorem by Van Douwen ([4]), that the previous result extends to non-pseudocompact spaces.

## 1. All spaces are assumed to be Hausdorff and locally compact.

We denote by  $\mathcal{N}_X$  the family of all open nonrelatively compact subsets of a space X together with the empty set. Moreover,  $A\Delta B$  will denote the symmetric difference of the sets A and B.

Let  $\alpha X$  be an ESH-compactification induced by  $\pi$ . Then, it is easy to show that a slight modification of  $\pi$  gives an ESH which also induces  $\alpha X$ . The following proposition is a consequence of the fact that finite unions and intersections are compatible with the equivalence relation in  $\mathcal{N}_X$  defined by  $A \sim B$  if  $A \Delta B$  is relatively compact.

PROPOSITION 1.1. If  $\pi : \mathcal{B} \to \mathcal{N}_X$  is an ESH which induces  $\alpha X$ , then every map  $\pi' : \mathcal{B} \to \mathcal{N}_X$  such that  $\pi(U)\Delta\pi'(U)$  is relatively compact for every  $U \in \mathcal{B}$  is an ESH which also induces  $\alpha X$ .

Now, let  $\alpha X$  be a compactification of a space X with 0-dimensional remainder  $K = \alpha X \setminus X$ . In [1] it is shown that  $\alpha X$  is an ESH-compactification. An ESH which induces  $\alpha X$  can be constructed, for example, in the following way: let  $\mathcal{B}^*$  be the family of the clopen subsets of K. If  $U \in \mathcal{B}^*$ , we choose an open set O containing U, whose complement is a neighborhood of  $K \setminus U$ . Then  $\pi : \mathcal{B}^* \to \mathcal{N}_X$  defined  $\pi(U) = O \cap X$  is an ESH which induces  $\alpha X$ .

Now, we show that, if  $\pi$  and  $\pi'$  are ESH defined on  $\mathcal{B}^*$  which induce  $\alpha X$ , then they are "almost" the same ESH.

PROPOSITION 1.2. Let  $\alpha X \setminus X$  be 0-dimensional and let  $\pi, \pi' : \mathcal{B}^* \to \mathcal{N}_X$  be two ESH which induce  $\alpha X$ . Then  $\pi(U)\Delta \pi'(U)$  is relatively compact for all  $U \in \mathcal{B}^*$ .

<u>Proof.</u> Let  $U \in \mathcal{B}^*$  and let  $V = K \setminus U$ . By ESH3) we have that  $F = \pi(U) \cap \pi(V)$  and  $F' = \pi'(U) \cap \pi'(V)$  are compact subsets of X. Now, we claim that, if we put

$$S = (U \cup \pi(U)) \cap (U \cup \pi'(U))$$

and

$$T = (V \cup \pi(V) \setminus F) \cap (V \cup \pi'(V) \setminus F')$$

then  $\pi(U)\Delta\pi'(U) \subset \alpha X \setminus (S \cup T) = L$ . In fact, if  $x \in \pi(U) \setminus \pi'(U)$ , then  $x \notin S$ . Moreover  $x \notin \pi(V) \setminus F$ , since  $\pi(U)$  and  $\pi(V) \setminus F$  are disjoint. Therefore  $x \notin T$ . Hence  $x \in L$ . In similar way, we can see that  $x \in \pi'(U) \setminus \pi(U)$  implies  $x \in L$ . Since L is a compact subset of X, the conclusion follows.  $\diamondsuit$ 

If N is the discrete space of natural numbers and A is a subset of N, we put  $A^* = (Cl_{\beta N}A) \setminus N$ , where  $\beta N$  is the Stone-Cech compactification of N. It is known that the family  $\{A^* : A \subset N\}$  is exactly the clopen subsets of  $N^* = \beta N \setminus N$ . These sets form a basis for the topology of  $N^*$  which is closed with respect to finite unions and intersections. In the following we denote again by  $\mathcal{B}^*$  the family of the clopen subsets of  $N^*$  and by  $\mathcal{N}$  the set of all non-relatively compact (infinite) subsets of N together with the empty set. Moreover,  $A^* \in \mathcal{B}^*$  will mean  $A^* = (Cl_{\beta N}A) \setminus N$  with  $A \subset N$ . If  $A \subset N$ , we denote by [A] the equivalence class of A respect to the relation  $\sim$  defined before. In this case  $A \sim B$  iff  $A \Delta B$  is finite, that is  $A^* = B^*$ .

Now, the previous results imply the following one.

PROPOSITION 1.3. A map  $\pi: \mathcal{B}^* \to \mathcal{N}$  is an ESH which induces  $\beta \mathbf{N}$  if and only if the map  $\epsilon: 2^{\mathbf{N}}/\sim \to 2^{\mathbf{N}}$  defined by  $\epsilon([A]) = \pi(A^*)$  is a choice function on the family of equivalence classes of  $2^{\mathbf{N}}$  satisfying  $\epsilon([\emptyset]) = \emptyset$ .

We remark that, if  $\alpha X$  is an ESH-compactification induced by  $\pi: \mathcal{B} \to \mathcal{N}_X$ , then  $\mathcal{B}$  contains all the clopen subsets of the remainder  $K = \alpha X \setminus X$ . In fact, such sets are open and compact and  $\mathcal{B}$  is a basis closed with respect to finite unions.

Moreover if  $\mathcal{B}' \subset \mathcal{B}$  is a basis closed with respect to finite unions then  $\pi' = \pi|_{\mathcal{B}'} : \mathcal{B}' \to \mathcal{N}_X$  is again an ESH such that  $X \cup_{\pi} K = X \cup_{\pi'} K$ .

So if  $\pi: \mathcal{B} \to \mathcal{N}$  is an ESH which induces  $\beta \mathbf{N}$ , one has  $\mathcal{B}^* \subset \mathcal{B}$  and, by Proposition 1.3, it follows that  $\pi(A^*)\Delta A$  is finite for all  $A^* \in \mathcal{B}^*$ .

Now we will extend the ESH described in Proposition 1.3, to a larger basis so that the extension is still an ESH (which induces again  $\beta \mathbf{N}$ ). Similar extensions can be made when  $\alpha X \setminus X$  is 0-dimensional.

Let  $\mathcal{B}^{\sim} = \{B \subset \mathbf{N}^* : B \text{ is open and } \overline{B} \text{ is clopen}\}$ . We note that  $\mathcal{B}^{\sim}$ , which contains  $\mathcal{B}^*$ , is a basis closed with respect to finite unions.

PROPOSITION 1.4. Let  $\mathcal{B}$  be a basis for  $\mathbb{N}^*$ , closed with respect to finite unions such that  $\mathcal{B}^* \subset \mathcal{B} \subset \mathcal{B}^\sim$  and let  $\pi_0 : \mathcal{B}^* \to \mathcal{N}$  be an ESH which induces  $\beta \mathbf{N}$ . Then every map  $\pi : \mathcal{B} \to \mathcal{N}$  such that  $\pi(B)\Delta \pi_0(\overline{B})$  is finite for all  $B \in \mathcal{B}$  is an ESH which induces  $\beta \mathbf{N}$ .

*Proof.* The proof that  $\pi$  is an ESH is straightforward. Moreover, by Prop. 1.1, both  $\pi|_{\mathcal{B}^*}$  and  $\pi_0$  induce  $\beta \mathbf{N}$ , hence, also  $\pi$  induces  $\beta \mathbf{N}$ .

PROPOSITION 1.5. Let  $\pi: \mathcal{B} \to \mathcal{N}_X$  be an ESH which induces a compactification  $\alpha X$  and let  $B_1, B_2 \in \mathcal{B}$ . Then  $\pi(B_1)\Delta\pi(B_2)$  relatively compact implies

 $\overline{B}_1 = \overline{B}_2.$ 

*Proof.* Let  $\pi(B_1)\Delta\pi(B_2)$  be relatively compact and suppose there exists  $x \in B_1 \setminus \overline{B_2}$ . Choose  $B \in \mathcal{B}$  with  $x \in B \subset \overline{B} \subset B_1 \setminus \overline{B_2}$ . Since  $B \subset B_1$ , by ESH2), it follows, there is a compact subset G of X such that  $\pi(B) \subset \pi(B_1) \cup G$ , hence we have

$$\pi(B) \setminus \pi(B_2) \subset (\pi(B_1) \cup G) \setminus \pi(B_2). \tag{1}$$

Now, by ESH3),  $\overline{B} \cap \overline{B_2} = \emptyset$  implies that  $\pi(B) \cap \pi(B_2)$  is relatively compact, and so from

$$\emptyset \neq \pi(B) = (\pi(B) \setminus \pi(B_2)) \cup (\pi(B) \cap \pi(B_2))$$

we deduce that  $\pi(B) \setminus \pi(B_2)$  is not relatively compact. Then, by (1), we get that  $(\pi(B_1) \cup G) \setminus \pi(B_2)$  is also nonrelatively compact. Since G is compact, so  $\pi(B_1) \setminus \pi(B_2)$ . This contradicts the hypothesis of relative compactness made on  $\pi(B_1)\Delta\pi(B_2)$ . Therefore,  $B_1 \setminus \overline{B_2} = \emptyset$ , or  $B_1 \subset \overline{B_2}$ . Similarly, one has  $B_2 \subset \overline{B_1}$ , and so we conclude that  $\overline{B_1} = \overline{B_2}$ .

The converse of Prop. 1.5 holds under an additional hypothesis on  $\pi$ . Such hypothesis implies zero-dimensionality of  $\alpha X \setminus X$  and it is satisfied by any ESH which induces  $\beta \mathbf{N}$ .

PROPOSITION 1.6. Let  $\pi: \mathcal{B} \to \mathcal{N}_X$  be an ESH which induces a compactification  $\alpha X$ , satisfying the following property: for all  $B \in \mathcal{B}$  there is a clopen U in  $\alpha X \setminus X$  such that  $\pi(B)\Delta\pi(U)$  is relatively compact.

Then for all  $B_1, B_2 \in \mathcal{B}$ , if  $\overline{B}_1 = \overline{B}_2$  then  $\pi(B_1)\Delta\pi(B_2)$  is relatively compact. Moreover  $\overline{B}$  is clopen for all  $B \in \mathcal{B}$ .

*Proof.* Suppose  $B_1, B_2 \in \mathcal{B}$ . Let  $U_1, U_2$  be clopen subsets of  $\alpha X \setminus X$  for which both  $\pi(B_1)\Delta\pi(U_1)$  and  $\pi(B_2)\Delta\pi(U_2)$  are relatively compact.

By Prop.1.5, we have  $\overline{B}_1 = U_1$  and  $\overline{B}_2 = U_2$  and if  $\overline{B}_1 = \overline{B}_2$  it follows  $U_1 = U_2$ . Then the relative compactness of  $\pi(B_1)\Delta\pi(B_2)$  follows from the one's of  $\pi(B_1)\Delta\pi(U_1)$  and  $\pi(B_2)\Delta\pi(U_2)$ .

Next corollary, together with Prop.1.4, characterizes the ESH which induce  $\beta N$ .

COROLLARY 1.7. Let  $\pi: \mathcal{B} \to \mathcal{N}$  be an ESH which induces  $\beta \mathbf{N}$ . Then  $\mathcal{B}^* \subset \mathcal{B} \subset \mathcal{B}^{\sim}$  and  $\pi(B)\Delta\pi(\overline{B})$  is finite for all  $B \in \mathcal{B}$ .

*Proof.* If  $\pi$  induces  $\beta \mathbf{N}$ , then  $\pi_0 = \pi | \mathcal{B}^*$  is also an ESH which induces again

 $\beta$ N. Let  $B \in \mathcal{B}$ . If we put  $A = \pi(B)$ , then, by Prop.1.3, we get  $\pi_0(A^*) \sim A$ , that is,  $\pi(A^*) \sim \pi(B)$ . Hence  $\pi(A^*)\Delta\pi(B)$  is finite and  $\pi$  satisfies the hypothesis of Prop. 1.6. Therefore,  $\mathcal{B} \subset \mathcal{B}^{\sim}$  and  $\pi(B)\Delta\pi(\overline{B})$  is finite for all  $B \in \mathcal{B}$ .

REMARK. We have already seen in Prop. 1.2 that if  $K = \alpha X \setminus X$  is a 0-dimensional remainder of a space X and  $\pi$  and  $\pi'$  are ESH defined on the family of the clopen subsets of K, then  $\pi(B)\Delta\pi'(B)$  is relatively compact for all clopen subsets B of K. From Cor. 1.7, we have the same conclusion if  $\pi$  and  $\pi'$  are two ESH, which induce  $\beta \mathbf{N}$ , and are defined on the same basis. In [1,p. 858] an example is given of two ESH  $\pi$  and  $\pi'$ , defined on the same basis  $\mathcal{B}$ , inducing a compactification  $\alpha X$  of a discrete space X, such that  $\pi(U)\Delta\pi'(U)$  is, in general, not relatively compact for U belonging to  $\mathcal{B}$ .

A space Y is said to be extremally disconnected if every open set has open closure. It is known that  $\beta \mathbf{N} \setminus \mathbf{N}$  is not extremally disconnected (see, for example, [7], ex 6w) and so the previous corollary implies the following result.

THEOREM 1.8. There is no ESH defined on the family of all the open subsets of  $\beta \mathbf{N} \setminus \mathbf{N}$  which induces  $\beta \mathbf{N}$ .

2. Our goal in this section is to extend Theorem 1.8 to non-pseudocompact spaces. The following theorem is a result of Van Douwen's (see [4], Open retraction lemma).

THEOREM 2.1. (Van Douwen [4]) Let X be a (non-compact locally compact) non-pseudocompact space. Then there are a regularly closed F in  $X^* = \beta X \setminus X$  and a homeomorphic copy H of  $\mathbf{N}^* = \beta \mathbf{N} \setminus \mathbf{N}$  such that:

- 1)  $H \subset Int_{X^*}F$
- 2) there is an open retraction  $r: F \to H$ .

Following the proof in [4] it is easily seen that the copy H of  $\mathbb{N}^*$  contained in  $X^*$  can be chosen such that  $H = (Cl_{\beta X}N) \setminus X$  where  $N \subset X$  is a  $C^*$ -embedded copy of  $\mathbb{N}$ . In the following, we denote by  $\mathcal{T}_K$  the family of the open subsets of a topological space K.

THEOREM 2.2. If X is non-pseudocompact, there is no ESH defined on the family of all the open subsets of  $\beta X \setminus X$  which induces  $\beta X$ .

*Proof.* From Van Douwen's open retraction Lemma, there are a (closed)

 $C^*$ -embedded copy N of  $\mathbf{N}$  in X, a closed subset F of  $X^* = \beta X \setminus X$  with  $H = \beta N \setminus N \subset Int_{X^*}F$  and an open retraction  $r: F \to H$ .

Let  $O = Int_{X^*}F$  and s = r|O. Now, suppose there is an ESH  $\pi$  defined on the family of all the open subsets of  $\beta X \setminus X$  which induces  $\beta X$ . First of all, we note that, if A is a nonempty open subset of  $H = \beta N \setminus N$ , then  $s^{-1}(A)$  is an open subset of  $\beta X \setminus X$  such that  $F = \pi(s^{-1}(A)) \cap N$  is infinite. In fact, suppose not. Then, if  $x \in A$ , the set  $s^{-1}(A) \cup (\pi(s^{-1}(A)) \setminus F)$  would be an open neighborhood of x in  $\beta X$ , disjoint from N. A contradiction with  $x \in A \subset Cl_{\beta X}N$ . Of course,  $\pi(s^{-1}(\emptyset)) \cap N = \emptyset$ . Hence, we can consider the map  $\pi' : \mathcal{T}_H \to \mathcal{N}_N$  defined by  $\pi'(A) = \pi(s^{-1}(A)) \cap N$ . Now, we show that  $\pi'$  is an ESH which induces  $\beta N$ .

We have  $\pi'(H) = \pi(s^{-1}(H)) \cap N = \pi(O) \cap N$ . Since

$$T = (O \cup \pi(O)) \cap \beta N = (\beta N \setminus N) \cup (\pi(O) \cap N)$$

is open in  $\beta N$ , then

$$\beta N \setminus T = N \setminus (\pi(O) \cap N) = N \setminus \pi'(H)$$

is closed in  $\beta N$ , hence compact. This proves ESH1).

Let A, B be open subsets of H. Then

$$E = \pi(s^{-1}(A) \cup s^{-1}(B))\Delta(\pi(s^{-1}(A)) \cup \pi(s^{-1}(B)))$$
$$= \pi(s^{-1}(A \cup B))\Delta(\pi(s^{-1}(A)) \cup \pi(s^{-1}(B)))$$

is relatively compact in X.

Hence

$$G = E \cap N$$

$$= (\pi(s^{-1}(A \cup B)) \cap N) \Delta((\pi(s^{-1}(A)) \cap N) \cup (\pi(s^{-1}(B)) \cap N))$$

$$= \pi'(A \cup B) \Delta(\pi'(A) \cup \pi'(B))$$

is also relatively compact in X. Thus,  $Cl_XG$  is compact and, since N is closed in X, we have  $Cl_XG = Cl_NG$ . It follows that  $\pi'(A \cup B)$   $\Delta(\pi'(A) \cup \pi'(B))$  is relatively compact in N and so ESH2) holds.

To prove ESH3), let A, B be open subsets of H such that  $Cl_H A \cap Cl_H B = \emptyset$ . Then  $r^{-1}(Cl_H A) \cap r^{-1}(Cl_H B) = \emptyset$  and so we have  $Cl_F(r^{-1}(A)) \cap Cl_F(r^{-1}(B)) = \emptyset$ . It follows that  $Cl_{X^*}(r^{-1}(A)) \cap Cl_{X^*}(r^{-1}(B)) = \emptyset$ , since F is closed in  $X^*$ . Then, it is also  $Cl_{X^*}(s^{-1}(A)) \cap Cl_{X^*}(s^{-1}(B)) = \emptyset$  and so  $\pi(s^{-1}(A)) \cap \pi(s^{-1}(B))$  is relatively compact in X. Therefore, also

$$(\pi(s^{-1}(A)) \cap N) \cap (\pi(s^{-1}(B)) \cap N)$$

is relatively compact in X, hence in N, which is closed in X. That is,  $\pi'(A) \cap \pi'(B)$  is relatively compact in N. This proves ESH3).

Finally, if A is an open subset of H and  $F \subset N$  is finite, then

$$A \cup (\pi'(A) \setminus F) = (s^{-1}(A) \cup (\pi(s^{-1}(A)) \setminus F)) \cap \beta N$$

which is clearly open in  $\beta N$ . Hence, we would have  $\beta N = N \cup_{\pi} (\beta N \setminus N)$ , where  $\pi$  is an ESH defined on the family of all the open subsets of  $\beta N \setminus N$ , contradiction.  $\diamondsuit$ 

REMARK. If X is a pseudocompactum it may happen that X contains a  $C^*$ -embedded copy N of N, and there exist a closed subset F in  $X^* = \beta X \setminus X$  with  $H = \beta N \setminus N \subset Int_{X^*} F$  and a retraction  $r: F \to H$ . In this case, no ESH  $\pi: \mathcal{T}_{X^*} \to \mathcal{N}_X$ , inducing  $\beta X$ , can be constructed.

An example is the pseudocompact space  $\Lambda = \beta \mathbf{R} \setminus (\beta \mathbf{N} \setminus \mathbf{N})$ , where we can choose  $F = H = \beta \Lambda \setminus \Lambda = \beta \mathbf{N} \setminus \mathbf{N}$  and  $r = 1_F$ . Note that  $\beta \Lambda$  is an ESH-compactification, because  $\beta \Lambda \setminus \Lambda = \beta \mathbf{N} \setminus \mathbf{N}$  is 0-dimensional.

In passing, we note that, by a proof similar to that of Thm.2.2, one can prove the following.

PROPOSITION 2.3. Let  $\pi: \mathcal{B} \to \mathcal{N}_X$  be an ESH which induces a compactification  $\alpha X$  and let Y a closed non compact subspace of X such that  $\alpha Y = Cl_{\alpha X}Y$ . Suppose there exist a closed subset F of  $K = \alpha X \setminus X$  with  $H = \alpha Y \setminus Y \subset O = Int_K F$  and a retraction  $r: F \to H$ . Let s = r|O. Suppose further that  $B \in \mathcal{B}_Y = \{U \cap Y: U \in \mathcal{B}\}$  implies  $s^{-1}(B) \in \mathcal{B}$ . Then the map  $\pi': \mathcal{B}_Y \to \mathcal{N}_Y$  defined by  $\pi'(B) = \pi(s^{-1}(B)) \cap Y$  is an ESH which induces  $\alpha Y$ .

It is known that a compactification  $\alpha X$  is singular iff  $K = \alpha X \setminus X$  is a retract of  $\alpha X$ . Now, since a singular compactification  $\alpha X$  can be induced by an  $ESH \ \pi : \mathcal{T}_K \to \mathcal{N}_X$ , then, from Thm. 2.2, we obtain the well known result (see [3]).

Corollary 2.4. If  $\beta X \setminus X$  is a retract of  $\beta X$  then X is pseudocompact.

A weakly singular compactification  $\alpha X$  (see [5]) can be defined as a compactification such that the remainder  $\alpha X \setminus X$  is a neighborhood retract. In this case, if F is a compact subset of X and  $r: \alpha X \setminus F \to \alpha X \setminus X$  is a retraction of  $\alpha X \setminus X$ , then  $\pi: \mathcal{T}_K \to \mathcal{N}_X$  defined by  $\pi(U) = r^{-1}(U) \cap X$  is an ESH which induces  $\alpha X$ . All compactifications with finite remainder are weakly singular but, in general, not singular, as, for example, the two-point compactification of  $\mathbf{R}$ .

It is an open question if the existence of an ESH  $\pi: \mathcal{T}_{X^*} \to \mathcal{N}_X$  with  $X^* = \beta X \setminus X$ , inducing  $\beta X$ , implies  $\beta X$  weakly singular.

Now, we note that, if  $\alpha X$  is a compactification with extremally disconnected remainder  $K = \alpha X \setminus X$ , then  $\alpha X$  is induced by an ESH defined on  $\mathcal{T}_K$ . In fact, an ESH  $\pi_0 : \mathcal{B}^* \to \mathcal{N}_X$ , which induces  $\alpha X$ , can be extended to  $\mathcal{T}_K$  by setting  $\pi(U) = \pi_0(\overline{U})$  for all  $U \in \mathcal{T}_K$  (see Prop.1.4).

Hence, by Thm.2.2, we get that, if  $\beta X \setminus X$  is extremally disconnected, then X is pseudocompact.

If  $\alpha X$  is a singular compactification and  $\gamma X \leq \alpha X$ , then  $\gamma X$  is again a singular compactification (see [8] and [2]). The following result holds for ESH-compactifications.

PROPOSITION 2.4. Let  $\alpha X = X \cup_{\pi} K$  be an ESH-compactification with  $\pi : \mathcal{B} \to \mathcal{N}_X$  and let  $\gamma X \leq \alpha X$ . Suppose there exists a basis  $\mathcal{D}$  for  $\gamma X \setminus X$  closed with respect to finite unions such that, if  $g : \alpha X \to \gamma X$  is the canonical quotient map, then  $g^{-1}(D) \in \mathcal{B}$  for all  $D \in \mathcal{D}$ . Then  $\gamma X$  is an ESH-compactification.

*Proof.* It is sufficient to consider  $\pi': \mathcal{D} \to \mathcal{N}_X$  defined by  $\pi'(D) = \pi(g^{-1}(D))$ .

Corollary 2.5. If  $\beta X \setminus X$  is extremally disconnected then every compactification of X is an ESH-compactification.

#### References

# References

- [1] CATERINO A., FAULKNER G.D. and VIPERA M.C., Construction of compactifications using essential semilattice homomorphisms, Proc. Amer. Math. Soc. 116, (1992), 851-860.
- [2] CATERINO A. and VIPERA M.C., Singular compactifications and compactification lattices, Rend. Circ. Mat. Palermo (2) Suppl. 24, (1990), 299-309.
- [3] VAN DOUWEN E.K., Retractions from  $\beta X$  to  $\beta X \setminus X$ , Gen. Top. and Appl. 9, (1978), 169-173.
- [4] VAN DOUWEN E.K., Transfer of information about βN \ N via open remainder maps, Ill. J. Math. 34, (1990), 769-792.
- [5] FAULKNER G.D., Compactifications whose remainders are retracts, Proc. Amer. Math. Soc. 103, (1988), 984-988.
- [6] FAULKNER G.D. and VIPERA M.C., Remainders of compactifications and their relation to a quotient lattice of the topology, to appear in Proc. Amer. Math. Soc.
- [7] GILLMAN L. and JERISON M., Rings of continuous functions, New York, 1960.
- [8] GUGLIELMI J.P., Compactifications with singular remainders, Ph. D. Thesis, North Carolina State Univ., 1986.
- [9] WALKER R.C., The Stone-Cech compactification, Springer Verlag, New York, 1974.