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SOMMARIO. - In questo lavoro si studiano compattificazioni di Hausdorff di spazi
localmente compatti che possono ottenersi a partire da ESH (abbreviazione di
Essential Semilattice Homomorphism, vedi [1]). In particolare, si studiano gli
ESH che inducono BN e si prova che non esistono ESH definiti sulla famiglia di
tutti i sottoinsiemi aperti di BN\ N che inducono SN. Usando un teorema di Van
Douwen, il precedente risultato viene esteso al caso di spazi non pseudocompatii.

SUMMARY. - This is a paper on Hausdorff compactifications of locally compact spaces
which can be obtained by mean of ESH (Essential Semilattice Homomorphism, see
[1]). We study the ESH which induce SN and we prove that there is no ESH
defined on the family of all the open subsets of BN\ N which induces BN. Using
a theorem of Van Douwen, we extend the previous result to non-pseudocompact
spaces.

Introduction.

Let X be a locally compact Hausdorff space and K a compact Hausdorff
space. A map f : X — K is said to be singular if the inverse images of all
nonempty open subsets of K are not relatively compact in X. Singular maps
may be used to obtain compactifications of locally compact Hausdorff spaces.
In fact, if f: X — K is singular, we can construct a Hausdorff compactification
of X by putting on X U K the topology generated by the open subsets of X
and the sets of the form U U (f~1(U)\ F), where U is open in K and F is a
compact subspace of X.

Since every singular map is dense, the Stone-Cech compactification SN of
the discrete space N of the natural numbers, is not singular, that is, it cannot
be obtained in the manner just described. More generally, if X is not pseudo-
compact then FX is not singular.

The following generalization of the previous construction is presented in [1].
Let B be a basis for the open subsets of K, closed with respect to finite unions
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and let N'x be the set of all open non- relatively compact subsets of X together
with the empty set. Then 7 : B — Nx with 7(U) # 0 for every U # § is said
to be an essential semilattice homomorphism (ESH for short) if the following
conditions are satisfied:

ESH1) X —7(K) is compact;

ESH2) the symmetric difference #«(U U V)A(x(U) U #(V)) is rela-
tively compact, for every U,V € B;

ESH3) if UV € Band UNV = @, then 7(U) N 7(V) is relatively

compact.

Now, a compactification of X is attached to any essential semilattice homo-
morphism, considering on X U K the topology generated by the open subsets
of X and the sets of the form U U (w(U) \ F) with U € B and F a compact
subset of X. Such a compactification, denoted by X U, K, is called an ESH-
compactification. Also, we say that 7 induces X U, K.

In [1], it is proved that, if X is a compactification of X and aX \ X is 0-
dimensional, then aX is an FSH-compactification. The same conclusion holds
if X is the Stone-Cech compactification of a paracompact space X. Thus, SN
is an F.S H-compactification which is not singular. Following the proof of Thm.
5 (or Thm. 4) in [1], it is possible to obtain AN from an ESH defined on the
family of all the clopen subsets of SN \ N.

The first section of the present paper is concerned with the essential semilat-
tice homomorphisms which induce SN and, more generally, compactifications
with 0-dimensional remainders. From these results, we shall deduce that there
is no FSH defined on the family of all the open subsets of SN\ N which induce
BN. In section two, we prove, using a theorem by Van Douwen ([4]), that the
previous result extends to non-pseudocompact spaces.



1. All spaces are assumed to be Hausdorff and locally compact.

We denote by N'x the family of all open nonrelatively compact subsets of a
space X together with the empty set. Moreover, AAB will denote the symmetric
difference of the sets A and B.

Let aX be an ESH-compactification induced by w. Then, it is easy to
show that a slight modification of 7= gives an ESH which also induces aX.
The following proposition is a consequence of the fact that finite unions and
intersections are compatible with the equivalence relation in Ny defined by
A~ B if AAB is relatively compact.

ProposiTION 1.1. If 7 : B — Nx is an ESH which induces a X, then every
map 7 : B — Nx such that m#(U)Ax' (U) is relatively compact for every U € B
1s an ESH which also induces aX.

Now, let & X be a compactification of a space X with 0-dimensional remain-
der K = aX \ X. In [1] it is shown that aX is an ESH-compactification.
An ESH which induces aX can be constructed, for example, in the following
way: let B* be the family of the clopen subsets of K. If U € B*, we choose an
open set O containing U, whose complement is a neighborhood of K\ U. Then
7 : B* — Nx defined 7(U) = ON X is an FSH which induces aX.

Now, we show that, if 7 and 7’ are FSH defined on B* which induce a X,
then they are "almost” the same ESH.

ProPosITION 1.2. Let aX \ X be O-dimensional and let m, 7' : B* — Nx
be two ESH which induce aX. Then w(U)Ax'(U) is relatively compact for all
UehB*.

Proof. Let U € B* and let V = K\ U. By ESH3) we have that F =
7(U)Nx(V) and F' = #/(U) N7’ (V) are compact subsets of X. Now, we claim
that, if we put

S=(UUn(U)) N (U U U))

and

T=(unr(V)\F)n(Vur(V)\F)

then m(U)Ax(U) C aX \ (SUT) = L. In fact, if 2 € 7(U)\ 7' (U), then z ¢ S.
Moreover z ¢ w(V) \ F, since 7(U) and 7(V) \ F are disjoint. Therefore z ¢ T.
Hence z € L. In similar way, we can see that z € #/(U) \ m(U) implies z € L.
Since L is a compact subset of X, the conclusion follows. &



If N is the discrete space of natural numbers and A is a subset of N, we
put A* = (ClgnA) \ N, where N is the Stone-Cech compactification of N.
It is known that the family {A* : A C N} is exactly the clopen subsets of
N* = gN\N. These sets form a basis for the topology of N* which is closed with
respect to finite unions and intersections. In the following we denote again by
B* the family of the clopen subsets of N* and by A/ the set of all non- relatively
compact (infinite) subsets of N together with the empty set. Moreover, A* € B*
will mean A* = (ClgnA) \ N with A C N. If A C N, we denote by [A] the
equivalence class of A respect to the relation ~ defined before. In this case
A ~ B iff AAB is finite, that is A* = B*.

Now, the previous results imply the following one.

PRrROPOSITION 1.3. A map 7 : B* = N is an ESH which induces SN if and
only if the map ¢ : 2N/ ~— 2N defined by ¢([A]) = m(A*) is a choice function
on the family of equivalence classes of 2N satisfying ¢([0]) = 0. &

We remark that, if @ X is an ESH-compactification induced by 7 : B — N'x,
then B contains all the clopen subsets of the remainder K = X \ X. In fact,
such sets are open and compact and B is a basis closed with respect to finite
unions.

Moreover if B C B is a basis closed with respect to finite unions then
' = m|g: : B’ — Nx is again an FSH such that X U K = X Uy K.

Soif 7 : B — N is an ESH which induces SN, one has B* C B and, by
Proposition 1.3, it follows that m(A*)AA is finite for all A* € B*.

Now we will extend the F.SH described in Proposition 1.3, to a larger basis so
that the extension is still an £SH (which induces again fN). Similar extensions
can be made when aX \ X is O-dimensional.

Let B~ = {B C N* : B is open and B is clopen}. We note that B~, which
contains B*, 1s a basis closed with respect to finite unions.

ProrosiTiON 1.4. Let B be a basis for N*, closed with respect to finite
unions such that B* C B C B~ and let mq : B* — N be an ESH which induces
BN. Then every map 7 : B — N such that m(B)Amy(B) is finite for all B € B
1s an ESH which induces SN.

Proof. The proof that 7 is an ESH is straightforward. Moreover, by Prop.
1.1, both w

g+ and 7y induce N, hence, also 7 induces SIN. &

ProPOSITION 1.5. Let w: B — Nx be an ESH which induces a compacti-
fication aX and let By, By € B. Then w(B1)Aw(Bz) relatively compact implies
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Bi = Bs.

Proof. Let m(B1)Am(Bz2) be relatively compact and suppose there exists
x € By \ By. Choose B € B with 2 € B C B C By \ Bs. Since B C By, by
ESH?2), it follows, there is a compact subset G of X such that n(B) C n(B1)UG,
hence we have

m(B) \ m(Bz2) C (7(B1) UG) \ 7(Ba). (1)

Now, by ESH3), BN By = () implies that 7(B)N(By) is relatively compact,
and so from

0 # 7(B) = (x(B) \ 7(B2)) U (x(B) N n(By))

we deduce that w(B) \ m(Bz) is not relatively compact. Then, by (1), we get
that (m(B1) UG) \ m(Bs) is also nonrelatively compact. Since G is compact, so
7(By) \ m(Bz) . This contradicts the hypothesis of relative compactness made
on m(B1)Am(By). Therefore, By \ By = 0, or By C Bs. Similarly, one has
B, C Bi, and so we conclude that B, = Bs. &

The converse of Prop. 1.5 holds under an additional hypothesis on 7. Such
hypothesis implies zero-dimensionality of a X \ X and it is satisfied by any ESH
which induces GN.

PRrRoPOSITION 1.6. Let m : B — Nx be an ESH which induces a compact-
fication a X, satisfying the following property: for all B € B there is a clopen
U in aX \ X such that n(B)Am(U) is relatively compact.

Then for all By, By € B, if By = B then m(B1)Am(Bs) is relatively compact.
Moreover B is clopen for all B € B.

Proof. Suppose By, By € B. Let Uy, Us be clopen subsets of aX \ X for
which both m(B1)Am(Uy) and m(Bg)Am(Us) are relatively compact.

By Prop.1.5, we have B; = Uy and By = U, and if By = B, it follows
Uy = Us. Then the relative compactness of 7(B1)An(Bz) follows from the
one’s of w(B1)Aw(Uy) and m(Bg)Am(Us). &

Next corollary, together with Prop.1.4, characterizes the ESH which induce
ON.

COROLLARY 1.7. Let m : B — N be an ESH which induces BN. Then
B* C B C B~ and m(B)An(B) is finite for all B € B.

Proof. If 7 induces SN, then mq = 7|B* is also an ESH which induces again
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BN. Let B € B. If we put A = 7(B), then, by Prop.1.3, we get mg(A*) ~ A, that
is, m(A*) ~ w(B). Hence w(A*)An(B) is finite and 7 satisfies the hypothesis of
Prop. 1.6. Therefore, B C B~ and 7(B)An(B) is finite for all B € B. &

REMARK. We have already seen in Prop. 1.2 that if K = X\ X is a
0-dimensional remainder of a space X and 7 and 7’ are FSH defined on the
family of the clopen subsets of K, then w(B)Ax’(B) is relatively compact for
all clopen subsets B of K. From Cor. 1.7, we have the same conclusion if 7 and
7' are two ESH, which induce SN, and are defined on the same basis. In [1,p.
858] an example is given of two ESH m and 7', defined on the same basis B,
inducing a compactification X of a discrete space X, such that =(U)Ax'(U)
is, in general, not relatively compact for U belonging to B.

A space Y is said to be extremally disconnected if every open set has open
closure. Tt is known that SN\N is not extremally disconnected (see, for example,
[7], ex 6w) and so the previous corollary implies the following result.

THEOREM 1.8. There is no ESH defined on the family of all the open
subsets of BN \ N which induces SN.

2. Our goal in this section is to extend Theorem 1.8 to non-pseudocompact
spaces. The following theorem is a result of Van Douwen’s (see [4], Open re-
traction lemma).

THEOREM 2.1. (Van Douwen [4]) Let X be a (non-compact locally compact)
non-pseudocompact space. Then there are a regularly closed F in X* = BX \ X
and a homeomorphic copy H of N* = SN \ N such that:

1) HClIntx.F
2)  there is an open retractionr : F — H.

Following the proof in [4] it is easily seen that the copy H of N* contained in
X* can be chosen such that H = (Clgx N)\ X where N C X is a C*-embedded
copy of N. In the following, we denote by 7Tk the family of the open subsets of
a topological space K.

THEOREM 2.2. If X 1s non-pseudocompact, there i1s no ESH defined on the
family of all the open subsets of 3X \ X which induces BX.

Proof. From Van Douwen’s open retraction Lemma, there are a (closed)
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C*-embedded copy N of N in X, a closed subset F of X* = gX \ X with
H =N\ N C Intx+F and an open retraction r: F — H.

Let O = Intx+F and s = r|O. Now, suppose there is an FSH 7 defined
on the family of all the open subsets of X \ X which induces 8X. First of
all, we note that, if A is a nonempty open subset of H = N \ N, then s™1(A)
is an open subset of 3X \ X such that F = n(s7!(A)) N N is infinite. In
fact, suppose not. Then, if z € A, the set s™1(A) U (F(S_I(A))\F) would
be an open neighborhood of z in X, disjoint from N. A contradiction with
r € ACClgxN. Of course, m(s~'(#)) " N = (. Hence, we can consider the
map 7' : Ty — Ny defined by 7/(A) = n(s71(A)) N N. Now, we show that '
is an FSH which induces fN.

We have 7/(H) = m(s~*(H)) N N = 7(O) N N. Since

T=(0OUr(0))NBN = (BN\ N)U (m(O)NN)
is open in BN, then
BN\T =N\ (7(O)NN)=N\'(H)

is closed in BN, hence compact. This proves ESH1).
Let A, B be open subsets of H. Then

E=mn(s"1(A)Us™ (B)A(n(s™(A)) Un(s~'(B)))
=7(s" (AU B))A(n(s™'(4)) Un(s™' (B)))

is relatively compact in X.
Hence

G

ENN
(m(s™ (AU B)) N N)A((m(s™' (A)) N N) U (n(s~' (B)) N N))
= 7 (AUB)A(x'(A)Ur'(B))

is also relatively compact in X. Thus, Clx G is compact and, since N is closed in
X, we have ClxG = ClyG. It follows that =n'(A U B)
A(m'(A) U n'(B)) is relatively compact in N and so F.SH2) holds.

To prove ESH3), let A, B be open subsets of H such that Clg ANClg B = 0.
Then r=1(Clg A)Nr~1(Cly B) = 0 and so we have Clp(r=*(A))NClp (r~1(B))
= (. Tt follows that Clx«(r~'(A))NClx+(r~'(B)) = 0, since F is closed in X*.
Then, it 18 also
Clx+(s7H(A)) N Clx+(s71(B)) = B and so n(s~1(A)) N m(s~1(B)) is relatively

compact in X. Therefore, also

(m(s'(A) NN) N (m(s™(B)) N N)
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is relatively compact in X, hence in N, which is closed in X. That is, n'(A) N
7'(B) is relatively compact in N. This proves ESH3).
Finally, if A is an open subset of H and F C N is finite, then

AU (T (A)\F) = (s~ (A) U (n(s™1 (A)) \ F)) N BN

which is clearly open in BN. Hence, we would have SN = N U, (BN \ N),
where 7 is an ESH defined on the family of all the open subsets of SN \ N,
contradiction. &

REMARK. If X is a pseudocompactum it may happen that X contains a
C*-embedded copy N of N, and there exist a closed subset F in X* = gX \ X
with H = BN\ N C Intx+ F and a retraction r : F' — H. In this case, no ESH
7 : Tx+ = Nx, inducing 38X, can be constructed.

An example is the pseudocompact space A = R\ (N \ N), where we
can choose F = H = A\ A = BN\ N and r = 1p. Note that SA is an
E S H-compactification , because SA \ A = SN \ N is 0-dimensional.

In passing, we note that, by a proof similar to that of Thm.2.2, one can
prove the following.

PROPOSITION 2.3. Let m : B = Nx be an ESH which induces a com-
pactification aX and let Y a closed non compact subspace of X such that
aY = ClyuxY. Suppose there exist a closed subset F of K = aX \ X with
H=aY\Y CO =1IntgF and a retractionr : F — H. Let s = r|O. Suppose
further that B € By = {UNY : U € B} implies s~*(B) € B. Then the map
7' : By — Ny defined by 7'(B) = n(s='(B))NY is an ESH which induces aY .

It is known that a compactification aX is singular iff K = aX \ X is a
retract of @ X. Now, since a singular compactification aX can be induced by
an ESH 7 : Tx = Ny, then, from Thm. 2.2, we obtain the well known result

(see [3]).

COROLLARY 2.4. If BX \ X is a retract of BX then X is pseudocompact.

A weakly singular compactification aX (see [5]) can be defined as a com-
pactification such that the remainder aX \ X is a neighborhood retract. In this
case, if F' is a compact subset of X and r: aX \ F = aX \ X is a retraction of
aX \ X, then 7 : Tk — Nx defined by #(U) = »='(U) N X is an ESH which
induces aX. All compactifications with finite remainder are weakly singular
but, in general, not singular, as, for example, the two-point compactification of
R.

It is an open question if the existence of an ESH m : Tx« — Nx with
X* = BX \ X, inducing SX, implies 8X weakly singular.
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Now, we note that, if aX is a compactification with extremally disconnected
remainder K = aX \ X, then aX is induced by an FSH defined on Tx. In
fact, an ESH my : B* — AN, which induces aX, can be extended to 7x by

setting m(U) = mo(U) for all U € Tk (see Prop.1.4).

Hence, by Thm.2.2, we get that, if X \ X is extremally disconnected, then
X is pseudocompact.

If X is a singular compactification and vX < aX, then vX is again a
singular compactification (see [8] and [2]). The following result holds for F.SH-
compactifications.

ProrosiTiON 2.4. Let aX = X Uy K be an ESH -compactification with
7 : B — Nx andlet yX < aX . Suppose there exists a basis D for yX\ X closed
with respect to finite unions such that, if g : X — vX 1s the canonical quotient
map, then g=1(D) € B for all D € D. Then vX is an ESH-compactification .

Proof. Tt is sufficient to consider 7’ : D — N'x defined by 7/(D) = n(g~*(D)).

COROLLARY 2.5. If BX \ X is extremally disconnected then every compact-
tfication of X 1s an ESH -compactification .
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