UNIFORMLY APPROACHABLE FUNCTIONS AND
SPACES (*)

by ALESSANDRO BERARDUCCI (in Pisa)
and DIKRAN DIKRANJAN (in Udine)(**)

SOMMARIO. - Le funzioni uniformemente approssimabili (UA) (inirodotie in
[DP] in una forma pit debole) sono una naturale generalizzazione delle fun-
ziont uniformemente continue e perfette. In questa nota si studiano le fun-
ziont UA e gli spazi UA ovvero quegli spazi uniformi in cui ogni funzione reale
continua ¢ UA. Tali spazi comprendono propriamente gli spazi UC (spazi di
Atsuji). Si caratterizzano inoltre i sottospazi di R che sono debolmente UA
e st fornisce una nuova caratterizzazione degli spazi UC. Si prova infine un
risultato topologico che implica, sotto Uipotesi del continuo, l’esistenza di un
insieme M C R” tale che se f,g € C(R",R) sono non costanti su ogni
aperto e g(M) C f(M), allora f = g.

SUMMARY. - Uniformly approachable (UA) functions (introduced in [2] in a
weaker form) are a common generalization of uniformly continuous functions
and perfect functions. We study U A-functions and U A-spaces, t.e. those
uniform spaces in which every real valued continuous function is UA. Such
spaces properly include the UC-spaces (Atsuji spaces). We characterize the
weakly-U A subspaces of R and give a new characterization of the UC spaces.
We prove a topological result which tmplies, under the continuum hypothesis,
the existence of a set M C R™ such that if f,g € C(R™,R) are not constant
on any open set and g(M) C f(M), then f = g.
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1. Introduction.

UC-spaces (in which every continuous real valued function is uniformly
continuous) were introduced by Atsuji as a natural generalization of com-
pact space (see [?, ?] or [?, ?] for further generalizations of UC). Weakly
uniformly approachable functions and spaces (briefly, WU A functions and
spaces) were introduced in [DP]. In a WU A space X every continuous func-
tion f: X — R is WUA, namely it can be approximated, in the sense of
Definition 2.1, by uniformly continuous functions. WU A functions (in fact
U A functions) are a common generalization of uniformly continuous func-
tions and perfect functions (Theorem 5.2). Every UC space is obviously
WU A, but there are interesting WU A spaces, for instance R, which are
not UC' (however R™ is not WU A for n > 1).

In this paper we develop some basic tools for the study of WU A spaces
(see Remark 10.3). In this way we arrive at a characterization of the WU A
subspaces of R (Theorem 7.4) and some subspaces of R? (§10).

In most examples the WU A-spaces that we consider have the stronger
(and more natural) property of being UA (Definition 2.4). We have the
strict inclusions UC C UA C WUA. While there are examples of WU A
spaces which are not UA (for instance the real line minus a point), we
do not know whether UA and WU A coincide for connected spaces. A
nice property of U A-spaces is that if we “glue” in an appropriate manner
two U A-spaces along a compact subspace, the result is UA (Theorem 11.1).
Other closure properties of U A-spaces with respect to unions are considered
in §11. For instance we prove that under some quite restrictive conditions,
the union of countably many compact spaces is UA (Theorem 11.4).

In Theorem 12.1 we characterize U C spaces as those metric spaces where
every bounded U A function is uniformly continuous.

The original motivation for WU A spaces comes from the study of clo-
sure operators on the category Unif of uniform spaces (in the sense of [?]
or §13). In fact if f: X — R is WUA, then f is totally continuous, i.e.
it 1s continuous not only with respect to the Kuratowski closure operator,
but also with respect to any closure operator of Unif ([?]). This shows
that the class of all uniformly continuous functions f: X — R cannot be
“topologized”, in the sense that it cannot be characterized as the class of all
continuous functions with respect to some closure operator (at least taking
X = R”). This is to be constrasted with a result of Ciesielski [?] which
shows that many classes of functions from R to R can be topologized, e.g.
the linear functions, the polynomials, or the analytic functions.
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A crucial tool in the study of UA and WU A spaces, 1s a quite gen-
eral topological result (Theorem 8.1) which can be of independent inter-
est. When applied to R it implies for example that there is a subset M
of R, such that if g:R — R is a non-constant continuous function with
g(M) C M, then g coincides with the identity function on an open interval
and it is constant outside (see Example 8.7). Moreover, under the contin-
uum hypothesis, there exists M C R”, such that if f,g € C(R", R) are
non-constant on any open set and g(M) C f(M), then f =g.

The study of UA and WU A subsets of R™ is considerably more com-
plicated than the study of the corresponding subsets of R. We give some
examples and results in §10 which should convey some idea of the difficul-
ties involved. Further results in this direction will be given in a forthcoming
paper with J. Pelant [?]. A list of open questions is given in §14.

2. Definitions and preliminary results.

Given a uniform space X we denote by C(X) the set of continuous
functions f: X — R. We use the abbreviation “fisu.c.” for “f is uniformly
continuous”. We will make frequent use of Katétov’s theorem: if X is a
uniform space, F is a closed subset of X, and [a, b] is a compact interval of
R, then any u.c. function f: F — [a,b] can be extended to a u.c. function

F: X —[a,b] (see [?7]).

DEerFINITION 2.1. Let X be a uniform space. We say that a map f :
X —Ris:

1. Uniformly approachable (briefly, U A-function) if for each compact
subset K of X and for each M C X there is a uniformly continuous
function g : X — R such that g(z) = f(z) for each z € K and
g(M) C f(M). In this case we say that g is a (K, M)-approzimation
of f.

2. Weakly uniformly approachable (briefly, WU A-function) if for each
z € X and for each M C X there is a uniformly continuous function
g : X — R such that g(z) = f(z) and g(M) C f(M). In this case we
say that g is a (z, M)-approzimation of f.

We give several trivial properties of these two notions which show that
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they should be considered as a special kind of continuity placed between
the usual continuity and the uniform one.

Fact 2.2. ([?]) If f is WU A, then f is continuous.

Proof. Let f: X — R be a WUA map. To show that f is continuous
take M C X. For x € M, one may choose a u.c. function g : X — R
with g(z) = f(z) and g(M) C f(M). Since g is continuous, one has

f(x) = gx) € g(M) C g(M) C F(M). Thercfore f(M) C F(M). This

proves that f is continuous. &

PRroOPOSITION 2.3. Let f € C(X). We have:

1. Bvery (K, M \ K)-approzimation is also a (K, M)-approzimation,
hence it suffices to check the existence of (K, M)-approzimations for
disjoint K and M.

2. If KNM =0, then f has a (K, M)-approzimation. Hence it suffices
to check the existence of (K, M)-approzimations for disjoint K and

M with K\ M # 0.
3. If f(z) € f(M) (in particular, if © € M) then f has a (z,M)-

approximation.

Proof. 1. 1s clear.

2. Suppose K N M = (. If M # 0 take any point m € M and set
g1 (M) = f(m), g1(x) = f(z) foreach z € K. The function g; : KUM — R
is uniformly continuous. Now Katétov’s theorem allows us to extend ¢; to
a u.c. function g : X — R which is obviously a (K, M)-approximation of
f. If M = () apply Katétov’s theorem to f|k.

3. Assume that f(z) € f(M). Then the constant function g = f(z) is
an (z, M)-approximation of f. O

Now we recall the following well-known notion: a uniform space X is
a UC space (also Atsuji space) if every continuous function X — R is
uniformly continuous (see [A1] and [A2] for various characterizations of
these spaces!). In analogy with UC spaces we introduce the following
generalizations.

1 A metricspace X is UC if the set X’ of non-isolated points of X is compact and for
each € > 0 the set D, = {z € X : d(x, X') > e} is uniformly discrete (i.e. the distances
d(z,y), for z # y in D., have a positive lower bound).



UNIFORMLY APPROACHABLE FUNCTIONS AND SPACES 27

DEFINITION 2.4. A uniform space X is:

1. a UA space if each continuous function f: X — R is uniformly ap-
proachable;

2. a WUA space if each continuous function f: X — R is weakly uni-
formly approachable.

Clearly every compact space is UA (and a fortiori WU A). Using part
2 of Proposition 2.3 it is easy to see that each discrete metric space X is
UA, while it is UC iff it is uniformly discrete. This first example shows
that our generalizations of UC' spaces behave differently from UC' spaces
even 1n the simplest case of discrete spaces. We will see below that this
distinction remains present also with respect to completeness (UC' spaces
are complete, while U A need not be complete, see Corollary 9.2) and other
properties. The following problem set in [DP] will be one of the main
objectives of this paper:

Characterize the (metric) UA (WU A) functions and spaces.

Actually in [?] only WU A spaces are considered (there called UA). A
useful test to prove that a space X is not UA (WU A), is given by the next
lemma.

LEMMA 2.5. If X is a normal UA (WU A) space then any closed subset
of X is UA (resp. WUA).

Proof. Let F be a closed subset of X. Then any continuous function
on F' can be extended to a continuous function on X. &

It 1s natural to call a uniform space X such that every point of X
has a UA (WU A) neighborhood locally UA (resp. locally WU A). Then
every point of such a space has a base of UA (resp. WU A) neighborhoods
according to Lemma 2.5. Example 3.3 points out that neither U A nor
WU A are local properties, by showing that a locally compact space need
not be even WU A.

3. First examples.
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We will show that R is UA while R? is not. A uniform space X is
uniformly-connected if every uniformly continuous function of X into the
discrete space {0, 1} is constant.

LEMMA 3.1. A uniformly connected U A space is necessarily connected.

Proof. Assume X is a UA space and X = A; U Aj is a partition of X
into non-empty closed disjoint sets. Let f: X — {0, 1} be the characteristic
function of the set A;. Then f is continuous. Fix any a; € Ay, as € A,
and set K = {ai,as}. Take a (K, X)-approximation g of f. Then g :
X — {0,1} is a non-constant uniformly continuous function, hence X is
not uniformly connected.

&

COROLLARY 3.2. If a normal uniform space X contains a closed sub-
space which is uniformly connected and not connected, then X 1is not UA.

EXAMPLE 3.3. The following subspaces of R? are not U A:
e The circle minus a finite non-empty set of points.

o The metric subspace X of R? consisting of the two hyperbolas zy = 1,
zy=2andz >0,y >0.

By Example 3.3 R? is not U A since it has X as a closed subspace.
M. Burke proved the following stronger result.

Fact 3.4.([?]) R? isnot a WU A space since the multiplication m(z,y) =
zy is not WU A. This is witnessed by the subset M = {(z,y) € R?: 0 <
z,y < oo, (zy)~' € N} and the point (0,0) € R

Burke’s proof that R? is not WU A will be generalized in Section 6 to
yield a result about arbitrary uniform spaces. It can be shown that the
spaces in Example 3.3 are not even WUA (see Proposition 10.1). This
yields another proof that R? is not WU A.

ProrosiTiON 3.5. R with the uniformity induced by the usual metric
s UA.
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Proof. Let f:R — R be a continuous function. Let K C R be a
compact set and let M C R be an arbitrary subset. Then K is contained
in some interval [a,b]. If the set (—oo,a) N M is non-empty, let a’ be an
element of this set. Otherwise let a’ be an arbitrary real < a. Analogously,
if the set (b, 0c0) N M is non-empty, let &’ be an element of this set, otherwise
let " be an arbitrary real > b. Now define g(z) = f(z) for z € [d', V'],
g(z) = f(d') for z < o’ and g(z) = f(¥') for z > b'. Then g is uniformly
continuous, coincides with f on K, and satisfies g(M) C f(M). &

Actually one can prove a stronger result by characterizing the U A met-
rics compatible with the euclidean topology of R. (see Theorem 9.1).

4. Truncations.

The function g used in the proof of Proposition 3.5 turns out to be of
great importance in our study of uniform approximation. This is why we
give the following more general definition.

DEFINITION 4.1.

1. Let X be a topological space and let f,g € C(X). We say that g
i1s a truncation of f if g is constant on each connected component of

{z | f(2) #g(2)}.

2. Let a,b € [—00, +o0] be two extended real numbers. We say that g is
a (a,b)-truncation of f, if g(z) = f(z) when a < f(z) < b, g(z) = a
when f(z) < a, and g(z) = b when f(z) > b.

Clearly every (a,b)-truncation is a truncation. We denote by 745 the
(@, b)-truncation of the identity of R and by f, j the (unique) (a, b)-truncation
of f. (Obviously, fop =repo f.)

EXAMPLE 4.2. Let f be an increasing continuous function on R. Then
every truncation of f is an (a,b)-truncation (for some a,b € [—o00, o0]).

Thus the truncations of the strictly increasing continuous functions on
R can be classified by giving two extended real numbers a, b € [—c0, +00].
On the other hand the sin function has truncations which are not of the
above form.
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Note that if g is a truncation of f and U 1s a connected component of
O ={z| f(z) # g(x)}, then g is constant on the closure of ¢/ and coincides
with f on OU.

The characterization of the truncations of the strictly increasing func-
tions on R. (Example 4.2 ) can be extended as follows.

DEFINITION 4.3. (Pseudo-monotone functions) Let X be a topological
space. We say that f € C(X) is pseudo-monotone, if for every real number
¢, the sets {z | f(z) > ¢} and {z | f(z) < ¢} are connected.

LEMMA 4.4. If f € C(X) is pseudo-monotone, then the only trunca-
tions of f are (a,b)-truncations for some a,b € [—oo0, +00].

Proof. Let g be a truncation of f and let O = {z | f(z) # g(2)}.

O is the union of two disjoint open sets O~ = {z | f(z) < g(z)} and
Ot = {z | f(z) > g(z)}. We claim that OF and O~ are (empty or)
connected. Granted this, g is constant on @~ and OF. Set a := —co if

O~ = 0, otherwise a := g(z) for any z € O~ ; analogously, b := +oc if
Ot = 0, otherwise b := g(z) for any x € OF. Then O~ = {z | f(z) < a}
and Ot = {z | f(z) > b}, so that O~ N OF = @ yields a < b. Tt is easy
to see now that g coincides with the (a,b)-truncation of f. To prove the
claim suppose for a contradiction that one of @~ and O1, say OF, is not
connected, and let ¢/; and Uy be distinct connected components of OF. Tt
follows that /1 and U are also connected components of (0. Since g is a
truncation of f, there are constants ¢y and ¢y such that ¢ = ¢; on U; and
g = f=c¢;ondl; (i =1,2). Without loss of generality suppose that ¢; < e3
and let [f > c1] be the open set {z | f(z) > ¢1}. Since [f > ¢1] N Uy = B,
[f > c1] can be written as ([f > 1] NUL) U ([f > 1] N X \ Uy). The first
member of this union coincides with I/, and therefore is a non-empty open
set. The second one is an open set containing Uz, and therefore it is also a
non-empty open set. It follows that [f > ¢1] is not connected, contradicting
the hypothesis that f is pseudo-monotone. &

5. Perfect functions on R" are U A.

A continuous map f : X — Y between topological spaces is called
perfect if it sends closed sets to closed sets and inverse images of points of
Y are compact subsets of X. Then also inverse images of compact sets are
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compact (cf. [E, P3.X]). It is easy to see that in case Y is locally compact,
a continuous map f : X — Y is perfect iff the inverse image under f of
every compact subset of Y is a compact subset of X. In the sequel we
consider perfect functions f: X — R.

It is easy to find perfect continuous functions which are not uniformly
continuous. For example take for n > 1 and X = R” the function f
defined by f(z1,...,2,) = alxlfl + ...+ a,zk~ where each a; is a positive

real number and each k; is an even natural number.

LEMMA 5.1. If f: R™ — R is perfect, then every (a, b)-truncation f, p of
f witha, b€ R (i.e. witha # —oo and b # +00) is uniformly continuous.

Proof. Assume g = f, 5 is not uniformly continuous. Then a # b and
there exist ¢ > 0 and two sequences {2, } and {ym} in R™ such that

d(2m, ym) < 1/m and |g(zm) — g(ym)| > €. (1)

By the continuity of g neither of the sequences has a convergent subse-
quence. Since the closure K of the open set g=1(a,b) = f~'(a,b) is com-
pact, it follows that only finitely many points z,, and y,, belong to K. By
the definition of g this means that for all but finitely many m’s, g(z,,) and
9(ym ) belong to {a, b}. By (1) we can assume that {g(z), 9(ym)} = {a,b}.
Let C,, be the segment [z, ym] in R™. Then there exists a point z,, € C,
such that g(z,) = (a + b)/2. Since K1 = f~!((a + b)/2) is compact and
f(zm) = 9(2m) € K1, we can find a converging subsequence of {z,, }. This
will produce a converging subsequence of {zn} (and {ym}), a contradic-
tion. &

THEOREM b5.2. Every perfect continuous function f:R" — R 1s UA.

Proof. Fix K C R” compact, and M C R”. Let a,b € R be such that
f(K) C [a,b]. If possible choose a and b in f(M), namely choose a,b € R
such that f(K) C [a,b] and:

1) either a € f(M) or there are no points of f(M) smaller than a;
ii) either b € f(M) or there are no points of f(M) greater than b.

Let ¢ = fap. Clearly gjx = fix. By our choice of @ and b, g(M) C
f(M). By Lemma 4.4, g is uniformly continuous. O
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REMARK 5.3. The proof of Theorem 5.2 works in a much more general
situation, for example with R™ substituted by any metric space X with
“short connecting sets” - this means that for every pair of points z,y we
can choose a connected set A(z,y) containing 2 and y in such a way that
the diameter of A(z,y) converges to 0 as d(z,y) goes to 0. Note that
there are connected and locally arcwise connected metric spaces X for
which Theorem 5.2 fails, for instance the circle minus one point. So the
assumption of having “short connecting sets” is necessary.

Theorem 5.2 does not not permit the approximation of bounded func-
tions. Actually, if a bounded function f is perfect, then its domain is
compact, so f is uniformly continuous. To give the reader a feeling of the
properties of U A functions, we characterize the U A quadratic forms. We
need the following:

ProprosITION 5.4. If m X x Y — X 1is the projection on the first
coordinate and f: X - R isUA, then fom: X xY > R s UA.

Proof. Given two subsets K and M of X x Y, with K compact, let
9: X = R be a (r(K), 7(M))-approximation of f. Then go m:
X xY — Ris a (K, M)-approximation of f o . O

LEMMA 5.5. Let f(z,y) = ax? + bxy + cy?, a,b,c € R, be a quadratic
form in R%. Then the following are equivalent:

a) fR? 5 RisUA;
b) fR?—=Ris WUA;
c) A=0b?—4ac<0.

Proof. a) — b) is obvious. To prove the implication b) — ¢) assume that
A > 0. Then f factorizes in distinct linear factors and after an appropriate
linear substitution one can assume that f(z,y) = zy. Now f is not UA by
Example 3.4.

To prove the last implication ¢) — a) assume that A = b — 4ac < 0.
Then after an appropriate linear substitution one can assume that either
flz,y) = 22 or f(z,y) = 22 + y?. In the first case f is UA as a function
depending on only one of the variables (by Proposition 3.5 and Proposition
5.4). In the second case the function is perfect, so we can apply Theorem

5.2 to conclude that f i1s UA. &
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COROLLARY 5.6. A quadratic form f is UA if and only if every (a,b)-
truncation of f, with a,b € R, 1s uniformly continuous.

Proof. After a suitable linear transformation 7: R? — R? we can reduce
to the case in which f is either of the form zy, or z? + y?, or z? (we use
the fact that (f o T)aps = fapoT). Clearly (22 + y?)ap and (2%)qp are
uniformly continuous for every a,b € R. On the other hand (zy)o 1 is not

uniformly continuous. &

One can use Lemma 5.5 to show that the sum of two UA functions
(quadratic forms) need not be even WU A: just take fi(z,y) = 2% and
fa(z,y) = —y?. Note that f; is UA although it is neither perfect nor
uniformly continuous (indeed, the sum of a UA and a u.c. function is
always UA). We also obtain further examples of non-perfect U A functions
which are not uniformly continuous: f(z1,...,2,) = a1 mlfl + ... 4an mkmm
for 1 < m < n, positive real numbers a;, and even natural numbers £;.
These functions are U A by Proposition 5.4 since they can be obtained by

composition of a projection and a perfect function.

6. Spaces containing pseudo-hyperbolas are not WUA.

Lemma 2.5 tells us that to show that a normal uniform space X is
not UA (WUA), it suffices to find a closed subspace which is not UA
(resp. WUA). For instance in the case of R? one can take as a closed
subspace the union of the z-axis, the y-axis, and the family of hyperbolas
H, = {(z,y) € R? | zy = 1/n} for n € N. This example can be generalized
as follows.

DEFINITION 6.1. Let X be a uniform space. A family of pseudo-
hyperbolas in X is given by a countable family {H,} of disjoint subsets
of X such that for every n € N:

1. H, 1s closed and uniformly connected;
2. Hp U Hyp41 is uniformly connected;
3. HaUpysn Hm = 0;

4. the set H =, H, is not closed in X.
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EXAMPLE 6.2. A family of pseudo-hyperbolas in R? is given by the
sets H, = {(z,y) | (zy)~! = n}.

THEOREM 6.3. If a normal uniform space X has a family of pseudo-
hyperbolas, then X s not WU A.

Proof. Let the family of pseudo-hyperbolas be given by the closed sets
H, CX. Let H=\J, H,. Fix a point p € H\ H. Define f: H — [0,1] as
follows:

a) The restriction of f to H, is the constant function 1/n;
b) For zx € H\ H, f(z) = 0.

We claim that f is continuous on H. We first show that f is continuous
at every point z € H,. To this aim it suffices to find a neighborhood of z
where f is constant. Since H, NJ H,, = 0, there is a neighborhood

of z not intersecting | J H,,. Moreover since each H,, 1s closed and the

m>n

m>n
H,,’s are disjoint, there is a neighborhood of z not intersecting the closed

set HoUH;U...U H,_1. On the intersection of the two neighborhoods f
is the constant 1/n.

It remains to show that f is continuous at every point € H \ H. Let
m € N. Then F = |J, ,, Hn is closed and 2 ¢ F. Hence there exists a
neighborhood U of  missing F. Obviously |f(u)| < 1/m for each u € U.
Hence f is continuous at z.

Since X is normal and H is closed, we can extend f to a continuous
function f: X — [0, 1]. Suppose for a contradiction that X is WU A and
let g be a uniformly continuous function on X such that g(p) = f(p) =0
and g(H) C f(H). Since H, is uniformly connected, g(H,) is uniformly
connected. On the other hand, g(H,) C f(H) = {I/n | n € N}. Thus
g(Hp) is a singleton, hence g is constant on H,. Now since H, U Hy 11 is
uniformly connected and ¢ 1s uniformly continuous, ¢ is constant on the
whole of H. It follows that g is constant on H and therefore ¢ = 0 on H
(as g(p) = f(p) = 0). Thus g(H) & f(H) since 0 € g(H) and 0 ¢ f(H).
Contradiction. &

7. Subsets of R.

We know that R itselfis U A. It follows from Lemma 2.5 that any closed
subset of R is U A. However many subsets of R contain pseudo-hyperbolas
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and therefore are not even WU A (by Theorem 6.3). We will show that
pseudo-hyperbolas are sufficient to characterize the WU A subsets of R.

LEMMA 7.1. Let X be a subset of R with the uniformity induced by the
usual metric and let x belong to the interior of X. Then for every M C X
and every f € C(X) there exists a (x, M)-approzimation of f.

Proof. First note that it suffices to find an (z, M N[z, +00))-approximation
of ft = fixalz,400) and an (z, M N (—oo, z])-approximation of f~ =
J1Xn(~co,z], for then we can glue together the two approximations. Without
loss of generality we consider f*. By Proposition 2.3 we can assume that
z ¢ M and x € M N [z,+00). Hence there exists m € M such that < m
and [z,m] C X (as z is in the interior of X). Define g:[z,+o0) = R
by setting ¢ = f on [z,m] and ¢g(t) = f(m) for ¢ > m. Then g is an
(z, M N[z, +00))-approximation of f. &

COROLLARY 7.2. Every open subset of R 1s WU A.

EXAMPLE 7.3. The space X = R\ {0} is WU A, but not UA. In fact,
being uniformly connected and not connected, X cannot be U A by Lemma
3.1 . By Corollary 7.2 X 1s WUA as it is an open subset of R. More
generally, one can show that an open subset of R is UA iff it is regular
open (i. e. coincides with the interior of its closure).

We come now to a characterization of the WU A subspaces of R.

THEOREM 7.4. For a subspace X of R the following are equivalent:

a) X is WUA;

b) X does not contain pseudo-hyperbolas;

¢) for every interval A of R such that X N A is dense in A, X N A is
an open subset of A.

Proof. a) — b) is done in Theorem 6.3.

b) — ¢). Suppose that X N A is dense in the interval A and X N A is
not open in A. Then there is a point p € X N A and a converging sequence
z, — p with z,, € A\ X. By taking a subsequence we can assume that z,, is
strictly increasing or strictly decreasing. Suppose without loss of generality
that z, is strictly increasing, i.e. z, < Zpy1. Let Hy = X N (2, Tnt1)-
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Then the sets H, constitute a system of pseudo-hyperbolas. So X is not
WUA.

c) — a). Assume that for every open interval A of R such that X N
A is dense in A; X N A is an open subset of A. Let f: X — R be a
continuous function, z € X and M C X. To get an (z, M)-approximation
of f it suffices to find an (2, M N [z, +00))-approximation of f restricted
to X N[z, 400) and an (z, M N (—oo, z])-approximation of f restricted to
X N (—0o0, z]. Without loss of generality we consider fixn[z,4c0)-

By Proposition 2.3 we can assume z ¢ M and ¢ € M N[z, +00). If
there is an interval [z,b) entirely contained in X, we argue as in Lemma
7.1. So we can assume that there is no such an interval. But then by our
assumptions on X, it follows that X is not dense in [z,b) N X for every
b > z. Hence there exist two decreasing converging sequences a, —
and b, — z in R such that for each n, b,41 < a, < b, and the interval
[an, bn] is disjoint from X. Since z € M N [z, +00), there exists a sequence
Uy € f(M N [z,400)) converging to f(z). Define g: X N[z, +00) = R as a
step-wise function which assumes the constant value u, 41 on XN[b,41, an],
assumes the value ug on X N [bg, +00), and coincides with f at z. Then
g(z) = f(z) and g(M N [z,40)) C f(M N [z,400)). To prove that g is
u.c. it suffices to note that ¢ is continuous at x and uniformly continuous
on [e, +00) for any ¢ > z. &

The above characterization of WU A subsets of R provides the following
“local” criterion (which fails for subsets of R?).

COROLLARY 7.5. Let X be a subset of R. Then the following are
equivalent:

1. X s WUA;
2. X is locally WU A.

EXAMPLE 7.6. The rational numbers form a non-WU A space accord-
ing to Theorem 7.4. An example of a continuous function f: Q — R which
cannot be approximated by a uniformly continuous function can be given as
follows. Consider an increasing sequence of irrational numbers a,, converg-
ing to 0. Define f:Q — R by: f(z) = 1/nif a, < z < an41, f(z) =0on
the remaining rational numbers. The sets H, = {z € Q | ap, < 2 < an41}
form a system of pseudo hyperbolas, and reasoning as in Theorem 6.3 we
see that f cannot be approximated.
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By Corollary 7.5 locally compact subsets of R are WU A. As the follow-
ing example shows the converse is not true (for the set X). It also shows
that the property WU A may be destroyed by adding only a single point.

EXAMPLE 7.7. For n € N set A, = (1/(n4+1),1/n), Y = USL,As,,
Z = U31A, and X = {0} UY. Then: i) Z is WU A but not UA, while
{0} U Z isnot WU A, ii) X and Y are U A.

Proof. i) follows from Corollary 7.2 and Lemma 3.1 since 7 is uniformly
connected, but not connected.

ii) To check that X is UA let f € C(X) and take a compact subset K of
X and @ # M C X. Then, for each n, K,, = KNAs, is a compact subset of
Asy,. Tt is not restrictive to assume that 0 € K. For each n there exist reals
1/(2n+ 1) < a, < b, < 1/(2n) such that K,, C [an,bs]. As next step we
“enlarge” each compact K,, to a compact interval [a},, b],] C As, containing
the interval [an,bn]
and having the property that either a, € M or a, = a, and
(1/(2n + 1), a,) N M = 0. Define b, analogously. Define g to agree with f
on the set {0}UJ,_,lal,, 8], g(2) = f(a},) for each z € (1/(2n+1),al,] and
g(z) = f(b],) for each z € [b,,1/(2n)). Tt is easy to see that the restriction
of the function g on the compact set X' = {0} UJ " [al,b,] is continu-
ous, so u.c. Elsewhere the function is locally constant, so that again the
restriction on X \ X’ is u.c. Since the sequence of these constants converges
to f(0) it is easy to conclude that g is the desired approximation.

Tt is much easier to see that Y is UA. In fact, fix f €e C(Y)and M C VY.
Now each compact K C Y meets only finitely many intervals A, . On these
intervals we carry out the same construction as in the case of X. On the
remaining intervals we let g assume a constant value in f(M). &

8. The magic set.

We prove a topological result which can be used to show that many
subsets of R? are not UA (actually not even WU A). Our result applies
to any separable topological space. We recall that the fibers of a function
f: X — Y are the counterimages f~!(y) of the points y € Y.

THEOREM 8.1. Let X be a separable topological space. Then there is a
set M C X such that for every f,g € C(X), if f has countable fibers and
g(M) C f(M), then g is a truncation of f. Moreover if H is a countable
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subset of X, we can choose M so that M N H = {J.

Proof. Let C be the set of all pairs of continuous functions (f,g) €
C(X) x C(X) such that f has countable fibers and g is not a truncation
of f. Since X is separable, C has cardinality 2%°. Thus we can write
C = {(fa,9a) | @ < 2%}. We must prove that there is M C X such that
for every (f,9) € C, g(M) € f(M). We construct M C X by stages. At
stage o < 2% we will put a new element m,, in M. The idea is that at
stage o we want to “kill” (fa,ga). The definition of m, € X is done by
transfinite induction on a < 2%°. Suppose that for each f# < a we have
already defined mg € X. We need to define m,. Consider the function g,
of our enumeration. Since g, is not a truncation of f,, there is a connected
component Uy of {z | foa(z) # ga(z)}, such that g, is non-constant on
Uo. The image go(Uo) is a non-trivial connected set of R, so it has the
cardinality of the continuum. Choose m, so that the following conditions

hold:

® My EUQ

(
ma ¢ H (
Mo & U, <o (97 (my)) (3
ga(ma) & Uy <q fa(my) (

Note that m, exists as desired because: i) |U,| > 2% ii) |H| < Ny, iii)
the set on the RHS of (3) has cardinality < 2%° (since f, has countable
fibers), iv) |ga(Ua)| > 2% (as it is a non-trivial connected subset of R).

Let M = {m, | @ < 2%}, It is clear that M N H = . To finish the
proof it suffices to show that g, (mas) ¢ fo(M). Suppose for a contradiction
that:

Ja(ma) = fa(my) (2)

There are three cases:

Case 1. Suppose a = v. Then go(my) = fo(me) contradicting my €
Uy .
Case 2. Suppose a < v. By (2), my € f;'ga(ma), contradicting (3),.
Case 3. Suppose a > v. By (2), go(ma) = fo(my), contradicting (4)a.

&

We call the set M of Theorem 8.1 a magic set. We give now an appli-
cation to the study of U A spaces.
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COROLLARY 8.2. Let X be a separable uniform space and suppose that
there exists K C X compact and f € C(X) with countable fibers such that
f has no uniformly continuous truncations ¢ which agree with f on K.

Then X is not UA.

Proof. Fix a magic set M C X. If X is UA, then it has a (K, M)-
approximation g. Then g is a u.c. truncation of f which agrees with f on

K. &

The set H in Theorem 8.1 is needed to give the following application
to WU A spaces.

COROLLARY 8.3. Let X be a separable uniform space and suppose that
there exists f € C(X) with countable fibers without non-constant uniformly
continuous truncations. Then X s not WU A.

Proof. Let f € C(X) be as stated in the hypothesis. Let zq € X,
let yo = f(z0), and let H = f~!(yo). By Theorem 8.1 there exists a set
M C X such that M N H = {§ and such that every function g € C'(X) with
g(M) C f(M) is a truncation of f. Since MNH =0, yo ¢ f(M). Tt follows
that there cannot be a ({z¢}, M)-approximation of f. In fact suppose that
g 1s such an approximation. Then g is a uniformly continuous truncation
of f, hence it is constant. But since g(20) = f(z0) = yo, g must be the
constant function with value yo. This is absurd since g(M) C f(M) and

Yo & f(M). &

REMARK 8.4. Note that many spaces do not admit continuous functions
with countable fibers, but we can still apply the above result by consid-
ering instead of the space itself a suitable closed subspace admitting such
functions (by Lemma 2.5 if a closed subspace is not WU A, then the space
itself is not WU A). Note also that in the above corollary we have actually
proved a stronger result: not only X is not WU A, but f does not admit
(z, M)-approximations for every z € X.

Assuming the continuum hypothesis CH, a slight modification of the
proof of Theorem 8.1 yields the following result.

THEOREM 8.5. (CH) Let X be a separable Baire space (e.g. X = R™).
Then there is a set M C X such that for every f,g € C(X) non constant
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on each open set, if (M) C f(M), then f = g.

Proof. Let C = {(fa,9a) | @ < 2%} be the set of all pairs of continuous
functions (f, g) € C'(X)xC(X) such that f and g have nowhere dense fibers
and f # g. Let Uy, = {x € X | fa(z) # ga(z)}. Since go has nowhere
dense fibers, g, is non-constant on U,. Now define M = {m, | a < 2%}
in such a way that m, satisfies the clauses (1), (3)o and (4), of Theorem
8.1. mg exists as desired since in a Baire space the union of countably
many nowhere dense sets has empty interior. &

The continuum hypothesis is not needed if we assume that f and g have
countable fibers. So we have:

ProrosiTION 8.6. Let X be a separable locally connected Tychonoff
space without isolated points. Then there is a set M C X such that for
every f,g € C(X) with countable fibers, if g(M) C f(M), then f = g.

The proof is a trivial modification of the previous one. The assumption
that X is a locally connected Tychonoff space is only needed to ensure that
the non-empty open sets have cardinality > 2%°.

EXAMPLE 8.7. There exists M C R such that if g € C(R) and g(M) C
M , then g coincides with the identity on an open interval and is the identity
outside (apply Theorem 8.1 with f = the identity function). In particular
if ¢ has countable fibers, then g is the identity.

Note that in Example 8.7 M must be dense in R. Also note that one
cannot take for M the rational or the irrational numbers (for g(z) = |z|).

9. R with other metrics.

THEOREM 9.1. Let d be a metric on R compatible with the euclidean
topology of R.. Then the following are equivalent:

1. (R,d) is not UA;
2. (R,d) is not WU A;

3. Hzn} = —o0, Hyn} — +oo with d(zn,y,) — 0.
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Proof. 2 — 1 is obvious.

To prove 3 — 2 define the function f: R — R to be the identity. Now
f 1s continuous and strictly increasing, so that by Example 4.2 every trun-
cation of f is an (a,b)-truncation. Hence f has no uniformly continuous
truncations beyond the constant ones. Therefore, by Corollary 8.3, f is not
WUA.

1 —3. It suffices to see that if 3 fails then X is UA. In fact, let
f'R—=>R,neNand M CR. Tofind an ([—n,n], M)-approximation of f
choose a,b € R such that a < —n, n < b and such that: i) either a € f(M)
or there are no points of f(M) smaller than a; ii) either b € f(M) or there
are no points of f(M) greater than b. Define g to be the truncation of
f which agrees with f on [a,b]. Then g is constant on (—oo,a] and on
[b, +00). If g were u.c., then g would an ([a,b], M)-approximation of f. If
g were not u.c., then obviously f(a) # f(b). Then for some ¢ > 0 I{z,},
Hyn} with d(zpn,yn) = 0 and

l9(zn) = g(yn)| > & (3)

By the continuity of ¢ no subsequence of these sequences is convergent.
Thus every compact interval contains only finitely many of these points.
Taking subsequences we may assume that both sequences diverge to —co
or +00. By (3) one of them diverges to 400 and the other one to —co. ¢

COROLLARY 9.2. R has one metric for which it is U A and complete (the
usual one), one metric for which it is U A and not complete (the one induced
by the homeomorphism f : R — (—n/2,7/2), f(z) = arctgz) and one
metric for which it is not even WU A (the one induced by a homeomorphism
of R with the unit circle minus one point).

The proof of Theorem 9.1 works also for uniformities i compatible with
the euclidean topology of R. Then clause 3 becomes: for each entourage
U € U and each natural n there exist z < —n and y > n with (z,y) € U.

10. Subsets of R".

We have seen that a subset of R is WU A iff it has no pseudo-hyperbolas.
This fails for subsets of R? as the following proposition shows.

PrOPOSITION 10.1. The following subspaces of R? are not WU A (and
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yet they do not have pseudo-hyperbolas).

1. The space X; consisting of the unit circle minus a non-empty finite
set of points.

2. The space X5 consisting of the union of the two hyperbolas zy = 1
and zy = 2 with =,y > 0.

3. The space X3 = Ladder A depicted in Figure 1.

Proof. We leave to the reader the easy verification that Xy, Xy and X3
have no pseudo-hyperbolas. To prove that they are not WU A we apply
Theorem 8.3. So we must find, on each of the above spaces, a contin-
uous function with countable fibers and without non-constant uniformly
continuous truncations.

L]

Ladder A Ladder B Ladder C
non-WUA UA UA

Figure 1: Three subsets of R?
(The pictures are meant to be infinitely prolonged upwards)

1) We can identify X as a cofinite subset of the set of complex numbers
e'? with 0 < § < 27. Define f: X; — R by f(e!®) = 6. Then f is as desired.

2) Define f: X3 — R as follows. If zy = 1 set f(z,y) = €". Ifzy = 2
set f(z,y) = —e~*. This works.

3) Define f: X3 — R as follows. First identify X3 as the subspace of R?
consisting of the union of the two vertical axes x = 0 and = = 1, together
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with the horizontal segments I,, = {(z,n) € R? | 0 < z < 1} (n € N).
Define f(0,y) = €Y, f(1,y) = —e¥. This defines f on the two axes of the
ladder. On each horizontal segment I,,, f is linear. This defines uniquely f
since we have already defined f on the extrema of the horizontal segments
I, (since they lie on the axes). f is pseudo-monotone, so each truncation
of f is an (a,b)-truncation. Tt is easy to verify that any non-constant
such truncation is not uniformly continuous. Since f has countable fibers,
Theorem 8.3 applies and X3 is not WU A. &

COROLLARY 10.2. There are closed subsets of R? which are not WU A
and yet have no pseudo-hyperbolas.

Proof. Take the spaces X5 and X3 of the previous proposition.
o

REMARK 10.3. We have so far four criteria for showing that a normal
uniform space X is not U A:

1. X has a closed subset which is uniformly connected and not con-
nected.

2. X has a family of pseudo-hyperbolas (this entails that X is not even
WUA).

3. X has a separable closed subspace Y and a function f € C(Y) with
fibers of cardinality < Ng and without non-constant uniformly con-
tinuous truncations (this entails that X is not even WU A).

4. X has a compact subspace K C X and a function f € C(X) with
countable fibers such that f has no uniformly continuous truncations
g which agree with f on K.

For separable spaces the last two criteria seem to be stronger. Criterion
1 suffices for showing that the spaces X3, X5 and X3 of Proposition 10.1
are not UA 2. An application of criterion 3 yields the stronger result that
these spaces are not even WU A. An interesting property of the space X3
is that it is not U A under every metric compatible with its topology (see
[?]). This can be used to show that any non-compact metrizable manifold

2  We thank an anonymous referee for the observation that criterion 1 could be applied
to the space X3.
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of dimension > 1 i1s not U A since it has a closed subspace homeomorphic
to ladder A (see [?]). The reader may easily check (applying Remark 5.3)
that every perfect function of X3 is U A, while X; and X5 do not have this
property.

In Section 11 we will show that the spaces ladder B and ladder C of
Figure 1 are UA.
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11. Unions of U A spaces.

The property of being U A is not preserved under the taking of subspaces
and continuous images. On the other hand the next theorem shows that
U A spaces behave well under “gluing” along a compact set, provided we
make the gluing in a careful manner. We do not know whether a similar
result holds for WU A spaces even if we glue along a single point.

THEOREM 11.1. Let X be a uniform space which can be written as
X = X1 U X5 where X1 and X5 are UA. Suppose that:

1. X1 N Xy 1s compact;

2. if g1: X1 = R and g2: Xo — R are uniformly continuous functions
which agree on the common domain, then their union s uniformly
continuous.

Then X s UA.

Proof. Let K C X be compact and let M C X. Given f € C(X)
we want to find a (K, M)-approximation g of f. Let M; = M N X; and
K; = (KNX;) U (X1 NXs) (i =1,2). Note that K; is compact. In X;
there exists a (K, M;)-approximation g; of fix,. Then g = g1 Ugs is a
(K, M)-approximation of f. O

The above theorem says that the pushout (in the category of uniform
spaces) of two U A spaces along a compact space is UA. Tt can be shown
that we cannot weaken the condition that X; N X5 i1s compact, to the
condition that X7 N X5 is UA. In fact the space “Ladder A” of Figure 1
is not U A and yet it is the union of two U A spaces whose intersection is a
uniformly discrete subspace.

QUESTION 11.2. Under which conditions a countable union of compact
sets is UA?

In the metric case Theorem 11.4 gives a sufficient condition.

DEFINITION 11.3. Define

Osc(g) = sup g(z)— inf g(z).
zedom(g) z€dom(g)
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THEOREM 11.4. Let X = (X, d) be a metric space which can be written

as a countable union X = |J;cn Xi of compact sets X,,. Suppose that:
1. for all n the set X,, wntersects X, 41 in exactly one point, and does

not intersect X,,, form >n+1;

2. foralln € N, s, Xi is a closed subset of X.
Then X is UA. -

Proof. Let f € C(X), let K be a compact subset of X and let M be
an arbitrary subset of X. We must find a uniformly continuous function
9: X — R such that ¢ = f on K, and g(M) C f(M). From hypothesis 1.
it follows:

Cram. If g: X — R is a continuous function which is uniformly contin-
uous on | J;5,, X; for some n, then g is uniformly continuous on the whole

of X.

Cram. If g: X — R is a continuous function with the property that
Osc(gx,) < 1/2" for every sufficiently large n, then g is uniformly contin-

uous.

CLAIM. Any compact subset of X = [J; X; is contained in the union of
finitely many X;’s.

We leave the verification of the above claims to the reader. Going back
to the proof let p, € X be such that X,,_1 N X, = {pn} (n > 0). Since
K is compact there exists ng > 0 such that K C XoU X3 U...UX,,. We
can assume that K is disjoint from M and intersects the closure of M. We
consider the following cases:

Case 1. If for some n > ng, f(pn) € f(M), we define g: X — R by:
g=Ffon XgUX;U...UX, and g is the constant f(p,) on the rest of X.
Then g 1s as desired.

From now on we assume that for every n > ng f(p,) € f(M). Under
this assumption we distinguish the following cases:

Case 2. There exists z € f(M) and n > ng with f(pn) < z < f(pn+1)
or f(pn) > z > f(pnt1). Suppose f(pn) < z < f(pnt1) (the other case
being similar). We define g: X — R as follows. g(z) = f(z) for z belonging
to XoU...U X,_1 and for those z € X,, with f(z) < z. In the remaining
cases g(z) = z. Clearly g is continuous and g(M) C f(M) (as z € f(M)).

Since g is constant on |J X;, g 1s uniformly continuous.

i>n+1
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Case 3. There exists n > ng with f(p,) # f(pnt1) but case two fails.
We can assume f(p,) < f(pn41) (the other case being similar). Choose
y € f(M). Let A= XqU...Xp1U{z € X | f(z) < f(pn)} and B =
Uisngr Xi U{z € X | f(z) > f(pnt1)}. Then A is compact and B is a
closed set at distance > 0 from A. Define ¢ = f on A and let g assume
the constant value y on B. Then g is u.c. on AU B and therefore it can
be extended to a u.c. function on the whole of X. In the case that we are
considering, M is disjoint from X \ (AU B). So regardless of how we extend
g from AU B to X, we have g(M) C f(M) (since its restriction to AU B
has this property).

Case 4. Assume Ja¥Vn > ng f(pn) = a. Moreover suppose that there are

points of f(M) arbitrarily close to a both greater than and smaller than a.
This means that for each n € N we can find real numbers z,, < a < y, with
Zn, Yo € (M) and (yn — 2,) < 1/2". Let f, be the (z,,y,)-truncation
of f. Define g: X — R so that g coincides with f on XoU...U X,, and
g = fn on X, for all n > ng.
g 1s continuous since it is a union of continuous functions defined on the
various X, ’s which take the same value a at the points p,. Moreover since
Zn,Yn € F(M), g(M) C f(M). To see that g is uniformly continuous it
suffices to note that for n > ng Osc(gx,) < 1/2".

Case 5. Assume JaVn > ng f(p,) = a and suppose that there are
points of f(M) arbitrarily close to a, but Case 4 fails. Without loss of
generality suppose that @ = 0 and there is a sequence of points u, € f(M)
converging to 0 from below, but there is no such sequence converging to 0
from above. We can assume |u,| < 1/2". Fix n > ng and let M+ = {z €
MnNX, | f(z) >0}and let [f < 0] = {z € X, | f(z) < 0}. From our
assumptions it follows that M+ and [f < 0] are closed subsets of X,, at
distance > 0. Therefore there exists a continuous function g,: X,, — [uy, 0]
such that g,(z) = max{f(z),u,} if f(z) <0 and gn(z) = u, if 2 € M+.
Note that all the g,’s assume the same value 0 at the points p,, so the

union ¢’ = Un>n0 gn 1s a continuous function. Finally define ¢ = f on
XoU...UX,,and g = ¢’ on Un>ng Xyn. g is uniformly continuous since
Osc(g1x,) < |un| < 1/2" for n > ng. From the definition of g it follows
that the only points z € X in which g(z) is different both from f(z) and
from one of the constants u, € f(M) are points not belonging to M. Tt
follows that g(M) C f(M).

Case 6. Ja¥n > nof(pn) = @ and a ¢ f(M). Tt follows in particular
that p,,41 € M. Fix b € f(M) and define ¢ = f on Xo U ...X,, and
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glz)y=bforz € (MNX,41)U Un>n0+1 X,. By Katétov theorem we can

extend g to a u.c. function on X, and this will be a (K, M)-approximation
of f.

Since the above cases exhaust all the possible cases, the proof of the
theorem is now complete. &

Note that the hypothesis that X, U X,41 consists of a single point
cannot be weakened. Ladder A (Figure 1) provides an example of a non-
U A space which can be written as a countable union of compact spaces X,
with X,, N X, 41 consisting of two points (and all the other hypothesis of
Theorem 11.4 are satisfied).

COROLLARY 11.5. The spaces ladder B and ladder C of Figure 1 are
UA.

A simple application of 11.4 gives also a new proof of the fact that R
s UA.

ProrosiTiON 11.6. Theorem 11.4 holds also if we replace compactness
of X, by UA, asking that for each n € N the union (X1 U...UX,)UX, 11
1s a pushout.

Proof. The third claim in the proof of Theorem 11.4 remains true also
in this case. The other two claims work also in this more general case if
we require the continuous function g to be uniformly continuous on each
X,. Now an intermediate step has to be carried out before arguing as
in the proof of Theorem 11.4: using U A-ness the function f € C(X) has
to be replaced by h € C(X) such that for each n the restriction h|x, is
a (K NXp)U{pn,Pnt1}, M N Xp)-approximation of the restriction f|x, .
Now the proof continues as in Theorem 11.4. &

We do not know a characterization of the U A subsets of R. The next
corollary gives some partial information and allows us to reduce the study
of arbitrary U A subspaces of R to UA subspaces of the compact interval
[0,1]. Tt follows immediately from Proposition 11.6.

COROLLARY 11.7. A subspace X of R s UA ff for each n € Z the
subspace X N[n,n+ 1] is UA.

12. A new characterization of UC spaces.
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Let Unif be the category of uniform spaces and u.c. maps. Let for
X € Unif, Cyq(X) (Cyua(X)) denote the set of U A (resp. WU A) functions
X — R. Since every WU A-function is continuous by Fact 2.2 , we have
the following chain of inclusions
1) (2) (3)
CulX) € CualX) € Cunal¥) € C(X). (4)
Theorem 5.2 shows that the gap between Cy(R") and Cyq(R"™) is big
for any n > 0. We note that the inclusion (3) is an equality iff X isa WU A
space. Now Cyuq(X) is as big as possible. At this point one is tempted to
try the “symmetric” property, namely the spaces X with Cyq(X) = Cy(X),
so that now Cye(X) is as small as possible. Evidently this occurs when X
is UC, i. e. when all inclusions in (4) become equalities. Surprisingly, it
can be shown that this trivial observation can be substantially sharpened:
a metric space X is UC iff (1) is an equality (see Theorem 12.1 below).
Our theorem was stimulated by an earlier result of M. Burke [?] where the
stronger assumption Cyuqe(X) = Cy(X) was used to get UC for a metric
space X. The function f in our proof is the same as in [?], Theorem 6.

THEOREM 12.1. A metric space X is UC iff every bounded uniformly
approachable function is uniformly continuous, so that a space X with
Cu(X) = Cua(X) is necessarily a UC' space.

Proof. If X is UC then obviously (1) is an equality in (4). Assume
X is not UC. Then there exists a continuous non u.c. function ¢: X —
R. Hence for some set S = {s, : n € N} and some £ > 0 we have
|g(s2n) — g(S2n4+1)| > € while d(s2n,S2n4+1) = 0 as n — oco. Clearly S
is closed and discrete (see for example [?]). Hence we can choose balls
Up = By, (sn) so that {Ba,, (s,) : n € N} is a discrete family of sets. Let
U=U, Un. Then U =, U,.

We are going to use this data to define a U A non-uniformly-continuous
function f:X — [0,1] as follows: f is 0 on X \ U, Uszn—1, for n € N
f(s2n—1) = 1 and the restriction f|z— is uniformly continuous (take for
example f(z) = (1/ran—1)(r2n—1 — d(z, san—1)) for € Usp_1).

Note that f is not uniformly continuous since f(s2,) = 0, f(s2n41) = 1.

To show that f is U A consider a compact set K in X and a non-void set
M CX.

Case 1: KNU = . If f(m) = 0 for some m € M, then the constant 0
is a (K, M)-approximation of f. Otherwise M C U, so K N M = {§ by our
assumption. By Proposition 2.3 there exists a (K, M)-approximation of f.
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Case 22 KNU # 0. Let D = {k € N : KN Ba, (sxg) # 0}. Then
D 1is finite since K is compact. Set C' = UkeD Uy and note that ficuk is
u.c. Moreover, F' = ngD Ug is closed, K C X \ F and CN F = (), more
precisely d(C, F) > 0.

a) If f(m) = 0 for some m € M, then let g agree with f on C' and be
identically 0 elsewhere. Then g is a (K, M)-approximation of f and g is
uniformly continuous.

b) If f(m) > 0 for every m € M, then

M C U Usieq1. (5)
EEN

Our aim is to define a u.c. function g: KUM — [0, 1] which is a (K, M)-
approximation of f|,. 37. Then obviously any u.c. extension g : X — [0, 1]
of g, existing by Katétov’s theorem, will be a (K, M)-approximation of f.

If MNF =@ then M C C. So it suffices to recall that g = ficur
is u. c. Suppose now that M N F # @ and fix ¢ € f(M N F). Define
g: KUU — [0, 1] as follows: define g(z) = f(2) if 2 € KUC and g(2) = ¢
for z € F. Since K N F = {} by the choice of C', we get, in view of the
compactness of K, d(K UC, F) = min{d(K, F),d(C, F)} > 0. This means
that the function g : KUCUF = KUU — [0,1] is u.c. Since M C U by
(5) we are through. &

13. WUA-functions are totally continuous.

We denote by 2% the family of all subsets of X. We call closure operator
on Unif a family C = (CX)XeUnif of maps

ex 2% — 2% M ex (M)

such that for every X in Unif

i) M Cex(M) for all M € 2%;

il) M C M €2X = cx (M) Cex(M');

iii) flex(M)) C ey (f(M)) for all f: X — Y in Unifand M € 2%.

A closure operator C is additive if cx (AU B) = ex(A) U ex(B) always
holds for A, B C X. The leading example is the usual Kuratowski closure
operator K, more can be found in [?], [?].

Let U: Unif — Set be the usual forgetful functor. For a closure operator
C' of Unif we say that the map f:U(X) — U(Y) is C-continuous, if it
satisfies f(cx (M)) C ey (f(M)) for all M € 2% f is totally continuous if it
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is C-continuous for each closure operator C'. Obviously, totally continuous
maps are continuous (being K-continuous). The next proposition clarifies
the relation between this new notion of continuity and WU A functions.
The proof i1s analogous to that of Fact 2.2.

ProposiTiON 13.1. ([?], Corollary 4.4) WUA functions are totally
continuous.

Let for X € Unif, Cy(X) denote the set of totally continuous functions
[+ X — R and let C}, denote the set of all maps f: X — R which are
C-continuous w.r.t. all additive closure operators. Now we put together all
we observed on various types of continuity for real-valued functions. By
Proposition 13.1, we can add two inclusions to the chain (4) to get the
following longer chain of inclusions

—
—
NI
—
—

CulX) € Cun(X) © Conal(X) € Co(X) € Cua(x) € C(X). (6)

The recent results from [?] permit us to show that the inclusion (5) is
actually an equality in some cases.

THEOREM 13.1. Let X be a metric space which is either zero-dimensional
or connected and locally arcwise connected. Then

Cra(X) = O(X).

Proof. Our proof is based on a result of [?]. To give it here we need
the following definitions. The discrete (¢rivial) closure operator D (resp.
T) of Unif is defined by setting dx (M) = M (resp. tx (M) = X) for each
X € Unif and M C X (see [?]). Tt is proved in [?] that on a space X as
in our hypothesis K, D and T are the unique additive closure operators.
Since every continuous map is obviously C-continuous for any of K, DD and
T, we are through.

&
The above theorem suggests the following

QUESTION 13.3. Ts there a metric space X with Cy(X) # C(X) (resp.
CralX) # C(X)) 2
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14. Questions.

A general question is to characterize the UA and WU A spaces and
functions. We list below more specific questions.

1.
2.

10.

Can we prove Theorem 8.5 without the continuum hypothesis?

Let X be separable and let f € C(X). Consider the following two
conditions: 1) for every compact K C X there is a u.c. truncation
g of f with gjx = fix; 2) f is a UA function. Are these conditions
equivalent? We know that 2) implies 1) if f has countable fibers.

. Characterize the U A functions f: R? — R.

Characterize the U A subsets of R..

. Characterize the topological spaces which admit a UA uniformity,

and those which are U A under every uniformity compatible with their
topology. Does the latter class of spaces include the UC spaces?

. Do WUA and U A coincide for connected spaces?

Suppose that a uniform space X has a dense U A subspace. Does it
follow that X is UA? (This fails for WU A according to Example
7.7)

. Let X be the pushout of two WU A spaces over a single point. Is X

WUA? (This holds for UA by Theorem 11.1.)

. Suppose that every pseudo-monotone function f € C(X) is UA. Ts

the space X UA?

Define 2-U A similarly to U A but with the set K of cardinality at
most 2. Is 2-UA equivalent to UA? Note that Lemma 3.1 and its
corollary holds with 2-U A instead of U A.
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