ON THE FUZZES WHICH ARE COMPLETE RINGS OF SETS (*)

by GIULIANO ARTICO and ROBERTO MORESCO (in Padova)(**)

SOMMARIO. - Sia Fr la categoria di fuzzes il cui insieme soggiacente è un anello completo di insiemi. Ogni fuzz non banale in Fr si può rappresentare come un prodotto sottodiretto di copie di oggetti di una famiglia G se e solo se G contiene gli oggetti 2, 3, R. Inoltre, ogni fuzz è l'immagine di un oggetto di Fr mediante un morfismo fuzz.

SUMMARY. - Let $\mathcal{F}r$ be the category of fuzzes whose underlying set is a complete ring of sets. Every non-trivial fuzz in $\mathcal{F}r$ can be represented as a subdirect product of copies of objects taken in a family \mathcal{G} if and only if \mathcal{G} contains the objects $\mathbf{2}$, $\mathbf{3}$, \mathbf{R} . Furthermore, every fuzz is the image of an object of $\mathcal{F}r$ via a fuzz morphism.

Key words and phrases: Fuzz, complete ring of sets, congruence relation.

1. Definitions and Notations.

Let $\mathcal{D}c$ denote the category of completely distributive complete lattices and complete lattice morphisms. A complete ring of sets is a complete sublattice of a power set. $\mathcal{I}L$ denotes the set of all completely join irriducible elements of a lattice L; it is well-known that $L \in \mathcal{D}c$ is a complete ring of sets if and only if every element of L is the supremum of a subset of $\mathcal{I}L$. In any complete lattice, 0 and 1 denote the smallest and the greatest element respectively.

A fuzz is an object of $\mathcal{D}c$ equipped with an order reversing involution '; the category of fuzzes and fuzz morphisms is denoted by \mathcal{F} ; the category

Supported by "Fondi 40%" M.U.R.S.T.

^(*) Pervenuto in Redazione il 20 novembre 1993.

^(**) Indirizzo degli Autori: Università di Padova, Dipartimento di Matematica Pura e Applicata, Via Belzoni 7, 35131 Padova (Italia).

of fuzzes whose underlying set is a complete ring of sets is denoted by $\mathcal{F}r$. Given any fuzz L, we denote by c_L [1] the element: $\bigwedge\{l \vee l' : l \in L\}$. It is obvious that $c_L = 1$ if and only if L is a power set.

We denote by **2** and **3** the fuzzes (or lattices) with two and three elements respectively; **R** denotes the fuzz with four elements $\{0, a, b, 1\}$ equipped with the order reversing involution given by a' = a. As usual, I is the closed real unit interval, equipped with the order reversing involution t' = 1 - t.

Observe that $\mathcal{F}r$ is closed under the formation of products and subobjects, hence under the formation of subdirect products, while it is not closed under the formation of epimorphic images. Indeed, denote by T the chain $I \times \mathbf{2}$ lexicographically ordered, equipped with the involution defined componentwise. Clearly, T belongs to $\mathcal{F}r$ since the elements (t,1) are join irreducible, while I does not belong to $\mathcal{F}r$ since $\mathcal{I}I$ is empty, and the map $(t,i) \longrightarrow t$ is a map of fuzzes from T onto I.

We briefly recall the definitions of the functors C (clepsydra) and R (rhomb) from $\mathcal{D}c$ into \mathcal{F} , which we have introduced in [2].

Given $L \in \mathcal{D}c$, denote by -L the opposite lattice, that is the lattice whose underlying set is $\{-l: l \in L\}$ and whose order is defined by $-l \leq -m \iff l \geq m$.

Consider the set $L \cup (-L)$ and identify 0_L with 1_{-L} ; equip this set with the order which extends the original ones in such a way that $-l \leq m$ for all l, m belonging to L. The assignation l' = -l induces a unique order reversing involution in this lattice and we denote by CL the fuzz obtained in this way. Trivially, $\mathbf{3} = C\mathbf{2}$ and it is easy to check that a fuzz is a clepsydra if and only if $c_L = c'_L$ and every element is comparable with c_L .

Now consider the lattice $L \times (-L)$ equipped with the componentwise order and with the order reversing involution (l, -m)' = (m, -l). We denote this fuzz by RL. Trivially, $\mathbf{R} = R\mathbf{2}$ and $c_{RL} = 0$.

Con (L) denotes the complete lattice of complete congruence relations of L (as a lattice) [4]; Con '(L) denotes the sublattice consisting of the elements of Con (L) compatible with the involution [2].

2. Results.

- 1. Proposition.
- i) The category of complete rings of sets is a full reflective subcategory of $\mathcal{D}c$;

ii) $\mathcal{F}r$ is a full reflective subcategory of \mathcal{F} .

Proof.

i) For every $L \in \mathcal{D}c$, denote by ϑ_L the smallest complete congruence relation ϑ for which L/ϑ is a complete ring of sets. We show that $L \longrightarrow L/\vartheta_L$ is a reflection.

If M is a complete ring of sets and $f: L \longrightarrow M$, define

$$\tilde{f}: L/\vartheta_L \longrightarrow M$$
 by $\tilde{f}([a]) = f(a)$.

Since ϑ_L is a complete congruence relation, it is enough to show that \tilde{f} is well defined, that is that $f(a) \neq f(b)$ implies $(a, b) \notin \vartheta_L$.

Suppose $f(a) \not\geq f(b)$: since f(L) is a complete ring of sets, there exists an element $m \in \mathcal{I}f(L)$ such that $m \leq f(b)$, $m \not\leq f(a)$. The element $l^* = \bigwedge\{l: m \leq f(l)\}$ belongs to $\mathcal{I}L$; since $l^* \leq b$ and $l^* \not\leq a$, the pair (a,b) does not belong to the congruence relation whose classes are the filter $[l^*)$ and its complement $L \setminus [l^*)$, hence (a,b) does not belong to ϑ_L .

ii) It is enough to observe that ϑ_L belongs to Con '(L) and that, if f is a \mathcal{F} -morphism, then \tilde{f} preserves the order reversing involution as well. \diamondsuit

It is well-known [9] that an object of $\mathcal{D}c$ is a subdirect product of copies of **2** and I and it is obvious that a complete ring of sets is a subdirect product of copies of **2**.

In [2] we have shown that every fuzz is a subdirect product of copies of the fuzzes 2, 3, \mathbf{R} , I, RI; as a consequence, we have the following:

2. Proposition. A non trivial fuzz belongs to $\mathcal{F}r$ if and only if it is a subdirect product of copies of $\mathbf{2}$, $\mathbf{3}$, \mathbf{R} (that is $\mathbf{2}$, $C\mathbf{2}$, $R\mathbf{2}$).

Proof. Necessity: by [3, 4.1], ϑ_L , which is discrete, is the infimum of a set of congruence relations ψ_a such that, by [2, 3.11, 3.12], L/ψ_a is one of the fuzzes 2, 3, \mathbb{R} .

More precisely, the above result can be refined as follows:

- i) $(L \in \mathcal{F}r \text{ and}) c_L = 1 \text{ if and only if } L \text{ is a power set};$
- ii) $L \in \mathcal{F}r$ and $c_L = c'_L$ if and only if L is a subdirect product of copies of $\mathbf{3}$;

iii) $L \in \mathcal{F}r$ and $c_L = 0$ if and only if L is a subdirect product of copies of \mathbf{R} .

Observe that every non trivial homomorphic image of 2, 3, \mathbf{R} is 2, 3, \mathbf{R} respectively; moreover, 2 and 3 are subfuzzes of \mathbf{R} . Hence every non trivial object of $\mathcal{F}r$ is subfuzz of a power of \mathbf{R} , that is \mathbf{R} is a coseparator of $\mathcal{F}r$. Therefore we obtain the following:

3. PROPOSITION. Let \mathcal{G} be a subfamily of $\mathcal{F}r$; then every object belonging to $\mathcal{F}r$ is a subdirect product of objects of \mathcal{G} if and only if \mathcal{G} contains $\mathbf{2}$, $\mathbf{3}$, \mathbf{R} .

The following theorem is the analog in fuzzy set theory of the classical result of Raney [8] for completely distributive complete lattices.

4. Theorem. Every fuzz L is the image of an object of $\mathcal{F}r$ via a fuzz morphism.

Proof. By [2, 5.13], L is a subfuzz of a power $\prod_{x \in X} RI_x$, for a certain set of indices X, where $I_x = I$ for every $x \in X$. For every x put $T_x = T$ and let $f_x : T_x \longrightarrow I_x$ be the $\mathcal{D}c$ -morphism defined by $f_x(t, i) = t$. Since f_x is onto, the $\mathcal{F}r$ -morphism

$$f = \prod_{x} Rf_{x} : \prod_{x} RT_{x} \longrightarrow \prod_{x} RI_{x}$$

is onto, too.

The inverse image M of L under f is a subfuzz of $\prod_x RT_x$, therefore M belongs to $\mathcal{F}r$, and L is the image of M through the restriction of f to M. \diamondsuit

REMARK. The construction which gives T by means of I can be mimicked by replacing I with any fuzz L. We still obtain a fuzz if L is a chain, while in the general case the resulting lattice need not even be distributive.

REFERENCES

- [1] ARTICO G. and MORESCO R., α^* -compactness of the fuzzy unit interval, Fuzzy Sets and Systems **25** (1988), 243-249.
- [2] ARTICO G. and MORESCO R., On the structure of fuzzes, Math. Proc. Cambridge Philos. Soc. 104 (1988), 235-251.
- [3] DWINGER PH., Classes of completely distributive complete lattices, Indagationes Math. 41 (1979), 411-423.
- [4] DWINGER Ph., Structure of completely distributive complete lattices, Indagationes Math. 43 (1981), 361-373.
- [5] Gratzer G., Lattice Theory, W. H. Freeman and Co., San Francisco, 1971.
- [6] HERRLICH H. and STRECKER G., Category Theory, Allyn and Bacon Inc., Boston, 1973.
- [7] MORESCO R., Structure of completely distributive complete lattices, Indagationes Math. 49 (1987), 69-71.
- [8] RANEY G.N., Completely distributive complete lattices, Proc. Amer. Math. Soc. 3 (1952), 677-680.
- [9] RANEY G.N., A subdirect-union representation for completely distributive complete lattices, Proc. Amer. Math. Soc. 4 (1953), 518-522.