ON THE FUZZES WHICH ARE COMPLETE
RINGS OF SETS (*)

by GruLiANO ARTICO and ROBERTO MOREsco (in Padova)(**)

SOMMARIO. - Sia Fr la categoria di fuzzes il cui insieme soggiacente ¢ un anello
completo di insiemi. Ogni fuzz non banale in Fr si puo rappresentare come
un prodotto sottodiretto di copie di oggetti di una famiglia G se e solo se G
contiene gli oggetti 2, 3, R. Inoltre, ogni fuzz é 'immagine di un oggetto di
Fr mediante un morfismo fuzz.

SUMMARY. - Let Fr be the category of fuzzes whose underlying set is a complete
ring of sets. Fvery non-trivial fuzz in Fr can be represented as a subdirect
product of copies of objects taken in a family G if and only if G contains the
objects 2, 3, R. Furthermore, every fuzz is the image of an object of Fr via
a fuzz morphism.
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1. Definitions and Notations.

Let De denote the category of completely distributive complete lattices
and complete lattice morphisms. A complete ring of sets is a complete sub-
lattice of a power set. ZL denotes the set of all completely join irriducible
elements of a lattice L; it is well-known that L € Dc is a complete ring of
sets if and only if every element of L is the supremum of a subset of ZL. In
any complete lattice, 0 and 1 denote the smallest and the greatest element
respectively.

A fuzz is an object of De equipped with an order reversing involution
' the category of fuzzes and fuzz morphisms is denoted by F; the category
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of fuzzes whose underlying set is a complete ring of sets is denoted by Fr.
Given any fuzz L, we denote by cr, [1] the element: A{{V{I': l € L} Ttis
obvious that ¢z = 1 if and only if L is a power set.

We denote by 2 and 3 the fuzzes (or lattices) with two and three
elements respectively; R denotes the fuzz with four elements {0, a,b, 1}
equipped with the order reversing involution given by @’ = a. As usual,
is the closed real unit interval, equipped with the order reversing involution
t=1-—+t.

Observe that Fr is closed under the formation of products and sub-
objects, hence under the formation of subdirect products, while 1t is not
closed under the formation of epimorphic images. Indeed, denote by T the
chain I x 2 lexicographically ordered, equipped with the involution defined
componentwise. Clearly, 7" belongs to Fr since the elements (¢, 1) are join
irreducible, while I does not belong to Fr since Z7 is empty, and the map
(t,7) — ¢ is a map of fuzzes from T onto I.

We briefly recall the definitions of the functors C' (clepsydra) and R
(rhomb) from De into F, which we have introduced in [2].

Given L € Dec, denote by —L the opposite lattice, that is the lat-
tice whose underlying set is {—/: [ € L} and whose order is defined by
—I<-m <<= I>m

Consider the set LU (—L) and identify 07, with 1_r; equip this set with
the order which extends the original ones in such a way that — < m for
all I, m belonging to L. The assignation ! = —/ induces a unique order
reversing involution in this lattice and we denote by C'L the fuzz obtained
in this way. Trivially, 3 = C'2 and it is easy to check that a fuzz is a
clepsydra if and only if ¢;, = ¢} and every element is comparable with cy,.

Now consider the lattice L x (—L) equipped with the componentwise or-
der and with the order reversing involution (I, —m)’ = (m, —1). We denote
this fuzz by RL. Trivially, R = R2 and cgy, = 0.

Con (L) denotes the complete lattice of complete congruence relations
of L (as a lattice) [4]; Con /(L) denotes the sublattice consisting of the
elements of Con (L) compatible with the involution [2].

2. Results.

1. PROPOSITION.

i) The category of complete rings of sets is a full reflective subcategory

of De;
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i) Fr is a full reflective subcategory of F.

Proof.

i) For every L € Dc, denote by 91, the smallest complete congruence re-
lation ¥ for which L/ is a complete ring of sets. We show that L — L/d
is a reflection.

If M is a complete ring of sets and f : L — M, define

fiL/op— M by  f(ld) = f(a).

Since ¥ is a complete congruence relation, it is enough to show that f is
well defined, that is that f(a) # f(b) implies (a,b) & 9y,

Suppose f(a) 2 f(b): since f(L) is a complete ring of sets, there ex-
ists an element m € Zf(L) such that m < f(b), m £ f(a). The element
= A{l: m<f(l)} belongs to ZL; since I* < b and I* £ a, the pair (a,b)
does not belong to the congruence relation whose classes are the filter [I*)
and its complement L ~ [{*), hence (a, b) does not belong to 9.

ii) It is enough to observe that ¥, belongs to Con /(L) and that, if f is
a F-morphism, then f preserves the order reversing involution as well. <

It is well-known [9] that an object of D¢ is a subdirect product of copies
of 2 and 7 and it 1s obvious that a complete ring of sets is a subdirect
product of copies of 2.

In [2] we have shown that every fuzz is a subdirect product of copies of
the fuzzes 2, 3, R, I, RI; as a consequence, we have the following:

2. ProOPOSITION. A non trwial fuzz belongs to Fr if and only if it is a
subdirect product of copies of 2, 3, R (that is 2, C2, R2).

Proof. Necessity: by [3, 4.1], ¥1,, which is discrete, is the infimum of a
set of congruence relations t, such that, by [2, 3.11, 3.12], L/, is one of
the fuzzes 2, 3, R. &

More precisely, the above result can be refined as follows:

i) (L € Fr and) ¢y, = 1 if and only if L is a power set;

il) L € Fr and ¢, = ¢ if and only if L is a subdirect product of
copies of 3;
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i) L € Fr and ¢z = 0 if and only if L is a subdirect product of
copies of R.

Observe that every non trivial homomorphic image of 2, 3, R is 2, 3,
R respectively; moreover, 2 and 3 are subfuzzes of R. Hence every non
trivial object of Fr is subfuzz of a power of R, that is R is a coseparator
of Fr. Therefore we obtain the following:

3. PROPOSITION. Let G be a subfamily of Fr; then every object belong-

wng to Fr s a subdirect product of objects of G if and only if G contains 2,
3, R. &

The following theorem is the analog in fuzzy set theory of the classical
result of Raney [8] for completely distributive complete lattices.

4. THEOREM. Every fuzz L 1s the tmage of an object of Fr via a fuzz
morphism.

Proof. By [2, 5.13], L is a subfuzz of a power [],.x RI;, for a certain
set of indices X, where I, = I for every z € X. For every z put T, = T
and let fy : Ty —> I, be the De-morphism defined by fr(¢,7) =¢. Since
fz 1s onto, the Fr-morphism

f=1IRs: [[RT: — [] RL

is onto, too.

The inverse image M of L under f is a subfuzz of [[ RT, therefore M
belongs to Fr, and L is the image of M through the restriction of f to M.
¢

REMARK. The construction which gives T by means of I can be mim-
icked by replacing I with any fuzz L. We still obtain a fuzz if L is a chain,
while in the general case the resulting lattice need not even be distributive.
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