ON COUNTABLY COMPACT PRODUCT SPACES (*)

by O.T. Aras (in Sdo Paulo)(**)

SOMMARIO. - Si studiano in ZF forme equivalenti della seguente versione debole
del teorema di Tychonouv: il prodotto topologico di spazi compatti di Hausdorff é
numerabilmente compatto.

SUMMARY. - We study in ZF equivalent forms of the following weaker version of Ty-
chonowv theorem: the topological product of compact Hausdorff spaces is countably
compact.

All topological spaces are assumed to be Hausdorff spaces. ZF denotes the
Zermelo-Fraenkel set theory without the axiom of choice; ACY denotes the
axiom of choice for countable families of non-empty sets and w denotes the set
of all natural numbers.

We shall consider the assertions below:

1) there exists a non-principal ultrafilter & on w;

2) for any non-empty set X, the topological product space {0, 1}{0’1})(
is countably compact ({0, 1} with the discrete topology);

3) every filter with countable base on a non-empty set X is contained in
an ultrafilter on X.

DEFINITION. A topological space is countably compact if every countable
open cover has a finite subcover.

THEOREM 1 (ZF + AC%). A topological space X is countably compact if
and only if every infinite countable subset of X has an accumulation point.

THEOREM 2 (ZF + AC%¥). Let X be a non-empty set. If (1) holds then the
topological product space {0, 1}{0’1}X 1s countably compact.

(*) Pervenuto in Redazione il 28 dicembre 1993 ed in versione definitiva il 20 maggio 1994.
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Proof. Let (yn)n>0 be an infinite sequence of pairwise distinct points of
{0, 1}{0’1}A. For each n > 0, consider y, = (yn,i)icfo,1}x- Fix U a non-principal
ultrafilter on w.

For each i € {0,1}* the intersection ﬂ {yn,i | n € U} is non-empty, be-

Ueu
cause each {y,; | n € U} is closed in the compact space {0,1}. Choose z;

being the smallest member of the intersection above. Then z = (z;);cq0,1}x

is an accumulation point of {y, | n = 0,1,2,...} in {0, 1}{0’1})(. On the con-

trary, let V = H Vi be an elementary open neighborhood of z such that
ie{01}%

(V\{z}) N{yn | n=10,1,2,..} = 6. Theset J = {i € {0,1}X | Vi £ {0,1}}

is finite and for each j € J, the set {n € w | yn ; € V;} belongs to U; hence

{new|ysj€V;,jeJYeU and (V\{z})N{yn [In=0,1,...} # 0 (contradic-

tion).

THEOREM 3. Let X be a non-empty set and F be a filter with countable base
on X. If (2) holds, then F is contained in an ultrafilter on X.

Proof. This proof is a slight modification of E. Farah’s proof (1953) that the
axiom of ultrafilters is equivalent in ZF to the Tychonov theorem for compact
Hausdorff spaces.

Define

p: X — {0,1}{0’1}X
to— (f(1)seqoyx

Let F be a filter on X with countable base B. Then N{¢[B] | B € B} is
a countable family of closed subsets of {0, 1}{0’1}X with the finite intersection

property. By virtue of (2), m ©[B] # 0 and fix y belonging to this intersection.
Consider the ultrafilter on JE);(EBgenerated by the collection
{Fne '[VI|FeF,VeV,},
where Vy is the set of all neighborhoods of y in {0, 1}{0’1}X; it contains F.
THEOREM 4. In ZF the following assertions are equivalent:
i)  ACY+ (1)
i) ACY+ (2)



i) AC“+ (3)

Proof. AC¥+ (1) implies AC¥+ (2) by Theorem 2. ACY+ (2) implies
ACY+ (3) by theorem 3. Finally, the filter on w generated by the collection

{n€w|n>k}|k=0,1,2..1}

has a countable base, hence by (3) it is contained in an ultrafilter on w which is
not principal.

Assertion (4): the topological product of a non-empty family of compact
Hausdorff spaces is countably compact.

It is immediate that AC“+ (4) implies AC*+ (2) since {0, 1} with the dis-
crete topology is a compact-Hausdorff space. On the other hand, let ((X;, 73))ier
be a non-empty family of compact Hausdorff spaces and let us show that the
ic1 Xi is countably compact (if [];.; Xi = 0 there
is nothing to prove). Let C be a countable open cover of [[;c; X;, without a
finite subcover - say C = {Vi,...,V,,...}. Then {X\U§:1 Vi | p=12,.. } is
a countable base B of a filter F on the non-empty set X, that is contained in an
ultrafilter &/ on X (since AC*+ (2) implies (3)). Foreachi € I, letII; : X = X;
be the projection; then there is a unique b; € X; such that the ultrafilter IT;/
converges to b;. Finally, (b;)ier would be in NB (contradiction).

It is easy to see that, in ZF, (2) implies (3), (3) implies (1) and (1) implies
that every infinite countable subset of {0, 1}{0’1}X has an accumulation point.

topological product X = ]

On the other hand, (4) implies that “if (Ap)new is a sequence of non-empty
finite sets, then [], ., An # 0”. (Hint. For each n € w, define X, = A, U {b},
where b does not belong to | |, ¢, An. Consider the discrete topology on each
X5 by (4) [1,eo Xn is countably compact, hence [], ¢, An # 0.)

In [3] Sierpinski proved that if (1) holds there is a non-measurable Lebesgue
set. Solovay’s model ([4]) satisfies the Dependent Choice Axiom (hence AC*)
and every real subset is Lebesgue measurable.

The author wish to thank Professor Norbert Brunner for calling her attention
to the following facts:

I) ACY does not imply (1) since in Feferman’s variant of the Cohen-

model AC¥ holds, but (1) fails;

IT) (1) does not imply ACE. (= axiom of choice for countable families of
non-empty finite sets).
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