ON COUNTABLY COMPACT PRODUCT SPACES (*)

by O.T. Alas (in São Paulo)(**)

SOMMARIO. - Si studiano in ZF forme equivalenti della seguente versione debole del teorema di Tychonov: il prodotto topologico di spazi compatti di Hausdorff è numerabilmente compatto.

Summary. - We study in ZF equivalent forms of the following weaker version of Tychonov theorem: the topological product of compact Hausdorff spaces is countably compact.

All topological spaces are assumed to be *Hausdorff spaces*. ZF denotes the Zermelo-Fraenkel set theory without the axiom of choice; AC^{ω} denotes the axiom of choice for countable families of non-empty sets and ω denotes the set of all natural numbers.

We shall consider the assertions below:

- 1) there exists a non-principal ultrafilter \mathcal{U} on ω ;
- 2) for any non-empty set X, the topological product space $\{0,1\}^{\{0,1\}^X}$ is countably compact ($\{0,1\}$ with the discrete topology);
- 3) every filter with countable base on a non-empty set X is contained in an ultrafilter on X.

DEFINITION. A topological space is countably compact if every countable open cover has a finite subcover.

THEOREM 1 $(ZF + AC^{\omega})$. A topological space X is countably compact if and only if every infinite countable subset of X has an accumulation point.

THEOREM 2 $(ZF + AC^{\omega})$. Let X be a non-empty set. If (1) holds then the topological product space $\{0,1\}^{\{0,1\}^X}$ is countably compact.

^(*) Pervenuto in Redazione il 28 dicembre 1993 ed in versione definitiva il 20 maggio 1994.

^(**) Indirizzo dell'Autore: Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo (Brasile).

Proof. Let $(y_n)_{n\geq 0}$ be an infinite sequence of pairwise distinct points of $\{0,1\}^{\{0,1\}^X}$. For each $n \geq 0$, consider $y_n = (y_{n,i})_{i \in \{0,1\}^X}$. Fix \mathcal{U} a non-principal

For each $i \in \{0,1\}^X$ the intersection $\bigcap \overline{\{y_n, i \mid n \in U\}}$ is non-empty, because each $\{y_{n,i} \mid n \in U\}$ is closed in the compact space $\{0,1\}$. Choose z_i being the smallest member of the intersection above. Then $z=(z_i)_{i\in\{0,1\}^X}$ is an accumulation point of $\{y_n \mid n=0,1,2,\ldots\}$ in $\{0,1\}^{\{0,1\}^X}$. On the contrary, let $V = \prod_{i \in \{0,1\}^X} V_i$ be an elementary open neighborhood of z such that

 $(V\setminus\{z\})\cap\{y_n\mid n=0,1,2,\ldots\}=\phi.$ The set $J=\{i\in\{0,1\}^X\mid V_i\neq\{0,1\}\}$ is finite and for each $j \in J$, the set $\{n \in \omega \mid y_{n,j} \in V_j\}$ belongs to \mathcal{U} ; hence $\{n \in \omega \mid y_{n,j} \in V_j, j \in J\} \in \mathcal{U} \text{ and } (V \setminus \{z\}) \cap \{y_n \mid n = 0, 1, \ldots\} \neq \emptyset \text{ (contradic$ tion).

Theorem 3. Let X be a non-empty set and \mathcal{F} be a filter with countable base on X. If (2) holds, then \mathcal{F} is contained in an ultrafilter on X.

Proof. This proof is a slight modification of E. Farah's proof (1953) that the axiom of ultrafilters is equivalent in ZF to the Tychonov theorem for compact Hausdorff spaces.

Define

$$\varphi: X \longrightarrow \{0,1\}^{\{0,1\}^X}$$

$$t \longmapsto (f(t))_{f \in \{0,1\}^X}$$

Let \mathcal{F} be a filter on X with countable base \mathcal{B} . Then $\cap \{\overline{\varphi[B]} \mid B \in \mathcal{B}\}$ is a countable family of closed subsets of $\{0,1\}^{\{0,1\}^X}$ with the finite intersection property. By virtue of (2), $\bigcap \overline{\varphi[B]} \neq \emptyset$ and fix y belonging to this intersection. $B \in \mathcal{B}$ Consider the ultrafilter on X generated by the collection

$$\{F \cap \varphi^{-1}[V] \mid F \in \mathcal{F}, V \in \mathcal{V}_y\}$$
,

where \mathcal{V}_y is the set of all neighborhoods of y in $\{0,1\}^{\{0,1\}^X}$; it contains \mathcal{F} .

Theorem 4. In ZF the following assertions are equivalent:

- $AC^{\omega}+(1)$
- ii) $AC^{\omega}+(2)$

iii)
$$AC^{\omega} + (3)$$

Proof. $AC^{\omega}+$ (1) implies $AC^{\omega}+$ (2) by Theorem 2. $AC^{\omega}+$ (2) implies $AC^{\omega}+$ (3) by theorem 3. Finally, the filter on ω generated by the collection

$$\{\{n \in \omega \mid n \ge k\} \mid k = 0, 1, 2, \ldots\}$$

has a countable base, hence by (3) it is contained in an ultrafilter on ω which is not principal.

Assertion (4): the topological product of a non-empty family of compact Hausdorff spaces is countably compact.

It is immediate that $AC^{\omega}+(4)$ implies $AC^{\omega}+(2)$ since $\{0,1\}$ with the discrete topology is a compact-Hausdorff space. On the other hand, let $((X_i, \tau_i))_{i \in I}$ be a non-empty family of compact Hausdorff spaces and let us show that the topological product $X = \prod_{i \in I} X_i$ is countably compact (if $\prod_{i \in I} X_i = 0$ there is nothing to prove). Let \mathcal{C} be a countable open cover of $\prod_{i \in I} X_i$, without a finite subcover - say $\mathcal{C} = \{V_1, \ldots, V_n, \ldots\}$. Then $\{X \setminus \bigcup_{i=1}^p V_i \mid p = 1, 2, \ldots\}$ is a countable base \mathcal{B} of a filter \mathcal{F} on the non-empty set X, that is contained in an ultrafilter \mathcal{U} on X (since $AC^{\omega}+(2)$ implies (3)). For each $i \in I$, let $\Pi_i: X \to X_i$ be the projection; then there is a unique $b_i \in X_i$ such that the ultrafilter $\Pi_i \mathcal{U}$ converges to b_i . Finally, $(b_i)_{i \in I}$ would be in $\cap \mathcal{B}$ (contradiction).

It is easy to see that, in ZF, (2) implies (3), (3) implies (1) and (1) implies that every infinite countable subset of $\{0,1\}^{\{0,1\}^X}$ has an accumulation point. On the other hand, (4) implies that "if $(A_n)_{n\in\omega}$ is a sequence of non-empty finite sets, then $\prod_{n\in\omega}A_n\neq\emptyset$ ". (Hint. For each $n\in\omega$, define $X_n=A_n\cup\{b\}$, where b does not belong to $\bigsqcup_{n\in\omega}A_n$. Consider the discrete topology on each X_n ; by (4) $\prod_{n\in\omega}X_n$ is countably compact, hence $\prod_{n\in\omega}A_n\neq\emptyset$.)

In [3] Sierpinski proved that if (1) holds there is a non-measurable Lebesgue set. Solovay's model ([4]) satisfies the Dependent Choice Axiom (hence AC^{ω}) and every real subset is Lebesgue measurable.

The author wish to thank Professor Norbert Brunner for calling her attention to the following facts:

- I) AC^{ω} does not imply (1) since in Feferman's variant of the Cohen-model AC^{ω} holds, but (1) fails;
- II) (1) does not imply AC_{fin}^{ω} (= axiom of choice for countable families of non-empty finite sets).

The author thanks the Organizing Committee of the XI Convegno Internazionale di Topologia (Trieste - September 1993) and FAPESP for financial

 ${\bf support.}$

References

References

- [1] Brunner Norbert, private communication.
- [2] Farah Edison, private communication.
- [3] SIERPINSKI W., Fonctions additives non complètement additives et fonctions non-measurables, Fund. Math. 30 (1938), 96-98.
- [4] Solovay R.M., A model of set theory in which every set of reals is Lebesgue measurable, Annals of Math. 92 (1970), 1-56.