PERIODIC SOLUTIONS OF SECOND ORDER
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by C. FABRY and D. FAYYAD (in Louvain-la-Neuve) (**)

SOMMARIO. - In questa nota si ottengono risullati di esistenza per il pro-
blema con condizioni alla frontiera

{ (®,(z)) + f(t,2) =0,
z(0) = z(T), #(0) =(T) ,

dove Dp(s) = IsI"‘ 8, la funzione non lineare f essendo asimmetrica
ga’na cosiddetta “jumping nonlinearity”). Il metodo di dimostrazione é
ato su argomenti della teoria del grado topologico. Limiti a priori
per possibili soluzioni sono ottenuti per mezzo del calcolo del numero di
rwolua’om’ nel piano delle fasi.

SUMMARY. - In this note we obtain existence results for the periodic boun-
dary-value problem

{ (ﬁp(z,))"" f(tsz) =0 t I
z(0) =z(T), #(0) =2(T) ,

where <I>p(s) lsl” 24, the nonlinear function f being asymmetric (a
o-called “jumping nonlinearily”). The method of proof is based on

aryuments of topological degree theory. A priori bounds for possible
solutions are obtained by means of a count of the number of revolutions
in the phase plane.

(*) Pervenuto in Redazione il 15 giugno 1993.

(**) Indirizzo degli Autori: Institut de Mathématique pure et appliquée, Univer-
sité Catholique de Louvain, Chemin du cyclotron 2, B-1348 Louvain-la-Neuve
(Belgio).



208 C. FABRY and D. FAYYAD

1. Introduction.

For p > 1, let us define ®, : R — R by ®,(s) = |s|P~2s. We are
interested in the periodic boundary-value problem

(1) (@p(')) + f(t,2) =0

@) 2(0) = 2(T), 2(0) =2/(T) .

. If p = 2, the nonlinear operator z — (Pp(z’))’ reduces to the Lapla-
cian operator z +— z”. The nonlinear operator is called a p-Laplacian.

- The main objective of this paper is to show that techniques that
have been used for the equation with the linear operator, like phase-
plane analysis or the use of Priifer variables, can be adapted to the
general case, offering the possibility to generalize various results.
As an illustration of the method, we will treat problems where the
asymptotic behaviour of f, for z going to +oo is asymmetric, by
which we mean that the ratio f(t)/®,(x) has different limits, for z
going to —oo, and for z going to +0o. Such a situation, sometimes
referred to as a jumping nonlinearity, has been considered recently
by M. Del Pino, R. Manasevich, A. Murua [1]. They assume that
positive numbers a4, a—, by, b_ exist such that

1,2) 16,2)
@ -sEReE B ee =

1,2) 12,2
W sl e S em <

the limits being uniform in ¢, and present conditions on a4, a_,
by, b— under which problem (1), (2) has at least one solution. Re-
sults along the same lines have also been obtained by Y. Huang and
G. Metzen [6]. The conditions on a4,a—,b;,b_ are related to the
so-called Fuéfk spectrum and generalize conditions obtained by P
Drabek and S. Invernizzi [3] for p = 2, in which case they write

1 + 1 < 1
Vot G- nm’
T
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n being a positive integer.
The generalization of the above conditions for problems with a
p-Laplacian is

: ‘ 1 1 T
(7) a}’-/p + al_/p < n’ﬂ'p ?

1 1 T

®) bi/p + bl/P T+ Dy’

where 7, is a number to be defined in Section 2.

In this paper, we will study modifications of the conditions (7),
(8) in two different directions.

First, if the conditions (7), (8) are replaced by the equalities

1 1 T

©) a-l;-/p * al_/ P =-m"p ’
1 1 T

(10)

b T T A,

additional conditions of Landesman-Lazer type, have to be imposed
on the function f, in order to be able to obtain existence results.
Such a situation has been considered recently by C. Fabry [4] for
P = 2 and his results find thus here a generalization to equations
involving a p-Laplacian. The conditions (9), (10), mean that the
rectangle [a4, by]x[a—_, b_] touches two successive Fuétk curves. This
can be considered as a case of double resonance (at least when a, =
a—, b+ = b_).

Another situation concerns the case where one of the numbers
by,b- in (3), (4) becomes infinite, allowing the function f to grow
at a superlinear rate. For example, we will allow b_ to go to infinity
and replace (7), (8) by the conditions

1 1 T

(12) ai/” * al/? < nmp ’
| p (n+1)my
(12) b < E N

which can be interpreted as forcing the infinite rectangle [a4, by] x
[a—, 4+00) to lie between two successive Fuéfk curves. Problems of
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that type have been considered by C. Fabry and P. Habets [5] for
p = 2, .

In section 2, we introduce and recall some properties of the func-
tions sin, and cosp, whose definitions can be found in [1],[2]. The
function cos, is used in section 3 for defining a change of variable
that plays a key role in our study of equations with a p-Laplacian.
In section 4, we express the number of revolutions in the phase-plane
of solutions of (1), (2) by means of integrals. Section 5 is devoted to
~ existence results concerning the case where a4,a_, by, b_ verify the
equalities (9), (10); conditions of Landesman-Lazer type are intro-
duced there. The proofs are based on the invariance by homotopy
of the topological degree and make use of a count of the number
of revolutions, of possible solutions, in the phase-plane. In section
6 , we establish some preliminary results for the superlinear case.
Roughly speaking we prove that, if zf(t,z) is positive and bounded
away from O for large |z|, then a solution of (1) cannot escape to
infinity without having an infinite number of zeros. This result is
then used in section 7 in order to get an existence theorem when a..,
a-, by verify (11), (12).

2. The function siny.

The solution of the homogeneous differential equation
(13) (@p(u)) + Dp(u) =0

will play a major role in the sequel. Equation (13) can be solved
by direct integration; one of the solutions is the function sin, whose
definition, given in [1],[2], is recalled below. Define the number mp

by
(-1)l/? ds
| w,_2/0 [1-sp/(p—1)/P "

Let the function w : [0,7,/2] — [0(p — 1)!/?] be defined implicitly by

w(t) ds
9 b T=wemE =t

The function w will be extended to R as explained below, and the
extension will be denoted by sin,. First, we define sin, on [mp/2, ]
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by siny(f) = w(mp — t), then we define sin, on [~myp, 0] by assum-
ing that the function is odd. Finally, we extend sin, to R by 27p-
periodicity. From (14), it is easy to deduce the following relation:

(15) (p — 1)|sing (B)” + | sinp ()P = p— 1 ;

we also observe that siny(0) = 0, sin,(0) = 1, siny(mp/2) = (p—1)/7,
sing,(mp/2) = 0. We find it convenient to introduce a function Ccosp
defined by cosy(t) = sing(mp/2 —t). Obviously, cos, is also a solution
of (13) and verifies |

(16) (p — 1)| cos (O)IF + | cosp(B)P =p—1 .

We note that Huang and Metzen [6] give slightly different definitions
of 7p, sinp, cosp, the differences corresponding to changes of scales.

3. A change of variables.

Equation (1) can be rewritten as a system:
(17) ' =& (y)

(18) ¥ =-f(t,z).

In order to study such a system, we introduce a change of vari-
ables, analogous to the transformation to polar coordinates: for

p € RT\{0}, let

(19) px = pcosp(f) ,

(20) ¥ = 7" By(cos)(6) . |
The transformation is a local homeomorphism at each point (p, 0) of
the set R*\{0} x [0, 2x,), since the Jacobian of the transformation
is equal to pP~1. It can be shown that the change of variables H : -
(p,0) — (z,y) is a global homeomorphism from R*\{0} x [0, 2r)
onto R?\{(0,0)}, taking into account the fact that

p_llr_*r_loo |H(p, 8)|| = +o00 , uniformly in @ .

Differentiating (19), (20), we obtain, since cos, is a solution of (13),

(21) pz’ = g cosy(6) + pcos,(0)¢
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(22) o =—(p— 1)p""' P/ Bp(cosy(6)) + PP~ By (cosp(6))0" -

Because &, is homogeneous of degree (p—1), the above relations can
be rewritten as |

(23) 7 = %m - %Q; l(y)e'
@ Y=0-0ly i eEe

.
" Solving with respect to ¢/, &, we get

 _p-Daytay
@) T ) + e |

J=p Wrz'd,(z) + '8, (y) .
| (p — 1)y®; ' (y) + uPzp(2) |
Since t — (z, (t),y(t)) is a solution of (17), (18) this leads to

_ ”—(p — 1)y®;(y) - 2/ (t,2)
(p — 1)y ' (y) + pPzdp(z) ’

B ()Bp(2) - 95 (1) (2 2)
(z) r=e (p—1)y®p 1 (y) + /.If’xq)p(a:)‘ '
But, from (15), (20) we see that

#Pz®p(z) + (p— Dy®;'(y) = 47| cosp(9)” + pP(p — 1) cosy(6)”
= (p - l)pp )

(26)

(27)

so that we obtain

—(p-1)y®; '(y) —zf(t,z)

(29) ¢ =u T ,

The change of variables described above will be used later in the
proof of the existence results.
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4. Number of revolutions.

In this section, we present an auxiliary result which is of inde-
pendent interest. The proof is an immediate adaptation of the proof
in [4] concerning the case p = 2.

LEMMA 1. Let z € H*(0,T) satisfy conditions (1), (2). Assume
that z2(t) 4+ 4+2/(t) > 0 for t € [0, T]. Then there exists an integer
k such that for all ay,a_ > 0, the following relations hold:

kr = g/ (p—1)2'®y(2') + zf (¢, z) '
P D%, +arady@) X

_ e [ (0= D20 +2f(t,2)
T Ji- (0—-1)2'®p(2') + a—zDp(z).

where I = {t € [0,T] | z(t) > 0} and I_{t € [0,T] | z(t) < 0}.

dt ,

Proof. Taking y = ®p(z'), we use a slight modification of the
change of variables (19), (20) taking different transformations in the
two half-planes > 0 and z < 0. For z > 0, we take ,

(31)  afPz=pcos,(6)
(32) y = —p""'p(cos,(0)) ,
whereas, for 2 < 0, we use

(33) 0Pz = pcos,(6) ,
(34) y = —p"~'®p(cos;,(6)) -

It is clear that, globally, these transformations still define a homeo-
morphism from R*\{0} x [0,27,) onto R?\{(0, 0)}. Adapting (27)
in an obvious way to (31), (32) we get for z > 0 .

_ e (0 —1)2'®p(2) — zf(t,z)
(%) 7 B a+p(P - 1)z’ Qp(zl) + ayzPp(z)

It is clear from the properties of the function cos, that, if the solution
curve ¢ — (z(t),y(t)) makes k revolutions in the (z, y)-plane, then

—kmy = /I Bty = /I Ot .
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Using (35), we then obtain

Y (p — 1)/ ®p(z’) + 2f(t,2) .
(36) knp = G+P ™ (p— 1)3;@,,?3:') + a42Pp(x) di;

similarly, we have

_ 1/ (p — 1)2'®p(2') + 2f(t,2)
U /z- 0— 1)z'¢pfxe) Ta_zb,(z)

We note that if z2(t) + z2(t) does not vanish, then the same holds
for (p — 1)z (t)®p(z'(t)) + px(t)@p(z(t)), for any p > 0.

5. Existence results and Landesman-Lazer conditions.

Throughout this section, we will assume that f:[0,T7] xR - R
satisfies Carathéodory conditions, i.e. f(:,z) is measurable on [0, T]
for all z € R, f(t,-) is continuous on R, for almost every t € [0, T.
We also suppose that there exists positive numbers a4, a—, by, b—
and a function h € L?(0, T') such that the following conditions hold:

(38) f(t,z) — a+®p(z) = —h(?)
(39) f(t,:) — Z:«P:(:) < h(t) } for all z > 0, for ae. t € [0, T,
(40) f(t,z) — a_®y(z) < h(t)

(41) f(t,z) — b_®p(z) > —h(t) } for allz < 0, for a.e. ¢ € [0, T].

As explained in the introduction, we will study here the case where
the rectangle [a4, b4] x [a—,b_] touches two successive Fuéfk curves.
The proof of Theorem 1 makes use of the following simple lemma.

LEMMA 2. Let f : [0, T] xR — R satisfy Carathéodory conditions
and the conditions (38)-(41), where h € L?(0,T). Then, we can
write f as
(42) f(ta ZB) = ‘I’p(m)’)’(t, .’B) + 'r(t,a:) ’

where

(43) ay <v(t,z) <by for x>0, for a.e. t €[0,T],
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(44) a- <v(t,z) <b_ for z <0, for a.e.t €[0,T],
r satisfying Carathéodory conditions with

(45) |r(t,z)| < h(t) for all z, for a.e.te[0,T].

Proof. We imtroduce the function 6, defined for u < v, by

u if z<u
6(u,z,v)={ z if u<z<w
v if z>v

Let us define (¢, z) and r(t,z) by

6a+ft” ,bt forz >0,
Y(t,z)=14 6 #"%,b‘ forz <0,

a” ' o, (x
0 forz=0,

r(ts z) = f(t:x) - QI"’(m)')'(t’ 27) .

It is clear from the definition of y(t,z) that (43), (44) hold. On the
other hand, (45) results from the inequalities (38)-(41). ¢

THEOREM 1. Let f:[0,T] x R — R satisfy Carathéodory condi-
tions. Assume that there erists positive numbers ay,a_,by,b_ and a
function h € L*(0,T) such that the conditions (38)-(41) are fulﬁlled
and that there exists n € N such that

1,1 _ T
a_l,_/p o/?  nmp’
1 1T

b g at Dy
Assume moreover that, for any non-trivial solution ¢ of the problem
(46) (2p(z)) + 04 Bp(z*) —a-Bp(z™) =0

(47) z(0) = z(T), #'(0) =2'(T) ,
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the inequality
“ o< /¢>o (lﬂifg [f(t,2) — a4y (-'v)]) o(t)dt
+-/¢<o (I;T.E‘:?[f (t,z) — a—q’p(“’)]> o(t) dt

is satisfied. Similarly, assume that for any non-trivial solution ¢ of
the problem

(49) (@(@)) +b48,(2*) —b_By(s7) = 0

G0 2 =a), O =),

the inequality | ,

6y o> [ (tmsupls(t,2) - b, 85(@)]) wit)at
+ (hmmf[f(t z) — b-@,(m)]) #(t) dt

holds. Then problem (1), (2) has a solution.

Proof. Taking py = 5’2—‘“"*:, p- = “‘;b‘, it is clear that
T < 1 n 1 < T
(n+ mp pi_/P p/P nmp

Consider the family of problems
(52) (B5(@)) + AP+Bp(z*) — Ap_By(z™) + (1 — N[ (t,2) = 0

(53) 2(0) = z(T), 2'(0) =2'(T) ,

where A € [0,1]. It is easy to show with the above definition of
pt and p~ that, for A = 1, the above system has only the trivial
solution.

By classical arguments from the theory of the topological degree,
the theorem will be proven if we can find a priori bounds in H'(0,T)
for the solution of problem (52), (53), independently of A € (0,1)
(notice that the degree for A = 1 is odd; the proof, based on Borsuk’
theorem, can be found in Lemma 4.3 of [1]).



PERIODIC SOLUTIONS OF SECOND ORDER etc. 217

By contradiction,suppose that there exists sequences {z;}, {\;}
with ||zl 10,7y — 00, Aj € (0, 1), such that z; is a solution of (52),
(63) for A = A;. This means that

(54) (®p(25)) + Aip+Bp(z]) — Aip—Bp(27) + (1= Aj) f(t,25) = 0.

Let u; = z;j/||z;||;; using the decomposition of Lemma 2, we
obtain

(55)  (®p(u})) + Ajp+-Bp(u]) — Ajip-Dp(uy)

HL= (6 23)Bp ) + (1= A} 2 Z) g,
' ”xJI H1

As observed in [1], the problem of searching for T-periodic so-
lutions of (1), (2), is equivalent to finding solutions in H(0,T) of
the equation £ = Rp(®,(z) + f(-,z)), where R, is a completely con-
tinuous operator from L2(0,T) into H(0,T). Since the Nemytskii
operator F : C[0,T] — L%(0,T) : z(-) — f(-,z(-)) is continuous,
solutions of (1), (2), satisfy z = Rp(®,(z) + F(z)), where the right-
hand side of this equation defines a completely continuous operator
from H(0,T) into itself. Thus, solving (52) is equivalent to search-
ing for z € H'(0, T) such that

(56) = =,R¢(<I>p(x) + ApyBp(zt) — Ap_Bp(z™) + (1 — V) f(-, z))

and, similarly, (55) is equivalent to

67 w5 = Ro(@p(u) + AipsBy(uf) — Asp-By(us)

+HL= A)(625) 85 () + (1 = Ay 2] )
;] H1

Without loss of generality, we can assume that \; converges to
some A € [0,1]. Since ¥(¢,z) verifies the conditions (43), (44), the
functions (-, z;(-)) are essentially bounded in [0,T] with a common
bound, so we can assume, passing if necessary to a subsequence, that
they converge weakly in L?(0,T) to some function I'(-). Moreover
the argument of Ry, in (57) is bounded in L2(0,T). Since R, is a
completely continuous operator, passing to a subsequence, we can
assume that {u;} converges strongly in H'(0,T) to a certain map
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u. Since ||uj||gn = 1, we have |lu||g2 = 1. On the other hand, the
functions u — ®,(u) and u — ®,(u*) being continuous in C[0, T,
letting j go to infinity in (57) yields

(68) u = Rp(®p(u)+ Ap+§,(u+) —Mp_®p(u~) + (1 = N)T(t)Pp(u)).

Therefore u satisfies

(59) (®p(w)) + Ap4 &, (ut) — Ap_®p(u™)+
| +(1 — AT (t)®p(u) = 0,
(60) u(0) =u(T), w'(0)=4'(T).

As ||u||g1 = 1, u cannot be the trivial solution of that homogeneous
problem, and consequently we will have u?(t) + u%(t) # 0, for all
t € [0,T]. By Lemma 1, we then have, for some integer k,

(61) knp =

o [ BT HboiSyla) + (L NIOB ],
0 (- DS, @) Fasud(w)

and also
knp =
e [ (= DUBp() +ubps@y(ut) + (1 - NIOB(w)]
t U (p — D)u'®p(u’) 4 byudp(u) )

Since a4 < py < by, and ay < I'(t) < by for ae. t € I, we
deduce from the above relations that

af,_/’mes (I*) <kmp < b_l,_/”mes (I4) .
A similar argument leads to
a/Pmes (I_) < kmp < bPmes (I_) .

Combining the above inequalities and using the fact that mes (I_)+
mes (I,) = T, we obtain

1 1 T 1 + 1
b-l+/p bl_/p = kmp ~ ai/p al_/p
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The assumptions (9), (10) then imply that K = n or k = n + 1.
Moreover, going back to (61) and a similar equation on I_, we see
that, if kK = n, we must have

Ap+ + (1= ANI(t) =a4, ae.on Iy
and
Ap- +(1=ANI'(t) =a—, ae.on I_

This means that u must be a solution of (46), (47) Slm11arly, if
k =n 4+ 1, u must be a solution of (49), (50).

Let us assume for the sequel that k = n, the case where k = n+1
being treated in a similar way. Going back to the sequence {z;} we
can assume, passing if necessary to a subsequence, that z; makes n
revolutions in the phase plane. Using Lemma 1 again, . we have

(62) Ty =

o/ / (p — 1)Z;®p(2}) + 2 [Mjps Bp(z}) + (1 — Xj) (2, 25)] ”
+ z;>0 (p— 1)1:9@1,(3:;.) + a4 2;Py(z;)
or, using the fact that p4 > a4

(63) nmwp > a_l,_/ Pmes{t € [0,T] | z;(t) > 0}

1= 2)alr? / [/t 25) — a4 Dp(z]))]wjdt
04 0 (o= 1)z ®y(z}) + as1zi®p(z;)

Combining the above relation with the corresponding result ob-
tained by working on the set {t € [0,T] | z;(¢) < 0}, we get

11
Gy

| £(t,35) — a4 8y(a}) — a8, @)l
- AJ)-/O (p — 1)z Pp(z5) + a+3’;fq’p($f) + a.jx;@p(a:;)

By (9), it then follows that

dt .

lim inf

j—o0

dt<0.

/T [£(¢,7;) — a1 Pp(z]) — a_Bp(z)]u;
(p — 1)uj®p(u}) + ayuf ®p(uf) + a_uj Bp(u})
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Because of inequalities (38)-(41), we can apply Fatou’s lemma,
which gives

[ imint (6 25) - — a48,(s]) - a-By(z; us)ie <O,

j—+00
taking into account that the quantity
(p— DU/ (OBp( (1)) + a4 u* (O Bp(ut (1)) + a-u™ () Bp(u™ (1))
. is constant -o_n [0,T], since u is a solution of
| (@p(w))’ +a4Bp(ut) — a_By(u") =0
It then follows that

/uso (“mmf[f (t,2) - a+<I>p(m)1) u(t)dt |

—»<400

+ (lim sup[f(t,z) — a-@,(z)]) u(t)dt <O0.
u<

0 \ z2—-00

But the last inequality contradicts condition (48), ending the
proof in the case k = n. ' o

6. A priori bounds in the superlinear case.

The study of the superlinear case is based on an auxiliary result
for which we will not restrict ourselves to equation (1), but will
consider a one-parameter family of equations

(65) (®p(2')) + F(t,z,2) =0

We will assume that F is defined on R x R x [0, 1] and is continuous
in its first two variables.

- LEMMA 3. Assume that F(-,-, )) is continuous on R x R, for all |
A € [0,1]. Assume that there ezists a number n > 0 such that
(66) l'ix|ninf(sgn Z)F(t,z,\) >0, uniformly in (¢, ) .
z|— 00 _ v
Then, for any p > 0 there exists R > 0 such that, for any solution

z : [to,w] — R of (65) with w > to, |z(to)| = R, z'(to) = 0, and
|z(w)|P + (p — 1)|2’'(w)|P < pP, there exists t; € (to, w) such that -
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a) =z has at least two zeros in [tg, 1],
b) for allt € [to, t1], [z(¥)IP + (p — 1)I2(2)P > P,
©) |zt 2 p, 2'(t1) =0.

Proof. Take € € (0,7/2). As in [5], it is possible to build con-
tinuous non-decreasing functions g, h such that, for all (¢,z,)) €
R xR x [0, 1],

g(z)+e< F(t,z,\) < h(z) —¢,

g and h being defined in such that a way that g(z) = 7/2 for large
positive values of z, and h(z) = —7/2 for large negative values of z
(for instance, remember that F(t,z, ) — € becomes larger than 7/2
for large positive z). Define then the convex functions' G, H by

T z ‘
Clz) = /0 g(u)du ; H(z) = /0 h(u)du .
It is clear that |
(67) G(z) <H(z)forxz >0, G(z) > H(z) forz < 0.
Moreover, since g(z) = /2 for large positive values of z, we have
hm G(:z:) +00, and similarly hm H(z) =
In the (z, y)-plane, let B, = {(z,y) | |zl° + (p — D)|yl’ < p°}. Let ¢

be defined by L

—4+ =1

D 4q
Choose K > 0 such that for all (z,y) € B,,

1 1
5|qu + H(z) < K, Elqu +G(z)< K .
Let a < 0 be such that H(a) = K; such a number does exist, since
H(0) = 0, and lim;—,_ H(z) = +00. Define next curves I'y, I'; in
the (z, y)-plane by:
1
Iy ={(z,y) | Elyl" + H(z) = H(a), y = 0}

Iy ={(z,9) | %lyl" +G(z) = G(a), y < 0}
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Figure 1: The curves I'; and T’y

The curves I'; and I'; clearly lie outside the set B,. Possible
curves are shown in Fig.1. Since the function H is convex, for any
y € R, these are at most 2 points z;, 3, such that (z1,y) € I'y,
(z2,y) € T1. The same holds true for I';. Clearly, there exists
B > p, such that H(B8) = H(a). There also exists v > p, such that
G(v) = G(a) > H(a). since G(z) < H(z), for z > 0, we will have
v > B. Now, let z be a solution of (65) defined on [tg, w] with w > to;
that equation can be written as a system

(68) ' =37 (y)

(69) v =-F(t,z,)) .

If the curve t — (z(t),y(t)) crosses I';, the crossing must be from
the “inside” towards the “outside”. Indeed, along solutions of (68), -
(69), we have, for y > 0

% (%lyl" + H(m)) = -y 'F(t,z,)) + h(z)®, ()

= y?lh(z) — F(t,z,\)] >0,

showing that, at points of I';1, the vector field associated to the differ-
ential system (68), (69) points outwards. A similar result holds for
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I'2. It can also be shown (the details are left to the reader) that the
vector field cannot “enter” at the point (a,0). Moreover, the vector
field points downwards along the half-line {(z,0) | £ > v}. This
results from the fact that, if a solution curve crosses that half-line at
a point z > v, we have

Y =-F(t,z,)) < —g(z) < —9(7)

where g(v) > 0 (since otherwise, we would have G(vy) < 0). Conse-
quently, if z : [to, w] — R is a solution of (65) with w > to, z(tp) > 7,
Z/(tp) = 0, we see that the curve t — (z(t), y(t)) must circle at least
once around B, before crossing the segment {(z,0) | 8 < z < v} and
entering the set B,. |

A similar construction takes place for solutions z with z(t) < 0,
z'(tg) = 0. Hence, choosing R large enough, the conclusion follows.

¢

By iteration of Lemma 3, we can prove the next lemma.

LEMMA 4. Let F be as in Lemma 8, Then for any n € N, and
any po > 0, there exists a number Ry > 0 such that for any solution
z : [to,w] = R of (65) with to < w, |z(to)| = Ro, z'(to) =0,
either |z(t)|P + (p — 1) |2/ (t)|P > pf for all t € [to, w],
or = has at least 2n zeros on an interval [to,t,] C [to, w] and, for all
t € lto, tn], 2P + (0 — DI Q)P > 4. |

As observed in [5], the above lemma can also be rephrased as
follows.

LEMMA 5. Let F be as in Lemma 3. Then for any n € N, any
po > 0, there exists a number Ro > 0 such that if z : [to,w] = R isa
solution of (65) with |z(to)|P + (p — 1)|z’(to)|P < ph, having at most
2n zeros, we have for all t € [to, w],

Iz + (p— DI () < RY .

Lemma 5 shows that under condition (66), an a priori bound can
be found for the solutions of equation (65) which enter the set B, at
some time £o and have less than a given number of zeros.

The lemmas 3, 4, 5 have been written using the norm [|z|P +
(p—1)|y|9] in the (z, y)-plane. Any other norm could obviously have
been used in the statement of those lemmas.
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7. Existence results for the superlinear case.
Our existence result for the superlinear case is as follows

THEOREM 2. Let f : [0,T] x R — R be continuous and such
that f(0,z) = f(T,z) for all z € R. Assume that positive numbers
@4,a-,b_ exist such that

| 168 (o f,2)
™ sl cma i <.,
(71) | a- < l;r_r}_xgg "fI’(pE ))

the limits being uniform in t. If, for some integer n € N, the in-
equalities

1 1 T
1
(11) al/P + af,/” < np ’
(12) B < (n+ 1)z T

hold, then (1), (2) has a solution.

Proof. For ) € [0, 1], define the function F' by
F(ts z, A) = )‘f(ta iE) + (1 - ’\)[a+q)1’(m+) - a_<I>,,(:z:')] )

by T-periodicity in ¢, that function will be extended to R x R x [0, 1].
As in Theorem 1, we use degree theoretic arguments to prove the
existence of at least one solution. However, instead of working with
the H1l-norm, we will search here for a priori bounds in the sup-norm
for the solutions of

(72) (®p(z')) + F(t,z,\) =0

(73) 2(0) = z(T), 2'(0) ='(T) ,

the a priori bounds being independent of A € (0,1). Since the in-
equalities (11), (12) still hold when a small positive constant is added
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or subtracted to a4, b4+, a— we can, without loss of generality, replace
(70), (71), by the stronger assumption that, for some contant K > 0

(74) - a+lzlP — K < zf(t,z) <bylzf’ + K,
forallz >0, forallte R,

(75) a_|z|P — K <zf(t,z),forall z <0,forallt e R .

Let z be a solution (72), (73) such that for some tg € [0, T, |z(to)|P +
(p—1)|2'(to)|P > R5. We will show that such a solution cannot exist
if Rp is large enough. For that purpose, we will use the change of
variables of section 3, or more precisely, use (31), (32) in the half-
plane z > 0 and (33), (34) in the half plane £ < 0. Assume that z
is a solution of (72), (73); letting I, = {t € [0,T] | z(t) >0} and
I_={te[0,T] | z(t) <0}, we have, by the results of section 3
(see (36), (37)),

(p —1)a'®y(2') + zF(t, 2, )

_ i/p
(16)  kmp=ai” | T 17%,(@) T aatu(m)
_ ’
e kmy = o [ (0—1)2'®(z') + zF(t,z, N) dt

- (p—1)2'®p(z') + a—xPp(z)

We will find a priori bounds for the solutions of (72), (73) distin-
guishing 2 cases, depending on the number of zeros of the possible
solution in [0,T]. In the sequel, the number 7 is the integer appearing
in hypotheses (11), (12).

1st case: The solution z has at most 2n zeros in [0,T). Take po
large enough so that '

nmw 1 1 K
(78) £ + <l-=.
T a_l,,/” al/? o

Since a4+ and a- are positive, its results from (70), (71) that
(sgn z) f(t,z) and consequently also (sgn z) F(t,z, ) will become
positive for |z| large and bounded away from 0. Hence we can apply
Lemma 4. Since the solution z is assumed to have at most 2n zeros
in [0,T), a number Ry can be found using Lemma 4, such that, if
|z(ts)| > Ro, 2'(to) = 0 for some ty € [0,T] then

alz(@)F + (p - DI’ O)F = g
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and |
a-|z()° + (p = )I' )P = AF ,
for all t € [0,T]. If k is the number of revolutions of the curve
t — (z(t),y(t)), in the phase plane, we have, by (76),
zF(t,z,\) — a3 xPp(z)
1)z'®y(2') + a4 2Pp(z)

kmp = aXPmes(I*) + al/”/ =

from which follows, using (74) that

79) k> a/Pmes(1t) — al/? Emes(I"‘) .
_ p=04 ‘ + 2
Similarly, by (75) and (77), we obtain
(80)  kmp 2> aY pmes(I‘) al/” —mes (7).
oh

Combining (79) and (80), we get

+ 21-—=5;
T ( ai_/v al_/p) h’
confrontation with (78) shows that k > n, leading to a contradiction.

Hence we conclude that la:(t)l < R, for all t € [0, T, if = has at most
2n zeros in [0, T7).

2nd case: The solution z has at least (2n+2) zeros in [0,T). Take
po large enough so that

(n+)mp 1 K
81 >14—.

Since the solution is assumed to have at least (2n+2) zeros in [0, T'),
using Lemma 4 again, a number Ry can be found such that if for
some tg € [0,T], |z(to)] > Ro and z'(tp) = 0, then

bylz(®)IF + (p— D)z’ ()P = g for all t € [0, T7] .
Using (74) and (76) (with a,. replaced by b,), this leads to

(82) kmp < BY/P mes (I*) + b_l,_/p—;—(gmes (I+)
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implying that

(83)

krpal?; < mes (I*) (1+%) ST(I+%) :

But, because of (81), this would imply that k£ < (n+ 1), leading to a
contradiction. Hence we must have in this case also |z(t)| < Ro for

all ¢ € [0, T). ¢
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