EXISTENCE OF SOLUTIONS FOR DiFFERENTIAL
INCLUSIONS WITHOUT CONVEXITY (*)

by FRANCESCA PAPALINI (in Perugia)(**)

SOMMARIO. - In questo lavoro otteniamo due teoremi di esistenza per in-
clusioni differenziali. Nel primo teorema proviamo una condizione per
l’esistenza di soluzioni del problema di Cauchy: ' '
z € F(z)+ f(t,z), z(0) = £, ove “F” ¢ un operatore multivoco di R" e
“f7 é una perturbazione monodroma. Questo risullato contiene i Teo-
remi di esistenza conseguili in {41 e [1]. Nel secondo teorema studiamo
l’esistenza di soluziont il lema pitu generale:

z € F(z) + G(t,z), z(0) = £, ove “G” ¢é una perturbazione multivoca.

SUMMARY. - In this note we obtain two existence theorems for differential
inclusions. In the first theorem we prove a condition for the existence
of solutions to the Cauchy problem: .
z € F(z) + f(t,z), z(0) = &, where “F” is a multivalued operator of
R" and “f” is a singlevalued perturbation. This result improves the
ezistence Theorems obtained in [4] and {1]. In the second theorem we
study the eristence of solutions for the more general problem:
z € F(z) + G(t,z), z(0) = £, where “G” is a multivalued perturbation.

1. Introduction.

In the study of the existence of solutions to the Cauchy problem

. t € F(z)
*) {z(0)=e,

where “F” is a multivalued operator of R", the conditions imposed
on “F”, in order to obtain existence Theorems, are of two kinds:
regularity conditions on the multifunction “F” (such as continuity,
upper semicontinuity, lower semicontinuity, ...) and conditions on

(*) Pervenuto in Redazione il 20 aprile 1993.
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Via Vanvitelli 1, 06100 Perugia (Italy).
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the values of “F” (such as convexity, compactness, ...). It is known
(cf. [4]) that the only conditions of upper semicontinuity on “F”
and compactness (without convexity) on the values of “F” are not
sufficient to have solutions for (*). Therefore, in order to have an
existence result in the context in which “F” is an upper semicon-
tinuous multifunction with compact values, it is necessary to make
additional assumptions on “F”.

In 1989 A. Bressan, A. Cellina and G. Colombo (4] have obtained
_ an existence Theorem for the problem () in the case which
F:R*" - 2R isan upper semicontinuous an cyclically monotone
multifunction with compact not necessarily convex, and non empty
values.

Later in 1990 F. Ancona and G. Colombo [1] have studied the
following “perturbed” problem

e F(:z:) + f(t,z)

where F : R* — 2R” iglike in [4], and f : R xR™ — R" is a function
that satisfies the conditions:

B) for every z € R™, £ [(t,z) is measurable;
~ BP) for ae. t €R, z+— f(t,z) is continuous on R";

BBB)Im € L*(R,R) such that

If(t, z)|| < m(t), forae.teR, forallze ]R" .

The result obtained in [1] contains the result of [4], as a particular
case.

In the first part of this paper we consider the problem (1) to prove |
the existence of a solution under weaker assumptions than those
which are assumed in [1]. In fact, for us, as for F. Ancona and G.

Colombo, F : R* — 2R" is an upper semicontinuous and cyclically
monotone multifunction with compact and non empty values, while
f:[0,b] x R — R" satisfies the conditions 8), 88) and
BBB)w 3p €]1,2[ and 3h € L7([0,B),R) N L ([0, 3], R),

such that ||f(t,z)|| < h(t), for a.e. t € [0, 8], for all z € R™.
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It is obvious that every function “f” satisfying the assumption
BBB) satisfies also the condition 888)., but there exist (cf. here,
Remark 3) functions “f” that verify the condition 8), 88), 868)w
that do not satisfy the assumption 838).

In the second part of this note we obtain an existence theorem
for the Cauchy problem:

/ z € F(z) + G(t,z)
1 {w(O) e,

where F : R® — 2R" is an upper semicontinuous and cyclically
monotone multivalued operator with compact and non empty values
and G : [0,b] x R® — 2R” is a multifunction with the properties:

i) G(t,z) is non empty, closed and convex, V(t,z) € [0, b] x R™;
ii) Vz eR", t+— G(t, z) is measurable;

iii) Vvt € [0,}], z — G(t,z) is lower semicontinuous and it has
closed graph;

iv) 3p €], 2[ and FheL?([0, 5, R) N L2, ([0, 8], R), such that
lyll < h(t),Yy € G(t,z), for a.e. t € [0,b] and for all
z € R™.

In order to obtain this existence result we first prove a proposition
that is a sufficient condition to get Caratheodory’s selections for a
multifunction. This proposition extends a Caratheodory’s selection
Theorem stated by G. Bonanno in 1989 (cf. [3, Theorem 3.1]), in the
sense that there exist multifunctions that satisfy the conditions of
our proposition that do not satisfy the assumptions of the Theorem
of G. Bonanno (cf. here, Remark 4).

2. Let [a, b] be an interval of the real line and u the Lebesgue measure
on [a,b]. For z € R™ and £ > 0 we set

B(z,e) = {y e R" : ||y — z|| < &}, where || - || is the Euclidean norm
in R" endowed by the scalar product (-,-) and given a subset A of
R", we put B(A,¢) = {z € R" : p(z, A) < €}, where
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p(z, A) = inf{|ly —z|| : y € A}. If 1 < p < +00, we put
2, (a,0,R") = {z:[a,b] — R": “z” is measurable in [a, b]
d
and / lz()|Pdt < 400, Ve,d €la, b}
c

wiP([a,b], R") = {z:[a,b] = R": “z” is absolutely continuous
on [a, b] and such that & € L?([a,b],R™)} @ .

A function V : R™ —» R U {400} is said to be “proper” if
D(V) # 0, where D(V) = {z € R" : V(z) < +o0}. If “V” is proper,
convex and lower semicontinuous, the multifunction 8V : R" — 2]R
defined by

V(z) ={y eR": V() - V(z) > (y,¢ —z), VE€R"}, Vz eR",
is called “sub-differential” of “V™.

REMARK 1. It is known (cf. [5, Example 2.3.4]) that the sub-
differential “GV” of a proper, convex, lower semicontinuous function
«[/” is a monotone maximal operator and D(8V) C D(V), where
D(8V) = {z e R" : 9V (z) # 0}.

A multifunction F : R* — 2R" is called “lower semicontinuous
(upper semicontinuous) if

Vz € R™ and Ve > 0 there exists § > 0 such that

F(z) c B(F(y),€) (F(y) C B(F(z),€)), Vy¢€ B(z,9).
Moreover “F” is said to have “closed graph” if the set
GrF = {(z,y) e R" xR" : y € F(z)}
is closed in R™ x R™.
Let A be the o-algebra of Lebesgue measurable subsets of R";

the multifunction“F” is called “measurable” if for any closed subset
C c R", we have

{zeR":Fz)NC #£0} € A.

(1) W1([a,b],R™) is the space of absolutely continuous functions on [a, 8].
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The multivalued operator “F” is said to be “cyclically monotone” if
for every cyclical sequence

Zo,T1,...-, TN = To

and for every sequence y1,...,yn such that y; € F(x;),
i=1,...,N, we have

N
Z(Ui,xi —2i_1)20.

i=1

REMARK 2. We recall that (cf. [5, Theorem 2.5]) “F” is cycli-
cally monotone if and only if there exists a proper, convex, lower
semicontinuous function V : R® — R U (4-00) such that

F(z) c 8V (z),Vz e R™ .

3. We consider the Cauchy problem

(1) { z € F(z) + f(t,z)
z(0) =§{ €R",

where F : R* - 2R is a multifunction and f : [0,b) x R®™ — R" is
a function which verify respectively the properties:

a) F(z) is non empty and compact, Vz € R™;

aa) “F” is upper semicontinuous;

aaa)“F” is cyclically monotone;

B) Vz € R", the function ¢~ f(t,z) is measurable;

| BB) for a.e. t € [0,d], the function z — f(t,x) is continuous on
n.

BBB)wIp €]1,2 and 3k € L7([0, 8], R) N L2, ([0, 8], R) such that
| f(t, z)|| < h(t), for a.e. t € [0,b] for all z € R™.
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By a solution of our Cauchy problem we mean an absolutely con-
tinuous function “x” that satisfies (1) a.e. :
Our existence result is the following

THEOREM. If “F” and “f” satisfy the conditions a), ca), caa)
and ), BB), BBB)w respectively, then there exist T > 0 and a solu-
" tion z : [0,T] — R™ of the Cauchy problem (1).

We start by observing that from a) and aa) it is possible to find
two positive real numbers R and M such that

lyll < M, Yy € F(z) and Vz € B, R) . (3.1)
By ﬁﬂﬂ)w it is possible to find a positive number 7', non greater
than b, with the property: ’
T
/ (h(t) + M)dt <R . (3.2)
0

Now, we are going to introduce a sequence of functions defined
in [0,T] and we will prove that a subsequence converges to a solution
of the Cauchy problem (1).

We consider the sequence (Zm)m, Zm : [0,7] — R", putting

zm(0) = §,
+/i;/mf (s,mm (z%)) ds + (t - z%) Ymyi »

Zm(t) = ZTm (z%)
te [i%,(i+ 1)%—:] ,

where yp,; € F (xm (z,—'ﬁ-)), vie {0,1,...,m—1}.
For every m € N let be I, 0 = [0, %;—] and I, = ]i—g—;, (i+1)%]. :

Vi € {1,...,m — 1}; now we set:
6my ¥m 2 [0,T] — [0,T] and fm, gm : [0, T] — R", where

T
Sm(t) = i%;-, (=G + 1) Vi€ I, Vi € {0, 1,...,m ~ 1};

fm(t) = f (t,mm( T)) s gm(t) = Ymi

1—
m
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VtelIn,Vie{0,1,...,m—1}

Let k : [0,T] — [0,T] be the function defined putting k(t) = t,
Vt € [0, T]. It is easy to prove that

(6bm)m and (Ym)m converge uniformly to “k” . (3.3)
Moreover, by construction, we have

gm(t) € F (zm (6m(t))) ,Vt € [0,T],Vm € N , | (34)

Zm(t) =€+ lot(fm(s) + gm(s))ds, Yt € [0, T, -Vm eN, (3.5)
and, by using (3.1), (3.4), (3.2) and 888)w, it is trivial to prove that
lgm(®)ll < M, ¥t € [0,T], Ym e N . (3.6)

Then, taking (3.5), 888)w, (3.6) and (3.2) into account it follows
that

(zm)m is equibounded in [0,T] .
Now, by (3.5), we obtain that

Em = fm +9gm a.e. in [0,T7) and Vm e N, (3.7
hence, by BBB)w and (3.6), we get

l&mllLoor) < H, Ym €N, (3.8)

1
where H = (fT(h(e) + M)dt) " .
Moreover, by using Hélder’s inequality and (3.8) it is easy to see
that '
(Zm)m is equiuniformly continuous in [0,77] .

Hence, by taking Arzela-Ascoli Theorem and the Theorem 3.27 of
[6] into account, it follows that there exist a subsequence of (Zm)m,

still denoted by (zm)m, and an absolutely continuous function
z : [0, T] = R" such that

(zm)m converges uniformly to “z” (3.9
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and
(&m)m converges weakly inL?([0,T],R") to “z” . '(3.10)
Since (cf. here, (3.3) and 66))
(fon)om converges to £(-,z(-)) a.e. in [0,T] , (3.11)
by taking 888). into account, we have that: |
(fm)m convergeé in I/"([O,T],]Rﬂ to f(-,z(-)) . - (3.12)
On the other hand, from (3.7), (3.4), (3.3) and (3.9) we get

m_p((@m(®), &m(t) — fm(®)), GrF) <
< lim ||zm(t) —zm(6m(t))|| =0, a.e.in[0,T].(3.13)

m—<4-00

From aa), (3.9), (3.10), (3.12) and (3.13), it follows that the mul-
tifunction “coF” and the sequences (Zm)m and (Zm — fm)m satisfy
the assumptions of the Convergence Theorem 1.4.1 of [2], and then

£(t) € coF (z(t)) + f(t, z(t)) ae. in [0,T] ;

hence, by using aaa) there exists (cf. here, Remark 2) a proper,
convex and lower semicontinuous function V : R® — RU {400} such
that :

#(t) € OV (z(t)) + f(t,z(t)) , ae.in[0,T]. (3.14)

Now, we fix a closed interval J = [¢,d] C ]0,T; by using B806)w it
follows that

fmo f(3() €LXURY), VmeN.  (315)
Since (cf. here, (3.7), B8B)w and (3.6))

4 1/2
|Emll L2y < (/; (h(t) + M)2dt) , VmeN, (3.16)

we have, from (3.10) and Theorem 2 of [8, p. 222], that

(&m)m converges weakly in L2(J,R") to “¢” , (3.17)
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and so ¢ € W13(J,R").

Therefore, by Lemma 3.3 of [5] (cf. here, (3. 14) and (3.15)), it
follows that the functlon t — V(z(t)) is absolutely continuous in J,
and

;‘;V(z(t)) = (2(t) — f(t,2(¢)), £(8)), 8.e. in J .
By integrating we obtain
V(@) V(@) = [ I6(s)Ids [ (7(s,a(s)),4(6))ds . (318)
On the other hand, by aaa) and (3.4) we get

Viom((+ D 1) = V) 2 (imen(l +1)5) - xma%}))
Vt € I;, Vi€ {0,1,...,m~1}andVm e N .. (3.19)
Since (cf. here, (3.7), (3.15) and (3.16))

<1Im,i,-'3m((i + 1)%) — mm(i%)> -

G+1)T/m .
= ( Ym,i» / Em(s)ds ) =
iT/m

e [ (8) = fn(8), ()5 =

iT/m

(G+1)T/m . 9 GE+1)T/m
= [ Nem(@NPds = [ (f(), ()
iT/m iT/m

Vi e {'ym(c)%,...,ém(d)ﬁ,- - 1} and ‘v’m eN,
by adding in (3.19) with respect to i in {ym(c)%,...,0m(d)F —1}

we obtain
V(@Zm(6m(d))) — V(zm(wm(c))) 2

> [:;‘;’) lom(@)Pds = [ " fn(s), 3m(s))ds,¥m € N . (320

¥m(c)

Now, by taking (3.9), (3.3) and aaa) into account, from Propo-
sition 2.12 of [5] we get

iV (2m((6m(d))) =V (zm(m(c))) = V(2(d)) - V(z(c)) (3.21)
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Moreover, the convergence of (fm)m to f(.,2(.)) in L2(J,R") (cf.
here, 838)w and (3.11)) and the convergence of (&m)m to “c”-in the
weak topology of L2(J,R"™) (cf. here (3.17)) imply

d d
i [ m() am(s))ds = [ (F(s,2(), 20 . (3:2)
Then, by using (3.20), (3.22), (3.21) and (3.18) we obtain
l’lnf_li’il‘l’lg lEmllz2csy < I2lL20y

and so (cf. here, (3.17) and Proposition 3.30 of [6, p. 52])
(Zm)m converges strongly in L*(J,R™) to “i” .

Hence (¢f. [6, Theorem 4.9, p. 58]) there exists a subsequence of
(£m)m, still denoted (Zm)m, which converges pointwisely a.e. in J
to “z”. Since “GrF” is closed (cf. here, a), aa) and Proposition
1.1.2 of [2, p. 41]) taking (3.13) and (3.11) into account, we have
that |

z(t) € F(z(t)) + f(t,z(t)) a.e.in J

that is the function z : [0,7] — R" (cf. here, (3.9)) satisfies the
differential inclusion of the Cauchy problem (1) almost everywhere
in J.

- From the arbitrary choice of J, it follows that

Vs € N, 3 a closed interval J, C ]0,T[, u([0, T]\Js) < % ,

such that &(t) € F(z(t)) + f(¢,z(t)) a.e. in Js.
Now putting D = [J,eN Js, We obtain

z(t) € F(z(t)) + f(t,z(t)) a.e. in D,

and u([0, T]\D) = 0. Therefore, since £m(0) = £, Vm € N, finally it
follows that “z” is a solution of our Cauchy problem.

REMARK 3. We observe that our proposition contains the ex-
istence Theorem of F. Ancona and G. Colombo [1]. In fact, it is
obvious that if f : R x R" — R" is a function satisfying the condi-
tion iii) of [1] then it satisfies our assumptions 8), 88), BBB)w (cf.
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[8, Theorem 6, p. 101]). On the other hand, there exist functions
“f” that satisfy the conditions 8, 58), 868)\ that do not satisfy the
hypothesis iii) of [1], as it is evident from the following

EXaMPLE 1. f:[0,1] x R — R is the function defined by

[ % (=2)e J0,1] xR
f(t,a:)—{ 07; (t,z) e {0} xR.

4. In this section we consider the Cauchy problem

ay { # € F(z) + G(t,z)
z(0)=¢eR™

where G : [0,b] x R" — 2R" is a suitable multifunction.

First, we prove the following preliminary proposition that is a
sufficient condition to get Caratheodory’s selections for a given mul-
tifunction.

PROPOSITION. Let G : [0,5] x R® — 2R pe ¢ multifunction with
the properties:

i) G(t,z) is non empty, closed and convez, (¢, z) € [0, xR™;
ii) VzeR" t— G(t,z) is measurable;

iii) Vt € [0,b], z — G(t,z) is lower semicontinuous and it has
closed graph;

In these conditions, there ezists a function g : [0,b] x R™ — R™
such that

(¥) 9(t,z) € G(t,z), V(t,z) € [0,b] x R™;
(Yy)Vz € R, t — g(t,z) is measurable;

(YY)t € [0,b], z > g(t, z) is continuous.



204 FRANCESCA PAPALINI

We start by observing that (cf. [7, Theorem 4.1]) for every m € N
there exists a closed set P, C [0,], ([0, 5]\Pm) < L, such that the
multifunction Gp_, g~ is lower semicontinuous.

Since P,, x R™ is a paracompact space (cf. [10, Theorem 4.3]),
by using Theorem 3.2 of [9], there exists a continuous function
gm : Pm x R™ — R" with the property

gm(t,z) € G(t,z), V(t,z) € Pm xR". (4.1)
We put P = [0,b]\ U,,eN Pm- By using again Theorem 3.2" of [9], it
follows that ‘ _
Vt € P there exists a continuous function ) : R™ — R", such that
M(z) € G(t,z),Yz e R",Vte P . (4.2)
Then the function g : [0, x R™ — R", defined putting:

'.ql(t:z)’ t_EPl, a:e]R",
g2(t,z), te R\P1, zeR",

g(t,z) = 1 gi(t,z), te R\U;;IIR, , ze€R",

\.)\.t.(a:), te P, zeR".
satisfies the conditions (), (¥¥), (¥¥) (cf. here, (4.1) and (4.2)).

REMARK 4. We observe that the above proposition extends a
Caratheodory’s selection Theorem due to G. Bonanno (cf. [3, Theo-
rem 3.1]) in the sense that there exist multifunctions that satisfy the
conditions of our proposition that do not satisfy the assumptions of
the Theorem of G. Bonanno, as it is evident by taking the following
example into account. |

EXAMPLE 2. G : [0,1]xR? — 9R? i5 the multifunction so defined:

G(t,z) = .

{ {y = 1, 92) €R%: 90 = |iz]l}, (t,2) € R\QN[0,1]) x R?
{y = (y1,92) €R?: g2 = |lzf| + 1}, (t,2) € (QN[0,1]) xR?.
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Finally, by using the above Proposition and our existence Theorem,
it is easy to deduce the following

COROLLARY. Let F:R" - 2R pe o maultivalued opemtbrnsatis-
fying the conditions a) aa), aca) and G : [0,b] x R™ — 2R pe ¢
multifunction with the properties: i), ii), iil) and moreover:

iv) 3p €]1,2[ and 3h € L*([0,}],R) n L2 ([0, }],R),
-such that ||y|| < h(t), Yy € G(t,z), for a.e. t € [0,}
and for all z € R™. :

In these conditions, there exist T > 0 and an absolutely continu-
ous function z : [0, T] — R™ that is a solution of the Cauchy problem
(. |
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