DUAL GOLDIE DIMENSION(*)
by A. HANNA and A. SHAMSUDDIN (in Beirut)(**)

SOMMARIO. - Si fa uso del processo di dualizzazione nella categoria degli
R-moduli per provare alcuni teoremi riguardanti 1 moduli di dimen-
sione duale di Goldie finita, che hanno il loro corrispondente nel caso
dei moduli artiniani. In particolare si da un teorema di struttura per
i moduli complementati di dimensione duale di Goldie finita. Come
applicazione ai gruppi abeliani, si prova poi che gli Z-moduli di dimen-
sione duale di Goldie finita sono esattamente gli Zi-moduli artiniani.

SUMMARY. - We make use of the dualization process in the category of
R-modules to give a few theorems about modules of finite dual Goldie
dimension that have their familiar counterpart in artinian modules. In
particular, we give a structure theorem for complemented modules of
finite dual Goldie dimension. As an application to abelian groups, we
prove that Z-modules of finite dual Goldie dimension are ezactly the
artinian Z-modules.

1. Preliminary definitions and Lemmas.

R denotes throughout this article a ring with 1 # 0 and R-
modules are unitary left R-modules. A submodule N of an R-module
M is said to be superfluous in M, in symbols N S M, IfN+A # M
for every proper submodule A of M.

A minimal complement of a submodule A of an R-module Misa
minimal member of the family of all submodules X of M such that
X+A=M.

Minimal complements do not always exist; an R-module M is
therefore defined to be complemented if every submodule of M has
a minimal complement in M. It is easy to see that B is a minimal
complement of a submodule A of M if and only if A+ B = M and
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AN B < B. The following property of minimal complements is
easily verified:

Let X be a submodule of an R-module M. If X is a minimal
complement in M, then for all submodules U of X, X/U < MU

implies X = U. Conversely, if M is complemented and X/U <
M/U implies X = U, then X is a minimal complement in M.

An R-module M is said to be strongly complemented if for any
two submodules A and B of M such that M = A 4+ B, A has a
minimal complement contained in B.

A finite family A,,...A, of submodules of an R-module M is
said to be coindependent if A; # M and A; + Sin, = M for every
i = 1,...,n, where Sin, = NjxiA;. A family (Aj)ier of submod-
ules of an R-module M is comdependent if every finite subfamily is
coindependent.

Every family of submodules of an R-module M contains a maxi-
mal coindependent subfamily. If (N;);er is a maximal coindependent
family of maximal submodules of an R-module M, then the radical
rad M is equal to N; V;

An R-module M is said to be hollow if M # 0 and every proper
submodule of M is superfluous in M. Equivalently, an R-module
M is hollow if singletons of proper submodules of M are the only
coindependent families of submodules of M.

The following three lemmas will be used in the next section. The
proofs follow by duality and therefore will not be given.

LEMMA 1.1. Let Ay, Ao, ... be a countable family of submodules
of an R-module M. The following four statements are egquivalent:

a) The family of submodules Ay, Aa, ... is coindependent;

b) The family of submodules Ay, Ag,... A, s coindependent
for every n >1;

c) An+Sm—Mforeveryn>1
d) M=Sln+...+Snnforeveryn21.

LEMMA 1.2. Let Ay, As, ... be a coindependent family of submod-
ules of an R-module M and By, ..., B, another family of submodules
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of M such that A; C B; and B;/A; M/A; for everyi=1,...,n.
Then ﬂiB,'/ N; A; < M/ N; A;.

LEMMA 1.3. Let M be an R-module in which every family of
coindependent submodules is finite. Then for every proper submodule
A of M there exists a submodule U of M containing A such that M/U
is hollow.

2. Modules of finite corank.

In Goldie [2], a uniquely determined integer, rankM > 0 is as-
sociated with every R-module M in which every independent family
of submodules is finite. This concept of dimension has been dual-
ized by several authors [1,3,4,5,6,7] in different not always equivalent
ways. The treatment in [4,5] is based on dualizing the notion of in-
dependence associating thereby an integer, corank M > 0 with every
R-module M in which every coindependent family of submodules is
finite. To these two articles we add under mild restrictions a few
theorems that correspond to familiar statements concerning artinian
modules. The slightly modified definition of coindependence given
here permits dualizing word by word the theorems and proofs on
dimension as stated in the original article [2].

With the definition of coindependence of families of submodules
of an R-module given in the previous section, the dual of the Goldie
Dimension Theorem takes the following form:

THEOREM 2.1. Let M be an R-module in which every coinde-
pendent family of submodules is finite. Then there exists an integer
n > 0 with the following properties:

a) M has a coindependent family of submodules Uy,..., U,

such that M/Uy, ..., M/U, are hollow and U N...NU,, <
M.

b) Every coindependent family of submodules of M has at most
n elements.

c) A submoduleU of M is superfluous in M if and only if there
exists a coindependent family of submodules Uy,...,U, of
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M such that M/U,,...,M/U, are hollow and U C U1 N
...NU,. :

The uniquely determined integer n is called the corank of the
R-module M, and we write corank M = n. If M has infinite coin-
dependent families of submodules, we write corank M = oo.

The proof of Theorem 2.1 follows by duality from that of Theorem
1.07 in [2] and therefore will not be given. We point out, however,
that it requires a repeated application of Lemmas 1.1, 1.2 and 1.3.

The following remarks are easy consequences of Theorem 2.1 and
the definition of coindependence.

i)
ii)
iif)

iv)

vi)

Iéomorphic R-modules have equal coranks.
corank M = 0 if and only if M = 0.
corank M =1 if and only if M is hollow.

If N is a submodule of the R-module M , then corank M/N <

corank M. Equality holds if N < M, and if corank M is
finite, the converse holds.

If M is a direct sum of a family of submodules (V;):er then
corank M =}, corank N;.

Let M be an R-module of finite corank. If Ny,..., N, is a
maximal coindependent family of maximal submodules of
M, then 0 <r < corank M and rad M = N;n...N,. By

~ coindependence, M/radM is isomorphic to the semisimple

R-module (M/N;) ®...® (M/N,), and so the integer r is
uniquely determined and depends only on M. r is called
the torsion corank of M and will be denoted by r(M). The

equality 7(M) = corankM holds if and only ifrad M < M, -

and since M/radM is semi-simple artinian, rad M < M
if and only if M is finitely generated. It follows that the
corank of the R-module R is equal to the corank of the
right R-module R. For if either corank is finite, then it is
equal to the length of the semi-simple ring R/rad R. Hence
it makes sense to define the corank of the ring R as the
corank of the R-module R. In case R is commutative and
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corank R < oo, it follows that corank R is equal to the
number of maximal ideals of R.

vii) An R-module M of finite corank is weakly complemented
in the sense that if M is a sum A; 4+ A2 of two proper
submodules A; and A2, then there exists a submodule B of

Az such that M = A; + Band AANBS M.

Artinian R-modules are obvious examples of modules of finite -
corank. The converse is not in general true. Take , for example, R
to be a non-artinian local ring. We show at the end of this article
that Z-modules of finite corank are necessarily artinian. However,
the following result is true for any ring R.

THEOREM 2.2. Let M be an R-module. The following statements
are equivalent:

a) M is artinian;

b) corank M is finite and every superfluous submodule of M
18 artinian,

c) Every submodule of M has finite corank and every non-zero
subquotient module of M has a simple submodule;

d) corank M is finite and M/U is finitely cogenerated for every
superfluous submodule U of M.

Proof. Certainly an artinian module satisfies (b), (c) and (d).
We show that each of (b), (c) and (d) implies (a).

b) = a) Suppose that corank M = n. By Theorem 2.1, there
exists a coindependent family Uy,...,U, of submodules of M such -

that M/Uy,..., M/U, are hollow and Uy N...N Uy, < M. By coin-
dependence, there exists an exact sequence

0—UiNn...NU, — M —-(M/U))®...&d(M/U,) — 0

of R-module homomorphisms. Hence (M/U;) @ ... & (M/U,,) is

isomorphic to M/(U1N...NUy). Since Ui N...NU, < M, it
follows that every superfluous submodule of (M/U;) ®...® (M/Uy)
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is artinian. The same is true for the submodules M/U;,...,M/U,
of ( M/Uy)®...®(M/U,), and since every M/U is hollow, it follows
that every M/U; is artinian. Since UjN...NU, S M , it follows that
UiN...NU, is an artinian R-module. The exactness of the above
sequence implies that M is an artinian R-module.

c) = a) Let M/N be a non-zero quotient module of M and
prove that M/N is finitely cogenerated. It is easily seen that every
submodule and every quotient module of M satisfies property (c).
In particular, soc M/N is a non-zero finitely generated submodule of
M/N. If K/N is a non-zero submodule of M/N, then soc K/N # 0,
and so K/NN soc (M/N) # 0. Thus soc M/N is a finitely generated
essential submodule of M/N, that is M/N is finitely cogenerated.

d) = a) Let M/N be a non-zero quotient module of M. Since
M is weakly complemented, there exists a submodule K of M such
that M = K + N and K N N < M. By assumption M/(K N N) is
finitely cogenerated. Hence so is the submodule K/(K N N). Since
M/N 2 K/(KNN), M/N is also finitely cogenerated.

THEOREM 2.3. Let N be a submodule of an R-module M.

a) IfN and M/N have finite coranks, then M has ﬁm’te corank.
b) corank M < corankM /N + corankN.

c¢) If N is a minimal complement in M, then

corankM = corankM/N + corankN . (%)

If corank M is finite then the converse is also true.

d) If corank M is finite then () is true for every submodule
N of M if and only if M is semi-simple. ‘

Proof. a) Sﬁppose, to the contrary, that corank M is not finite,
and let Cy,Cy, ... be a countably infinite coindependent sequence of
submodules of M. By Lemma 1.1, the sequence

n(n —1)
2

=Cl,U2=Can3,...,Un=Ct+lﬂ...ﬂct+n,...,t=
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of submodules of M is coindependent. Since corank M/N is finite,
the sequence (N + Uy), (N + Uz),... of submodules of M is not
coindependent and so N + U, = M for almost all n. Choose n so
that n > corank N and N + U,, = M. Then M/U,, is an epimorphic
image of N, and so corank M/U, < corankN. On the other hand,
Ci+1/Un,...,Cty4n/Uy is a coindependent family of submodules of
M/U, havmg n elements, and so corank M/U, > n > corankN
This contradiction shows that corank M is finite.

b) If corank M = oo, it follows from (a) that corank N = oo
or corank M/N = oo. So suppose corank M is finite. Then M is
weakly complemented, and hence there exists a submodule K of M

such that M = N + K and NN K < M. Hence
corankM = corankM/(N N K) = corankN/(N N K) + corankK/(NNK) .

Since K/(N N K) = M/N and corank N/(N N K) < corankN, it
follows that corank M < corank M/N + corankM.

c) If N is a minimal complement in M, then K in (b) may be
chosen such that NN K <> N, and so corank N = corankN/(N N
K). Conversely, if corank M is finite and corank M = corank N +
corankM/N, then corank N is finite, and therefore NN K < N so
that N is a minimal complement in M.

d) This follows from (c) since an R-module M is semi-simple if
and only if every submodule of M is a minimal complement in M.

LEMMA 2.4. Let A; and Ay be submodules of an R-module M
such that A, C Aa. If A; is a minimal complement in M and A3/A;

is a minimal complement in M/A,, then Az is a minimal complement
in M.

Proof. Let B; be a submodule of M such that A; + By = M
and A; N B; < A; and By/A; a submodule of M/A; such that
A2+ By = M and (A2NB3)/A; S, A2/A;1. Then M = A+ (B1NBy)
and it remains to prove that A; N B; N By < As. The natural
isomorphisms

(A2 N BQ)/A] = (A2 NnBiN Bz)/(Al N Bl)

and |
Ax/A; = (AN By)/(A1 N By)
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together with (A N Bs)/A; < Aa/A; imply that
(A2N By N By)/(A1 N B1) < (A2N By) /(A1 N By) .

Hence (A2 N B1 N B) /(A1 N By) < Ax/(A1N By).
Since (A; N B)) <> A; C Ay, it follows that Az N By N By < As.

THEOREM 2.5. Let M be an R-module.

a) If corank M is finite, then M satisfies DCC on minimal
' complements. ‘

b) If M is strongly complemented and satisfies DCC on min-
tmal complements then M satisfies, ACC on minimal com-
plements.

c) If M is strongly complemented and satisfied ACC on mini-
mal complements then corank M is finite.

Proof. a) Let T} D T, D ... be a strictly descending infinite se-
quence of minimal complements in M. Then T;, is not superfluous in
M and T, /Tr+1 is not superfluous in M/Ty4; foralln=1,2,.... It
follows that there exists a sequence A;, Ag, ... of proper submodules
of M such that A, 2 Thy1 and An+ T, =M foralln=1,2,....
Then for alln > 1, we have (A1N...NAp—1)+An 2 Tn+An =M. It
follows that M has an infinite coindependent family of submodules
which is not so.

b) Let T} C T, C ... be an ascending sequence of minimal com-
plements in M. Let K; be a minimal complement of T; in M. Then
M =T, + K; = T, + K;, and so there exists a submodule K5 of
K, such that K is a minimal complement in M. By induction,
we obtain a descending sequence, K; 2 Ko 2 ... of minimal com-
plements in M. By assumption there exists an integer n such that
K, = Kny1 = .... We prove that T, = T,,4; = ... . For this it
suffices to prove that Tpy1/Tn < M/T,. So let A/T, C M/T, be
such that Ty 41/Tn+A/T, = M/T,. ThenTpy1+A=M =T, + K,
From T, 2 T, we conclude that 7,43 = T, 4+ (K N Tr41) and so
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But
K, r-]Tn+l = Kn+1 rWT‘ﬂ.—',—l - K,CM.

It follows that A = M. '

¢) Suppose, to the contrary, that corank M is not finite and let
C1,Cs,... be a countably infinite coindependent sequence of sub-
modules of M. Starting with Ag = 0, we prove by induction the
existence of a strictly ascending infinite sequence Ag C A; C ... of
minimal complements in M such that M/A, has infinite corank for
every n = 0,1... . This is clear when n = 0. The transition from
the k-th step to the (k + 1)-st step takes place as follows:

Let B1/Ag, B2/Ak, ... be a countably infinite coindependent se-
quence of submodules of M/A;. Since M is strongly complemented,
so is the quotient module M/A; of M by the minimal comple-
ment Ax. Hence M/Ay = Bi/Aix + By/Ax implies the existence
of a minimal complement Ay,;/Ax of B;/A; in M/A; such that
Ak+1/Ax C By/Ax. By coindependence of the sequence B;/Ag,
By/Ag, ..., it follows that Ay is a proper submodule of Ax,;, and
A4y is a proper submodule of Bs. By Lemma 2.4, Agy; is a
minimal complement in M and it remains to verify that corank
M/Ag4 is not finite. A straight-forward calculation shows that
Ag41+ (BiNB,) # M and

(Ar1+(B1NB))N. . N(Ag4+1+(BiNBp_1))+(Ax4+14+(B1NB,)) = M

for every n > 1, so that the infinite sequence By = Ak + (B1N Bs),
Ak41 + (B1 N Bs),...,Aky1 + (B1 N By),... of submodules M is
coindependent. Hence corank M /Ay is not finite. '

THEOREM 2.6 Let M be a complemented R-module. Then

a) corank M =n < oo if and only if M is an irredundant sum,
M = H,+...4+ H, and n hollow submodules Hy, ... H,. If
M = H{+ ...+ H], is another irredundant sum of n hollow
submodules H) ... H], then for every integer m, 0 < m < m,
there exist n — m distinct indices i1, ..., in—m such that

M=H+...+Hn+H +...+ H]

tn—m °



34 A. HANNA and A. SHAMSUDDIN

b) IfM = H; + ...+ Hy is an irredundant sum of n hollow
submodules, then

i) rad M =radH; +...+radHy,

ii) M/radM is isomorphic to the semi-simple R-module
Hy/radH, & ... ® H,/radH,. The length r(M) of
M/rad M is equal to the number of cyclic submodules
among H,,..., H,. If these are Hy,...,H, and N; =
H+...4H 1 +T;+Hyy1 + ...+ H,, where T, is
the mazimal submodule of H;, 1 < i < r, then every
N; is a maximal submodule of M, the intersection
NiN...N N, is irredundant and is equal to rad M.

Proof. a) Assume M = H; + ...+ Hy is an irredundant sum of
n hollow submodules. The mapping

f-Hi®..06H,—- M

given by
f(a:l,‘..,.,mn) =1 +...+Zy

is an epimorphism with kernel K = K; @ ... ® K, where K; =
H; N (H1 +...+Hi_1+Hiy1+... +Hn), i = 1,...n. Since the
sum H; + ...+ Hy is irredundant, K; # H; and so K; < H; for
every i = 1,...,n. It follows that K < H1&...® H,, and so corank
M = corank(H; @ ...® Hy,) =n.

Conversely, assume that corank M = n. if n = 1, then M is
hollow. So assume n > 1, By lemma 1.3 there exists a submodule U;
of M, such that M/U; is hollow. Let H; be a minimal complement
of U in M. By induction, pick at the k-th step in case M/(H;+...+
Hj._;) is not hollow, a submodule Uy of M containing H;+...+ Hg_1 .
such that M /Uy is hollow and let H; be a minimal complement of
Ur in M. By Lemma 1.3, the fa.mlly of submodules Ui,...Us is
coindependent, since

Ur+(UhN...NUk—1)) 2(H1 + ...+ He)) + (U1 N .0 Uk-1)

and by induction, this last sum is equal to M. Hence, by Theorem
2.1, this inductive process must stop for some k < n. Since corank
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M = n, it follows from the result of the previous paragraph that the
process stops when k =n. Thus M/(H1 + ...+ Hn—1) is hollow. If
H, is a minimal complement of H; +...+ H,_; in M, then H, is
hollow and the sum M = Hy + ...+ H, is irredundant.

Suppose now that M = Hj + ... + H}, is another irredundant
sum of n hollow submodules. Let G,, = Hy + ...+ H,,, 0 < m < n.
Then on the one hand M/Gm = (Gm + Hm41)/Gm + ... + (Gm +
H,)/Gm is an irredundant sum of n—m hollow submodules of M /Gy,
implying thereby that corank M/G,, = n — m. On the other hand,
M/Grn = (Gm + H))/Gm + ... + (G + H.) /G, is a sum of n
zero or hollow submodules of M/G,,. It follows that m of these
submodules may be deleted to yield an irredundant sum of n — m
hollow submodules. Thus there exist distinct indices i1, . . . in—m such
that M=Hi1+...+ Hn+ H| +...+ H]

tn—-m"

b) Since the kernel K of the epimorphism f defined in (a) is
superfluous in 1 ®...® Hy,, f maps rad(H, ®...® H,,) =radH; ®
...@radH, onto rad M. Hence rad M = radH; + ... +rad H,.
This proves (i). To prove (ii), note that the kernel of the restriction
of f torad H) @ ... ®@radH, is also equal to K and so f induces
an isomorphism from H;/radH; & ... ® H,/radH, onto M/radM.
H;/radH; = 0 in case H; is not finitely generated and H;/radH; is
a simple R-module in case H; is cyclic. This shows that the torsion
corank r(M) of M is equal to the number of cyclic submodules among
H,, ... Hy. To prove the remaining part of (ii) we may assume that
r(M) > 0. For, if (M) =0, then rad M =radH; + ... + radH,, =
Hy+...+H, = M. Forevery i, 1 < i < r, the quotient module M/N;
is an epimorphic image of the simple R-module H;/T;, and since T}
is superfluous in H; and the sum M = H,; +...+ H, irredundant,
it follows that N; # M. Hence M/N; is also a simple R-module
and so N; is a maximal submodule of M. For the same reason, the
intersection N1N...N N, is irredundant or equivalently the family of
maximal submodules N,..., N; is coindependent. The uniqueness
of r(M) implies rad M = Ny N...NN,.

The irredundant sum representation of a complemented R-module
of finite corank is generally not direct. It is direct if the R-module
M is projective. In fact, if P is any complemented projective R-
module, then rad P < P, P/rad P is semi-simple and the projection
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map P — P/rad P lifts the direct sum decomposition of P/radP
into simple submodules to a direct sum decomposition of P into hol-
low submodules. Since the endomorphism ring of a hollow projective
R-module is local, the direct sum decomposition of a complemented
projective R-module into hollow submodules is unique in the sense
of the Krull-Schmidt-Remak Theorem. Since a hollow projective R-
module is necessarily cyclic, it follows that a complemented projec-
tive R-module has finite corank if and only if it is finitely generated.

COROLLARY. If the ring R is a complemented R-module, then

a) corank R=n < o0

b) R=Re1®...®Re, =etR®...@eR, whereey,...en
are orthogonal idempotents, 1 = e1 + ... + en and every
Re;(e;R) is a hollow left (right) ideal of R.

¢) If R is also commutative, then every Re; is a local ring with
unit element e; and R is ring isomorphic to the ring product
Rel X...X Ren.

d) The R-module R is complemented if and only if the right
R-module R is complemented.

The proof is clear. We only point out that the equality of the
coranks of the R-module R and the right R-module R implies that
the right ideals e;R,...,esR are hollow. (d) permits defining the
notion of a complemented ring without ambiguity. However, the
corollary implies that the notion of a complemented ring coincides
with the notion of semi-perfectness of the ring. The same corollary
gives another proof of the left-right symmetry of semi-perfectness.

A weak point of Theorem 2.6 is the assumption that the R-
module M is complemented. Our next result shows that this as-
sumption is redundant in the case of abelian groups.

THEOREM 2.8. Let G be a non-zero abelian group

a) If G is torsion free, then corank G = oo.
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b) If corank G = n < oo, then G is a direct sum of n hollow
subgroups, and the direct summands are uniquely determined.

¢) If corank G = n < oo then G is complemented.

Proof. a) If G is not reduced, then it contains a direct summand
isomorphic to the group Q of rational numbers which is of infinite
corank. So suppose G is reduced, and let P be the set of prime
numbers p for which pG # G. Since for any relatively prime numbers
r and s, rG +sG = G and rsG = rG N sG, it follows that the family
of subgroup (pG),cp is coindependent. Hence if P is infinite, then
corank G = oo. If P is finite, then pG = G for an infinite number
of primes. Let these be p;,ps,..., and let a be a non-zero element
of G, Since G is torsion free, division in G by each of p,.ps, ... is
unique, and hence the elements Za + p,_ a, Za + p; ~2a,.. . generate
a direct summand of G/Za isomorphic to the hollow group Z(p®)
for every i = 1,2,... . It follows that corank G/Za = oo and hence
corank G = oo.

b) Let T be the torsion part of G. Slnce G/T is torsion free, it
follows from (a) that T = G. Being a non-zero torsion group, G has
a direct summand isomorphic to the hollow group Z(p*), 1 < k <
co. By induction G is a direct sum of n hollow subgroups. Being
the primary components of G, these direct summands are uniquely
determined.

c) Being a finite sum of hollow, hence complemented subgroups
G is complemented.

Theorem 4.4 may be restated as follows: \

A Z-module has finite corank if and only if it is artinian.
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