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1. Preliminaries.

Throughout (2,X, 1) denotes a complete probability space, N'( )
stands for the collection of all y-null sets, and X} — for the family of all
sets of positive y-measure. P(Q) stands for the family of all subsets of
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Q, and o(.A) - for the o—algebra generated by A C P(Q). u*is the
outer measure generated by u. The term “measure” will always denote a
finite measure. 4 is separable if T is separable with respect to the Frechet-
Nikodym pseudometric. For a given o—algebra ¥ we shall denote by mx
the set of all finite collections m, consisting of pairwise disjoint elements of
Z with strictly positive measure. 7y is a directed set if 7/ > m is defined
to mean that each element of « is, except for a null set, a union of elements
of '

X, Y will always be Banach spaces (with a few explicitly stated ex-
ceptions), and X*, Y* will be their topological conjugate spaces. B(X)
will stand for the closed unit ball of X and S(X) - for the unit sphere.
The value of a functional z* € X* on an element z € X is denoted by
z*(z) or by (z*, z), Fx is the family of all finite subsets of X and, Fy is
the family of all finite dimensional subspaces of X .

A set function v : X — X is an X —valued measure if it is countably
additive in the norm topology, |v| is its variation. FT' C X* is a set
that is total over X then v is a I’ —measure if for each z* € T the real—
valued z*v is ameasure. If X = Y* and I" = Y, then we call it a weak*—

measure. It follows from the Orlicz—Pettis theorem, that an X *—~measure
~ is an X—valued measure. If » is a Banach space valued finitely additive set
function, defined on an algebra of sets, then v is said to be p—continuous
if lim 4 gy—0 ¥(E) = 0. We shall denote it by v < u. One can show (cf
[D-U)), that if v is a measure, then v < p if and only if N( p) CN(W).
A I'-measure v is scalarly u—continuous if z*v < p forall z* € T.

N and R will denote the set of natural numbers and the set of real
numbers respectively. Br denotes the algebra of Borel subsets of the real
line, card(T") is the cardinality of I and y g denotes the indicator of a set
E. Given A C X we shall denote by conv( A) the convex hull of A and by
aco( A)-the absolutely convex hull of A. AT will be the closure of A in the
topology 7. A' is the annihilator of A and A° is the polar of A. linA is the
linear subspace of X generated by A. If T'is a topological space endowed
with a topology T, then Ba(T, T) will denote the o—algebra of Baire sets
(= the o—-algebra generated by all continuous real-valued functions defined
onT), and, Bo(T',T") will be the o—algebra of Borel sets (= the o—algebra
generated by all open subsets of T"). Inthe particular case of anormed space -
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X considered with the weak or norm topology, we shall use the notations
Ba(X,weak), Ba( X, norm), Bo(X,weak), Bo( X, norm).

2. Measures in a normed space.

This chapter contains a few basic facts about Baire and Borel measures
defined on a normed space equipped with its weak topology. We need them
mainly in order to present a characterization of some function properties
of Banach spaces (see Theorem 3-3). We start with a nice description of
weakly Baire sets discovered by Edgar [E].

Let I be an arbitrary non-empty set and let R{ be endowed with the
product topology. We denote by Hy the family of all non-empty open sub-
sets of R depending on finitely many coordinates (i.c. they are of the type
[L;er Ai, with all A; open and non-empty, and all but finitely of them are
equal to R) and by H - the collection of all countable unions of sets from
Ho.

PROPOSITION 2.1. (Bockenstein’s Theorem). If V, and V3 are dis-

joint open subsets of R, then there exist disjoint sets Uy, Ua in K with
Vi CUiandV, C Us.

Proof. If 7 is a probability measure on Bg that is positive on each
non-empty open subset of R, then its power on R gives positive measure
to each member of Hy. It follows, that each collection of pairwise disjoint
elements of Hy is at most countable. If F is a maximal family of pairwise
disjoint elements of H contained in R ! \V2, then F is at most countable
and so its union U is in H. The inclusion V; C U is a consequence of the
maximality of F. U, = RY\U depends on countably many coordinates, so
itis in 7, contains V3 and is disjoint with V. Applying the same procedure
to V1 and U, we get the required U; D V. &

COROLLARY 2.1. Let Y be a dense subset of R and Vi, V> be two
disjoint open subsets of Y. Then, there exist disjoint elements U, and U,
of Hwith Vi CUy and V, C U,.

Proof. Since Y is dense in R! any open sets W;, W, in R{ with
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WinY = Vi, W2 NY = V; are disjoint. It is enough to apply Proposition
2.1, ¢

PROPOSITION 2.2. Let Y be a dense subset of R!. Then, the Baire
o-algebra of Y is generated by the coordinate functions.

Proof. Let E be the o algebra generated by the restrictions to ¥ of the
coordinate functions and, let g be a continuous real-valued function on Y.
Fix a € R. Then Corollary 2.2 implies the existence for each n € N of
disjoint sets Uy, U, in H with

UsNY 2 {yeY :g9(y) >a+27"}

UnNY D {y€eY:g(y) <a+27"}

Hence {y : g(y) > a} = U2, U» NY € E, and this proves the measura-
bility of g. &

THEOREM 2.1. (Edgar) Let X be a locally convex space. Then,
Ba(X,weak) is the a-algebra generated by the continuous linear func-
tionals.

Proof. If I is a Hamel basis of X*, then ( X, weak) is linearly home-
omorphic to a dense subset of R and so the assertion follows from Propo-
sition 2.2. | ¢

Applying the Hahn-Banach theorem and the above result we get .

COROLLARY 2.2. IfY is a linear subspace of a locally convex space
X, then Ba(Y,weak) is the trace of Ba( X ,weak )onY.

DEFINITION 2.1. Let X be a normed space. A measure 7 on
Ba(X,weak) is scalarly degenerated if there is a proper closed linear sub-
space Y € Ba(X,weak) withn(Y) = n(X).

It is an immediate consequence of the Hahn—Banach theorem that 7
is scalarly degenerated if and only if there is a closed hyperplane H in X
of full measure.
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PROPOSITION 2.3. Let X be a normed space and n be a scalarly
non-degenerated probability on Ba( X, weak ). Then the topology of con-
vergence in measure n and the weak*—topology coincide on B(X*).

Proof. If (z3) C B(X*) is n-ae. convergent, then there is 1 €
B(X™) such that z},(z) — z}(z) for each z € X. To see this, observe
that the set {z € X : (z}(=))Z, is convergent} is a closed subspace of X
of full measure and so, it has to be the whole space. Define z3 : X* — R
by setting z3(z) = lim,, z};(z). Clearly 3 € B(X*).

It follows, that each n—Cauchy sequence (z}) C B(X™*) is weak*
convergent.

Thus, the convergence of sequences in measure yields the weak*—
convergence. As the -convergence is metrizable on B(X*) it is stronger
then the weak*-topology on the unit ball of X *. Since two compact com-
parable topologies coincide, to get the conclusion it is enough to show, that
B(X*) is compact in the topology of convergence in 7—measure.

To do it take an arbitrary sequence (z}) C B(X*) and set f(z) =
1 + sup, |z3(z)|, for each z € X. f is measurable with respect to
Ba(X,weak) and the sequence (z7,/ f) is uniformly bounded. According
to a theorem of Komlos [K] there is an increasing sequence (n) of natu-
ral numbers and a measurable function h such, that for each subsequence

(m,)

4

lim—l- :z:;k‘(z)=h(a:)f(a:)
PP

n-a.c.
According to the first part of the proof, there is z*((m,)) € B(X*)
with
.
im — )zl (z) = z"((m,))(z)
PP
everywhere.
In virtue of the scalar non-degeneration of 7 there is 2§ € B(X*)

such that z*((n,)) = zj for each sequence (n,). Hence, for each se-
quence ( n,)

.1 a * *
lim =3 "z}, (2) = 55(2)
PR
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everywhere.

It follows, that (z5,) is pointwise convergent and hence also in mea-
sure. ¢

COROLLARY 2.3. If there is a scalarly non—degenerated measure on
Ba(X,weak), then X is separable.

DEFINITION 2.2. Let X be a normed space, 7 be a probability on
Ba( X, weak) and

Ly= ﬂ{L : L is a closed linear subspace of X and n(L) = 1} .
If Ly, is of outer measure 1 then 7 is said to have a linear support.

LEMMA 2.1. If X is a normed space, 1 is a probability on
Ba(X,weak ) possessing a linear support then 1| Ly is scalarly non-dege-
nerated. '

Proof. Suppose L is a proper closed linear subspace of Ly with
n|Ly(L) = 1. Then, according to the Hahn-Banach theorem, there exists
a non-zero functional zj € Ly such that n|L,{z € L, : z3(z) =0} = 1.
Let z* be an extension of z to the whole X. Then
{z€X:2%(2)=0}NLy={z€Ly:z5(z) =0} and so
n{z € X : 3*(z) = 0} = 1. It follows, that z*|L, = O and this contra-
dicts the choice of zj. K

DEFINITION 2.3. Let (T,T) be a completely regular topological
space and let A be a o—algebraon T such that Ba(T, T) C A C Bo(T, T).
A measure 7 on A is said to be 7-smooth if for any family (U,) € A of
open sets stable under finite unions and such that | J, U, € A the equality
sup, 7(Uas) = n(J, Us) holds. A measure 1 on A is Radon if for each
A € A and each positive &, there exists a compact set K C A such that
7°(K) > n(A) —e.

It is known, that a Baire measure 7 is 7—smooth if and only if for each

net (Z,) of zero sets decreasing to the empty set one has
lim, 1(Zs) =0 (cf.[W]).
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THEOREM 2.2. (Tortrat). Let X be a normed space and 71 be a mea-
sure on Ba( X ,weak) possessing a linear support. Then Ly is separable
and 1 has a unique T-smooth extension to Bo( X ,norm). If X is a Banach
space, then m has a unique Radon extension to Bo( X, norm).

Proof. The separability of L, is a consequence of Corollary 2.3 and
Lemma 2.1. Together with the fact that the balls in a separable space are
weakly Baire this yields the equality Ba( Lyq,weak) = Bo(Ly,norm).
Hence v = n|Bo( Ly, norm) is -smooth. Setting #( B) = v(B N Ly) for
norm Borel subsets of X, we get a 7-smooth measure on Bo( X, norm).
If X is a Banach space then # is Radon.

Since in virtue of Corollary 2.2 the g—algebra Ba( Ly, weak) is the
trace of Ba( X, ‘weak) on Ly, the measure 4} is an extension of 75 to
Bo(X,norm). /

To see the uniqueness, consider another 7—smooth extension #; of n
to Bo( X, norm). Since both measures are 7-smooth on Ba( X , weak ) and
the o—algebra of weakly Baire sets contains the cylinder basis of the weak
topology of X, we have #); (U) = #(U) foreach weakly open U. Itis clear
that a similar equality holds for all weakly closed sets, and so in particular
for L,,. It follows, that the two extensions coincide on Bo( X ,horm). &

COROLLARY 24. If X is a normed space and 7 is 7-smooth on

Ba(X,weak), then n admits a unique T—-smooth extension to
Bo( X, norm).

Proof. Each 7-smooth measure has a linear support. &

COROLLARY 2.5. If X is a Banach space, then each T-smooth mea-
sure on Ba(X,weak) is Radon on Ba(X,weak ) and admits a unique
Radon extension to Bo( X, norm).

In particular, we get the following result:
COROLLARY 2.6. Let X be a normed space. If n is T-smooth on

Bo (X,weak ), then there is a unique T—smooth extension of 1 to
Bo(X, norm). If X is Banach, the extension is a Radon measure.
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DEFINITION 2.4. A completely regular topological space (T, T) is
called measure compact if each Baire measure on it is 7—smooth. Itis called
strongly measure compact if each Baire measure is Radon.

The main part of Corollary 2.5 can now be formulated in the following
manner:

COROLLARY 2.5°. (Tortrat) If X is a Banach space, then (X, weak)
is measure compact if and only if it is strongly measure compact.

To have an idea what spaces are measure compact, we prove the fol-
lowing

THEOREM 2.3. Let X be a Banach space. If (X, weak) is Lindeldf,
then it is measure compact. In particular weakly compactly generated
(WCG) Banach spaces are measure compact.

Proof. Let (X,weak) be Lindelof. If Z, \, @ and Z, are zero sets,
then there is an increasing sequence (ay,) such that N2, Z, = @. Hence,
1(Za) — 0, where 17 is a weak Baire measure on X.

Assume now, that X is WCG and take a weakly compact set that is

linearly dense in X. Then, there exists an increasing sequence (W,) of

weakly compact sets such, that U2 ; W, is dense in B(X). For a sequence
c€NNandk €N let

Al = [\ (Wagm +27"B(X™))
n<k

(o(n) is the n-th coordinate of o). and
= ﬂ Ak
k=1

As X is a closed subspace of X**, we have A, C X. Moreover, since W,
and B(X**) are weak*—compact, we get the weak*—compactness of A¥

- and the weak compactness of A,. The density of U Wy in B(X) yields

the inclusion B(X) C U;As;.
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Take now a family U of weak*—open subsets of B(X™**) covering
B(X). Assuming, that I/ is stable under finite unions, we can find for each
o an element U, of U, such that A, C U,. Since B(X**) \Uy is weak*—
compact, there is k(o) € N with AX®) C U,. Indeed, if A*\U, # @ for
each k € N, then the convergence A* \, A, yields the finite intersection
property of {A; : k € N}, and then we would have A,\U, # @, contra-
dicting the choice of U,. Since there are only countably many sets of type
A¥9, B(X) is covered by countably many elements of /. This proves,
that (X, weak ) is Lindelof, and so it is measure compact too. ¢

3. Measurable functions.

Three forms of measurability — strong, weak and weak* — form the
core in this section.

DEFINITION 3.1. A function f : Q — X is called simple if there
existzy,...,z,in X and Ey, ..., E, € X such that

f= ZmiXEi .

=1

A function f : Q — X is called strongly y—measurable if there exists
a sequence of simple functions f,, : Q@ — X with

lim, ||fo(w) — f(w)||=0 p—-ae..

DEFINITION 3.2. Let T be a linear total subset of X*. A function
f 1 Q — X issaid to be I -u—measurable, if z* f is u—measurable foreach
g € I'. T = X*, then f is called weakly u—measurable. If X = Y*
and I' =Y then f is called weak*—u—measurable.

If u is fixed the reference to it will be supressed. This will concem
also all further definitions.

The following theorem explains the relationship between the strong
and weak measurability.

THEOREM 3.1. (Pettis’ measurability theorem) A function
f:Q — X is strongly u—measurable if and only if
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(i) f is weakly u—measurable, and

(ii) f is u—essentially separably valued, i.e. there exists E €¢ N (u) such
" that f(Q\E) is a separable subset of X .

Proof. Assume that f is strongly u—measurable and
W =Tin Uy, fa(Q\N), where N € N(p) is such that f, — f poitwise
on Q\N. Then, f(Q\N) C |J;2; 7/+(Q\N) C W and so we get (ii).

To prove the necessity of (i), note that f,,(w) — f(w) for almost all
w € Q guarantees that z* f, — z* f for almost all w € Q too. Since each
z* f, is simple, z* f is measurable.

To prove the converse, observe first that we may assume X to be sep-
arable. Let D = (z,) be a countable dense subset of X and B,(z) be the
ball in X with center at = and of radius r. With the help of the Hahn—Banach
theorem choose for each z,, a functional z;; € X* such that ||z%|| = 1 and
Tp(Tn) = ||z4||- It easily follows that || f(w)|| = sup,, |z f(w)| for each
w € Q. Therefore the function ||f(-) || is u-measurable. By the same argu-
ment the functions ||f — z,|| are measurable. In particular f~1( B,(z)) €
Z foreach z € X and positive r. Fixr > 0. Since X = |2, B,(z,),
there is o, € N with p(Q\U,g,, 7' [Br(za)]) < 277, The simple

function g, : Q — X defined by

gr(w) = {m‘ if w€ fBr(2)1\Ujcicn f [ Br(z)]

0 otherwise

satisfies the inequﬁlity [|f(w) — ge(w)]|| < r for all
w € Er = Uiqy, 7' [B(2:)]. f E = lim inf , E} /,, then u(Q\E) = 0
and lim g, /, = f on E. ¢

DEFINITION 3.3. We say that two I'-p—measurable functions
f.9:Q — X are I -u—equivalent if z*f = *g p—a.e. foreach z* € .
T = X*, we say about weakly—pu—equivalent functions and, if X = Y*
andI" =Y then f and g are said to be weak*-u—equivalent. Two strongly
measurable functions f and g are y—equivalent if f = g u—a.e.

EXAMPLE 3.1. A weakly measurable function that is not strongly
measurable but is weakly equivalent to a strongly measurable function.
Let V C [0, 1] be an uncountable set and let {e; : ¢t € [0,1]} be the -
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canonical basis for the nonseparable Hilbert space [2([0,1)]. Define

fv : 10,11 — ([0, 1]) by fir(t) = e; whenever ¢ € Vand fy(t) =0
otherwise. It is a consequence of the Riesz Representation Theorem that
z*f = 0 A-a.e. foreach z* € [,([0,1])* (ie. f is weakly A—equivalent
to the zero function). On the other hand, if E C [0, 1] is such that V\E
is uncountable then fi,(V'\E) is nonseparable. Therefore, if V) >0
then fy is not essentially separably valued, and so — in virtue of Theo-
rem 3.1 — fy is not strongly A-measurable. If V is taken to be a non—
measurable set (e.g. the Vitali set) then [l fr(®)|] = xv(t) and so the func-
tion ||fy|| : t — ||fv(£)|| is not measurable either. O

The fact that a weakly measurable function may have nonmeasurable
norm causes a lot of troubles in the theory of weakly measurable functions,

EXAMPLE 3.2. (Ryll-Nardzewski) A weak*—measurable function that
is not weakly measurable and not weak*—equivalent to any weakly measur-
able function. Define f: [0,1] — C*[0,1] by f(s) = §,. f is obviously
weak*-A-measurable, since for y € C[0, 1], we have (y, f(3)) = y(s).
To see that f is not weakly measurable denote by 7. the atomic part of
n € C*[0,1], and let V be a non-)\—measurable subset of [0,1]. Define
™ € C*™ [0,1] by **(n) = 1,(V). Since z*( f) = xv the function f is
not weakly measurable with respect to ).

Since C[0, 1] is separable, f is not weak*—equivalent to any weakly
(hence also strongly) measurable function.

It is worth to notice that the norm of f is a measurable function. &

EXAMPLE 3.3. (Hagler) A weakly measurable function that is not
weakly equivalent to a strongly measurable one. Let (Ay) be a sequence
of nonempty subintervals of [0,1], such that:

@ A1 =1[0,1]
(ii) An = A2n, U A2441 foreachne N,

(iii) AiNA;j=0ifi¥# jand2 * <i,j < 271,
(v) limy, A(A4y) = 0.

Define f : [0,1] — I, by f(t) = (xa,(t)) fort € [0, 1] and take
any 1 € l3,. Let m be its countably additive part and 7, be the purely
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finitely additive part of 5. m; is givenby n1(E) = ¥, 5 7({n}) and so

(1) = m(f(1) + m(f(1)) = ZXA,(t)m({n}) +m(f(1)) .
n=1

m1 f is obviously measurable. To prove the measurability of 7, f itis enough
to show that 3,10 13 |m2f(t)] < oo, since this yields i, f = 0 \ -
ae.. To do it, take arbitrary distinct points t;,...,t in [0,1] and let
Bi={neN :t € A}, i=1,...,k Cleardy, f(t,) = xB,- It fol-
lows from the properties of the sequence ( 4,,) that there is an m such that
the sets B;N{m,m+ 1,...},i=1,...,k; are pairwise disjoint. Since 7,
vanishes on finite sets we get the following inequalities:

k
00 > [Im|| = [m|(Q) > ) Im(B;n{m,m+1,..})|=

i=1

k k
= Zlﬂz(Bi)l = zl‘nz(f(t,-))l .
i=1 i=1 :

This proves the weak measurability of f.

We have to prove yet that f is not weakly equaivalent to a strongly
- measurable function. Since [, is separable it is enough to show that f itself
is not strongly measurable. This follows from Pettis’ Meaurability Theo-
rem. Indeed, if \(E) > O and ¢, s are two distinct points of E then there
isnsuchthatt € A, but s € A,. Hence ||f(2) = f(s)||=1 ¢

The above example suggests the question about characterization of
those Banach spaces which have the property that each weakly measur-
able function is weakly equivalent to a strongly measurable one. Such a
characterization was discovered by Edgar [E]. Let us consider first a single
function.

THEOREM 3.2. Let f : Q — X be a weakly measurable function.
Then, f is weakly equivalent to a strongly measurable function if and only
if the image measure f(u) : Ba(X,weak) — R is Radon.

Proof. Assume, that f is weakly equivalent to a strongly measur-
able h : Q — X. LetY be a separable and closed subspace of X -
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with uh=1(Y) = 1 and let 5 : Bo(Y,norm) — [0, 1] be given by
n(A) = ph~1(A). Being a measure on a Polish space, n is Radon, so
that given € > 0 and Borel A C V¥ there is a norm-compact set K C A
such that n( K) > n( A) —e. Since f and g are weakly equivalent, one can
prove with the help of the Stone—Weierstrass theorem, that pof=poh
p—a.e. foreach ¢ : X — R, that is measurable with respect to the o—
algebra of weakly Baire subsets of X. Hence, if B € Ba (X, weak) and
B D K, then

Fu)(B) = fg xB(F(w)) p(dw) =

_/Qxé(h(w))#(tﬁu) =n(B) > u(A) —¢.

Thus, f(p)*(K) > p(A) — €. Since K is weakly compact, f(u) is
Radon.

Conversely, assume that f(u) is Radon on Ba( X, weak). According
to Theorem 2.2, there is a Radon extension 7 of £( 1) to Bo( X, norm), and
so there is a separable closed subspace Y of X with n(¥) = 1. If X [ is
the measure algebra of (Q,X, i) then define ¢ : Bo(Y, norm) — X m
by setting ©(B) = [ f~!(B')],, where [ C],, is the p—equivalence class of
C, and B' € Ba(X, weak) is such that B = ¥ N B'. Since w(Y) =
1, v is well defined. Moreover, ¢ is a Boolean o-homomorphism of
Bo(Y , norm) into X /.

It follows from Sikorski’s point-mapping theorem [Si, 32.5], that there
exists a function g : Q — Y such that g~! Bo(Y,norm) C T and
[97'(A)1, = (A) for all norm—Borel subsets of V.

In particular, if A € Ba(X, weak) then

(07 (DL =197 (ANY)]y = p(ANY) = [F(A)],

and so f and g are weakly equivalent. &
As a direct consequence of the above theorem, we obtain

THEOREM 3.3 Let X be a Banach space. Givenany (Q,X , ), each
weakly measurable f : Q — X is weakly equivalent to a Strongly mea-
surable function if and only if (X, weak) is measure compact.
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Proof. If (X, weak) is measure compact, then it is strongly measure
compact by Corollary 2.5°. Hence, Theorem 3.2 yields the equivalence
of every weakly measurable X —valued function to a strongly measurable
function.

Conversely, take now a measure 7 on Ba( X , weak). Then the identity
function f(x) = z is — by the assumption — weakly equivalent to a strongly
measurable function, and so f(n) = 7 is Radon, by Theorem 3.2. &

DEFINITION 3.4. A function f : Q — X is T —scalarly y-bounded
provided there is M' > 0 such that for each z* € T the inequality |z* f| <
M||z*|| holds u-a.e. IfT' = X* then we say about scalarly u—bounded
function, and in the case of X = Y* and ' = Y — about weak*—scalarly
p-bounded function.

An easy calculation proves that if f : Q — X is strongly measurable
and scalarly bounded, then it is bounded (i.e. there is M > O such that
sup{||f(w)||: w € Q} < Mp-ae.).

The following fact permits often to reduce the general situation to the
case of scalarly bounded functions.

PROPOSITION 3.1. If f : Q — X is T —measurable then there exists
a non-negative measurable function go; with the following properties:
(i) For each z* € T we have [(z*, f(w))| < of (w)||z*|| p-ae.,
(i) 5 (W) < [IfWir (= sup{|(z", f(w))| : * € T N B(X"}
u—a.e.,
(iii) If ¢ : Q — [0, 00) is a measurable function satisfying (i) and (ii)
(with ¢, replaced by ¢), then o < ¢ p—ace. .

Proof. Considerthe set Q xR endowed with the o—algebra g(Z x L),
and the product measure 4 x &, where & is any probability measure on
L such that N(k) = N(X). Let S(z*) = {(w,s) : [{z*, f(w))| >
sl|z*||} forz* € T, and let @ = sup{(p x s)[UZ; S(z)] : z2 €T N
B(X*), ne N}. Since a < oo there are 3}, 1%,... € T N B(X*) such
thata = (px k) [Uz; S(z;)]1. Now, itis enough to put o = sup,, |23 1|,
where the supremum is taken pointwise. . ¢

COROLLARY 3.1. If f : Q — X is T —measurable, then there -
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exists a sequence of T —measurable and I'—scalarly bounded functions

fo : Q — X, such that f = > m1 fn and the supports of fn — s are
pairwise disjoint.

Itis easy to give an example of a weakly bounded function that is not
bounded. It appears however that the situation can be more complicated.

EXAMPLE 34. (Edgar) A scalarly bounded function which is not
weakly equivalent to a bounded function.

LetTo = {0,1}" and T = Y2, Tn. Let Q = {0,1}N. We con-
sider Q with the ordinary product c—algebra and the Haar measure . For
w = (w;) € Q, define w|n € T, to be the sequence (wy,...,w,) and a
seminorm on loo(T") by ||z}, = lim sup,, |Tpn -

Let (ay)uen be a collection of numbers such that ay > 1. For each
T € loo(T") define N(z) = sup,,(||z|, aw||z||, } and let

X={z€lo(T) : N(2) < oo}

It is obvious that co(T) C X and that N (-) coincides on ¢ (T") with the
supremum norm.

Consider now a function f : Q — [ (T") defined by

f(w) = (y)her

where y; = 1 if t = w|n for some n € N, and y: = 0 otherwise. Since
N(f(w)) = a, forallw € Q, f takes its values in X. We have (T =
W(T) + (7). If * € [1(T") then clearly z* f is measurable. Take now
z* € cg(T) with||z*|| < 1 and consider ndistinct points wy ... ,w, € Q.

Let k € N be such that all elements w) |k, ..., w,|k are distinct. It
follows that for each i < nand m > k there is exactly one t; € T, such
that y}. = 1, where f(w;) = (v} er. Thus, if (e1,...,e,) € {-1,1}~,
then for ¢ € {J;,_ T only one component in the sum $°7 eiyiag! is
non-zero.

Hence,

n o0
1D asewil <lif te | )T
i=1 m=k
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It follows, that for z* € c(T) we have
n
Ix*(z agleif(w))| < 1.
i=1
Setting g; = sgnz* f(w;) we get the inequality
n
> gtz flw)| < 1.
i=1

Hence,

Ea;1|:r*f(w)| <1

we
and 5o z* f(w) # O for at most countably many points. It follows that z* f
is measurable. Observe, that X has a countable separating set of function-
als (the evaluations at the points of T"), so two scalarly equivalent functions
are equal y-a.e. If one chooses (a,,) such that y*{w : a, > n} = 1 for
every n € N, then clearly p*{w € Q : N(f(w)) > n} = 1and fis
not bounded. Since for z* € cf(T") we have |2*f| = 0 py-a.e. and for
z* € L (T) wehave |z*f| <1 p-a.e., f is scalarly bounded. &

In connection with the above example one can pose the following

PROBLEM 1. Which Banach spaces X have the property that for each
(Q,XZ,u) and each scalarly bounded and weakly p-measurable
f : Q — X there exists a bounded weakly y~measurable g : Q — X that
is weakly equivalent to f?

PROBLEM 2. Suppose each weakly A-measurable and scalarly \—
bounded f : [0,1] — X is weakly A\—equivalent to a bounded weakly
A-measurable g. Is it so foreach (Q,X,u)?

It appears that weak *—scalarly bounded functions behave much better.

PROPOSITION 3.2. If f : Q — X* is weak*-scalarly bounded
and weak *-scalarly measurable, then it is weak*—scalarly equivalent to
a bounded function.
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Proof. Let pbe alifting on Lo,() and let p( f) : Q@ — X* be defined
by {(z, o(f)(w)) = p({z, f))(w) forallz € X andw € Q (cf [I-T] for
details). Assume that for each z € X the inequality Iz, f)] < M||z|
holds p—a.e. Hence |(z,p(f))| < M]||z|| everywhere. This shows that
p(f)(w) € X* and ||p( f)(w)|| < M forallw € Q. It follows from the
properties of p that f and p( f) are weak *—equivalent. ¢

PROBLEM 3. What is the largest set ' C X* such that each I'—
scalarly bounded and I' —measurable function is I'—equivalent to a I'-
measurable bounded function? What is the set in the particular case of

X = Y*? Is it the union of all weak* closures in Y** of the countable
subsets of Y'?

4. Pettis integral.

DEFINITION 4.1. Let T be a linear total subset of X*. A function
f 1 Q — X is T'—scalarly u-integrable if z*f € L(u) for each z* €
. IfT = X* then f is called scalarly p-integrable and in the case of
f:Q — X*andT' = X C X*, the function f is said to be weak*—
scalarly y—integrable.

DEFINITION 4.2. A T -scalarly y-integrable f : Q — X is I-p—
integrable if for each E € X there exists v;( E) € X such that

a:*yf(E)=/I:Ja:*fdu

for each z* € T'. The set function v; : £ — X is called the indefinite
I"—integral of f with respect to , and vy(E) is called the T —integral of
f over E € X with respect to u. An X*-integrable function is

called Pettis p—integrable and an X —integrable function (if f:Q —= X*
and I' = X)) is called weak*—u—integrable (or Gelfand p—integrable). If
f: Q—X is considered as an X **-valued function then its weak* integral
in X** is called the Dunford integral. It is clear that each I' —integral is
uniquely determined and it is an additive set function (provided it exists).
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Sometimes, we shall use the following notations: P — f g fdp, weak*—

fEfdp and D — fEfdp,.
- I f:Q — X isscalarly y—integrable, then T : X* — L(p) will
be defined by T¢(z*) = z*f.

It is one of the main problems in the theory of vector integration to
find conditions guaranteeing the existence of the Pettis integral. We shall
start with two well known results.

PROPOSITION 4.1. (Gelfand) Each weak *—scalarly u—integrable
f:Q — X* is weak*—u—integrable.

Proof. Forafixed E € L define T : X — Li(p) by T(z) =
(=, f)xE. Itis easily seen that T has closed graph and hence — in virtue of
Banach’s Closed Graph Theorem — T is continuous. Thus,

| /E (z, f)du| < /E (=, Hldu = [ITC)]| < 1T 1]

and so the mapping z — [(z, f)du is a continuous linear functional on
X and defines and element v¢(E) € X* satisfying the required in the
- definition equality. &
As an immediate corollary we get the following fact

PROPOSITION 4.2. (Dunford) Each scalarly p—integrable function
f : Q — X is Dunford u—integrable.

If X is reflexive then the Dunford and Pettis integrals coincide. When
X is not reflexive, this may not be the case.

EXAMPLE 4.1. A Dunford integrable function that is not Pettis inte-
grable. Define f : (0,1] — ¢ by

f) = (2X(2—1,1](t),22X(2—2,2—1](t),---,Z"X(z—',z—w](t),---) .

If z* = (0!1,0!2,...) € l; = ¢*, then

oo 1 s
f= )l xamge wd [ 160 <3l < 0.
=

n=1
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It follows from Proposition 4.2, that f is Dunford \-integrable. On the
other hand, it is easily seen that foreach E € L

D— / fd={2MENQ,1D,...,2"MEN2,27™1]),.. }.
. _
In particular

D- fdh=(1,1,1,...,1,..) ¢ co
(0,1]

and so f is not A—Pettis integrable. &
Itis clear that two I" -equivalent functions are either both I' -integrable
or none of them is. In particular the function fy considered in Example 3.1
is Pettis integrable with v, (E) = 0 foreach F € Z.
But there are also non—trivial examples of Pettis integrable functions.

EXAMPLE 42 Let f be the function considered in Example 3.3.
Since || f(t)|| < 1 everywhere, f is Dunford integrable and foreach E € L

_[En(f)dk=/ém(f)dk+/;nz(f)dk=fEZl:XA,.m({n})dA=

= Y m{mPMENAn) = (m,(MEN 4n))) .
n=1
The last equality follows from the fact that lim, A( A,)) = 0 and so

v(E) = (M(ENA,)) € c. But 7, considered as a functional on [,
belongs to cg and so 1 v(E) = 0 foreach E € X. It follows that

'/En(f)dk = (1, (M ENAn)))
and so f is Pettis A—integrable. &

It follows directly from the definition of the I' —integrability that the
I'—integral is a I'—measure. If I' = X* then much more can be proved.



196 KAZIMIERZ MUSIAL

THEOREM 4.1. If f is Pettis u—integrable, then v; is a p—contintious
measure of o-finite variation. Moreover |vs|(E) = [gosdu for each
E € I (we put here oy instead of p¥" for the simplicity).

Proof. The fact that vy is an X—valued measure is a consequence of
the Orlicz—Pettis theorem, since z*vs(E) = [5(z*, f)d) and so z*v; is
countably additive.

If E € X, then for every z* € X*

(&, ()| < /E (&", F)du < ||=°] [E ordi

Hence,
vrl(B) < [E osdp

and so |vy| is a o—finite measure.

If u(E) = O then obviously |v|(E) = 0, and so vy < p.

By the classical Radon-Nikodym theorem there exists a non-negative
measurable function A on Q such that

prlE) = [ b
E
foreachEe€X.

The inequality |vf|(E) < [ psdu yields now the relation h < o
p-ae. If||z*|| < 1, then

e, u)B) = [ [(a", s <lwyl(E) = [ o

Hence [(z*, f)| < h p—a.e. It follows from the properties of ¢ thatp; < h
u~—a.e. and this completes the proof. &

REMARK 4.1. It can be easily seen that if f : Q — X is strongly
measurable and Pettis integrable then ¢ = ||f]|.

PROBLEM 4. Is it true that for each Pettis u~integrable f there is a
Pettis py—integrable g such that f and g are weakly p—equivalent and ||g]|
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is measurable? Which X or y have such a property? Which C(K) have
such a property?
Observe however, that even if f and g are weakly y—equivalent and

|lg|| is measurable, the equality ; = |lg|| may fail. So one should look
rather for g satisfying this equality.

REMARK 4.2. A result similar to that in Theorem 4.1 for an arbj-
trary total I' C X* is false. If T" is norming, (i.e. for each z € X the
equality ||z|| = sup{|(z*,z)| : ||z*|| < 1,2* € "} holds) and f is I'-
integrable, then the above proof shows that |vs| is a o—finite measure and
lvf|(E) = [ ¢} du forall E € T, but it may happen that vy is not count-
ably additive in the norm topology of X, and it is not pu—continuous.

EXAMPLE4.3. (Diestel, Faires) A weak*—integrable f with noncount-
ably additive vy. Let Q = N andlet T be the c—algebra of all subsets of N,
Put v(A) = x4 € lo, and T = [;. Then v is a weak*~measure of o—finite
variation that is not countably additive in the norm topology of [,. Let u be
a finite measure on X given by u({n}) = 2~ and f:N — [, be given
by f(n) = 2"e,, where (e,) is the canonical basis of ¢y. If 7 = (z,) €
and E € X, then

[ 0)ds = 32 2us(nh) = 3 20 = (a0 0)
E neE ncE

and so f is weak* integrable and v is its weak* integral. It is clear that
v—considered as a finitely additive set function is not y~continuous. It is
however scalarly u—continuous as a weak *~measure. ’ &

EXAMPLE 4.4. For the function presented in Example 4.1
Vf L — lo is also weak*—countably additive but not countably additive
in the norm topology and not u—continuous either.

The following result explains the special role of [, in the above two
examples.

THEOREM 4.2. The following statements concerning X are equiva-
lent: '
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(i) X* does not contain any isomorphic copy of l, -

(ii) Given any (2,X,u) and any weak*-scalarly pu integrable
f:Q — X* vy £ — X*isameasure in the norm topology
of X*.

Proof. As in the proof of Proposition 4.1 we see that Ty: X — L1(p)
defined by Ty(z) = zf is continuous with respect to the norm topolo-
gies of X and L (p) respectively. Moreover, v;( E) = T}(zg) for each
E € Z. Hence vs(X) is a bounded subset of X*. In particular, z** v
is a bounded additive scalar—valued set function for each z** € X**, and
so the series 3 .-, z**v¢( A,) is absolutely convergent for each sequence
(A,) of pairwise disjoint elements of £. Since X* does not contain any
isomorphic copy of [, it follows from a result of Bessaga and Pelczynski
[B-P] that X* does not contain any isomorphic copy of co. Hence, the se-
ries Y oo; ¥f(Ay) converges in X*. The totality of X over X* yields the
equality vs(|Ji2; An) = D _pq ¥5(An). Thus vy is a measure in X*.

If I, C X*, then the set function v considered in Example 4.4 is an -
example of a non—countably additive weak*—integral. &

It is very surprising that the weak* integral v in (ii) may be replaced
by any weak* measure (in particular such a measure may be of non—-o—finite
variation [Th]). o

From the integral point of view, the functions with the same indefinite
Pettis integrals are non—distinguishable — they are weakly equivalent. We
shall denote by P (1, X) (orby P((Q2, X, ), X) if necessary) the space of
classes of weakly u—equivalent Pettis y—integrable X —valued functions. It
is a linear space with ordinary algebraic operations. One can define a norm
on P(u,X) by

171 = swp( [ I(a", Pld :2* € BOX)
An easy calculation shows that

sup{II_LfdullrEE}:}
defines an equivalent norm on P (yu, X):

sup{||lvs(E)||: E € T} = sup{sup[|z*vs(E)| : o* € B(X*)] : E€ X}
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< sup{|z*vr(Q) : 5" € B(X")} =] £] .

Ifw={E;,..., E,} isapartitionof Q into pairwise disjoint members
of X and z* € B(X™*), then

E |$L'*Vf(E,‘)| = E :L'*Uf(E,') — Z .'I;*Uf(E,-) =

Eiex E;ent E;en-

=a*{ ) v (ED}—2'{ ) u(E)} <

E;ent E;en—
<2 sup(|[u(B)||: E € )

where it = {E,' : a:*vf( E;) > 0} and 7~ = {E,' : :B*Uf(Ei) < 0}.
Hence

171 <2 sup({|lvs(B)||: E€ X} o

It has been shown by Thomas [Th], that if 4 is not purely atomic and
X is infinite dimensional, then P (s, X) is non—complete.
We shall finish this section with a classical result that is always a start-

ing point, when one wants to find conditions guaranteeing the Pettis inte-
grability of a function.

THEOREM 4.3. Let f : Q — X be scalarly integrable. Then the
following are equivalent:

(a) f is Pettis u—integrable.
(b) Ty : X* — L1(u) is weak*~weakly continuous.

Proof. (a = b) By the assumption

z'vs(E) = /Ea:*fdu = (Tyz*, xE)

foreach E € X and 3* € X*. It follows that (Ty(-),xg) is weak*
continuous on X* and hence for each simple h € L. (u) the function
(T's(-), h) is weak* continuous. Take now an arbitrary g € Lo(p), anet
(z,) C B(X™) weak* convergent to a point z*and a positive £. Then take
asimple b € Loo(p) suchthat ||g— hl|L () < €. By the weak* continuity
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of (T4(-), h) there exists av such that |(T(z%), h) — (Ty(z*), h)| < efor
each & > ay. Hence, for o > ap we have

(Tr(z2),9) — (TH(3"),9) < (Ty(32),9) — (Ty(z2), h)|+
+|(Ts(z5), h) — (Ty(z"), h)| + [(Ty(z*), h) — (T(z*),g)| <

<e+ [ lafllo—ldus [ fo"fllo— bl ldu < (142151

This proves the weak* continuity of (T¥(-), g).

(b = @) According to Proposition 4.2. f is Dunford integrable. Fix
E € X and let v(F) € X** be the Dunford integral of f over E. To
prove that v( E) € X one has to show that v( E) is weak* continuous. But
if z;, — 0 in the weak*~topology of X*, then Ty(z;) — O weakly in
Li(p) and so

zoV(E) =/m2fdu=/Tfm;d,, -0 $
E E

REMARK 4.3. In condition (b) it is enough to consider the restric-

tion of T to B(X*) (this factis a consequence of the Banach-Dieudonne
theorem, cf. [H, p 154]).

COROLLARY 4.1. If f : Q — X is Pettis u—integrable, then
Ty : X* — L1(u) is weakly compact.

The following corollary is an inmediate consequence of Theorem 4.3.

COROLLARY 4.2. f € P(u,X) ifand only if the set
{z* € X*: 2*f =0 p-a.e.} is weak* closed.

S. Integrability of strongly measurable functions.

It is the purpose of this section to describe these strongly measurable

functions that are Pettis integrable. We shall start with the following simple
lemma:
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LEMMAS1Iff:Q — X is strongly measurable then there exists a
bounded strongly measurable function g : Q — X and a strongly measur-
able function h : Q — X of the form "%, z,x g, with pairwise disjoint
E,€X,neN,suchthat f = g+ h.

Proof. In virtue of the Pettis Measurability Theorem 3.1 we may as-

sume that f(£2) is a separable subset of X. Let ( z,) be at most countable
dense subset of f(Q). Let

n—1
En={w€Q: f(w) €[z, + B(X)I\ | Jlzs + B(X)]}
k=1

and h = ) ° z,xg,. Then h is strongly measurable, at most countably
valued and, ||f(w) — h(w)|| < 1 foreachw € Q. It is enough to put
g=f—h ¢

PROPOSITION 5.1. A strongly measurable function such that
Jo lIf(w)|| du < oo is Pettis integrable.

Proof. Assume that f(Q) is separable and suppose that f : Q@ — X
can be uniformly approximated by X—valued simple functions
ot Q — X,n € N. Thus, given € > 0 there is np € N such that
||fa(w) — fm(w)|| < e foreachw € Q and all m, n > ny.

In particular, if £ € X then

H/ fndu—/fmdullssu(E)
E E

forall m,n > my. It follows that the sequence ( [, f,du) is norm Cauchy.
Hence it is convergent to an element v( E) € X. Since at the same time
we have lim,, [ z* fudp = [ 2* fdy, the equality Jgz*fdu = z*v(E)
holds.

Assume now, that ( f,) is an arbitrary sequence of simple functions
converging u-a.e. to f and let () be an increasing sequence of measur-

able sets such that 4(Q\Qx) < 1/k and (f,) is uniformly convergent on
each Q to f.
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Define v : £ — X by setting

v(E) =P — fdu
ENQ;

The integrability of ||f]| yields lim fg, [|f]] du = O and so (vx(E)) sa-
tisfies the Cauchy condition. Let v( E) = lim vi(FE). Fora fixed z* € X*

we have [, |*f|du < oo and so by the classical Lebesgue Convergence
Theorem

z'v(E) = lim z*1(E) = lim ¥ fdu = / ¥ fdu .
k k JEnQ, E

Thus f is Pettis y—integrable o

DEFINITION 5.1. A strongly measurable f : Q — X such that
Jo Iflldu < oo is said to be Bochner integrable.

The next theorem gives a description of Bochner and Pettis integrable
functions.

REMARK 5.1. In the terms of Remark 4.2 a strongly measurable f
is Bochner integrable if and only if v; is of finite variation, whereas in

the case of a Pettis integrable function v; can be of infinite (but o—finite)
variation.

THEOREM 5.1. (a) A strongly measurable f:Q — X is Pettis u—
integrable if and only if there exists a bounded strongly measurable func-
tion g, a sequence ( E,) of pairwise disjoint members of L, and a sequence
(z,) of elements of X such that

o0
=g+ Y Taxs,
n=1

and the series ) 2>, zopu( En) converges unconditionally. In this case

—/fdp=zmnu(EﬂEn)+P—/gdu.
E n=1 E
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(b) A strongly measurable f : Q — X is Bochner integrable if and
only if the elements g, z,, and E, in (a) can be choosen in such a way that
the series Y >, znu( E,) is absolutely convergent. In such a case

B—/fdu=2z,,u(EnE,,)+B—/gdy.
E —1 E

Proof. (a) To prove the necessity of the conditions, assume the Pettis
p—integrability of f and let f = g + h where g and h are as in Lemma 5.1.
If E € X is an arbitrary set, then the o—additivity of v, gives

/hdp=i/. hdu,=§:a:,,u(EﬂEn)
E n=1 Y ENEy n=1

and clearly the last series is unconditionally convergent.
To prove the sufficiency, assume for the simplicity that u( E,) > 0
forallne N.If E € X, then

p(E N E,)
p(Ey)

and E%%l < 1 for all n. Hence the series z:l z,u( EN E,) is uncon-
ditionally convergent. In particular, for each * € X* the the inequality
> w1 |2*(25) [u(EN E,) < oo holds, and so z*h is u—~integrable. Hence

D T ENEn) = Y zap(En)
n=1 n=1

z()  Ta(ENEy)) = Y 2*(zx)u(EN Ey) = / z*h dys
n=1 n=1 E

It follows that h is Pettis y—integrable and so the same can be said about f.
(b) If f is Bochner p—integrable then it is also Pettis u—integrable.
Since g is bounded, it is Bochner integrable too. Hence, we have
Jollgllde < oo and [, || 3%, ZuxE.|| < co. But E, — s are pairwise
disjoint, so this means that 3 >, ||z,||u( Es) < oo.
In a similar way the inverse implication can be proved. &

COROLLARY 5.1. Let f : Q — X be represented in the form
f =32, TuXE, With pairwise disjoint E, € Z,n € N. Then:



204 KAZIMIERZ MUSIAL

(i) f is Pettis p—integrable if and only if 221 Tuit( By) is uncondition-
ally convergent.

(ii) f is Bochner p—integrable if and only if > o1 Znps( Ey) is absolutely
convergent.

In the both cases [ fdu=Y"2° z,u(ENE,).
The above corollary gives a possibility to formulate the following

REMARK 5.2. If X is an infinite dimensional Banach space, then
there exists an X -valued strongly measurable function that is Pettis but
not Bochner integrable. Indeed, Dvoretzky-Roger’s theorem guarantees
the existence of an unconditionally convergent series > w1 Tn such that
> w1 |[Za|| = co. It is enoughto take @ = N, £ = P(N) and to define
p by p({n}) = 2" for each n. The function f : N — X given by
f(n) = 2™z, is suitable for our purpose. Observe, that the variation of vy
is o—finite but not finite.

The following result gives a necessary and sufficient condition for the
Pettis integrability of strongly measurable function.

THEOREM 52. A strdngly measurable and scalarly integrable
f : Q — X is Pettis y—integrable if and only if the set
{z*f : * € B(X*)} is relatively weakly compact in L1(p).

Proof. If f is an arbitrary Pettis y—integrable function then
Ty : X* — L1(p) is weakly compact, as it has been shown in Corollary
4.1.

Assume now that T is weakly compact. Since f is strongly
p—measurable we may assume that X is separable. We have to show that
T is weak*—weakly continuous. But as X is separable it is enough to prove
the sequential weak*—weak continuity. To do it, take z,; — z* weak * in
B(X™). Then z} f — z* f pointwise and — by the assumption — (z, f) is
a weakly relatively compact subset of L1 (). If ( zy, f) is weakly conver-
gentto h € L1(p) then an appropriately choosen convex combinations of
the functions zy f> k € N, converge to h in the norm of L1( p) and p-a.e.
It follows that h = z*f y—a.e. and (z}, f) is convergent to z* f weakly in -
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L1(p). Thus, each weakly convergent subsequence of (z* f) converges to
*f and so z} f — z* f weaklyin L1(u). &

To prove still another characterization of strongly meaurable elements
of P(u, X) we need the following

PROPOSITION 5.2. (La Valée Pousin) A set W C L 1(u) is weakly
relatively compact if and only if it is bounded and there exists an increasing
convex function ¢ : [0, 00) — [0, c0) such that

lim fﬂ:

t—o0

oo and M=sup/ o(|f(w) ) p(dw) < oo .
feQ Ja

Proof. Sufficiency. We have to show the uniform integrability of W .
Todoitletus fix0 < & < 1/2 M. Since lim;—o, &2 = oo, thereis 7> 0
witht < £2p(t) forall t > 7.

Consider now for E € X and f € W the set

Ar={weE:|f(w)|<}.

It follows, that

/IfIdMSm(E) and f Fldu < & / o(FDdu < &2 M
As E\A¢ E\As

Hence,

/E \fldu < Tu(E) + ¢/2

and so § = /27 gives the inequality [, |f|ds < & for each f € W and
E € X with u(E) < 6.

Necessity. Let o = sup( [, |fldu : f € W}. Since W is uniformly
integrable, there is a sequence (t,,) of positive numbers, such that ¢y = 0,
tm1 > 2i, foreachn € N and [, |fldp < 27" foreach f € W,
whenever u( E) < a/t,.

We define a function ¢ : [0,00) — [0, 00) by setting

(n+ l)tml ‘—"ntn
tn+1 — iy

p(t) = (t—t,) + nt,
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whenevert € [t,,tn 1] and n e {0, 1,...}.

One can easily see, that n < ﬂtt—) <mn+1fort € [t,,tm1) and so
limg_o (tt) = 00. Moreover,  is increasing and convex (this is the place
where the relation t,,1 > 2t,, is important).

Take now f € W and put 4, = {weQ:|f(w)]e [tn,tne1)}. We
have o > f, |f|du > tnp(A,) and so by the uniform integrability

fgso(lfl)du= g[l o(|fDdu

<Y (n+1) A |fldp < ) (n+ 1)27" o
n=0 n n=0

DEFINITION 5.2. A Young’s function is an increasing convex func-
tion® : [0,00) — [0, 00) such that ®(0) = 0. For such @ one defines
the Orlicz space L'® to be the space of all equivalence classes of real-valued
functions f such that Jo ®(k|fDdr < oo for some k> 0 (depending on
- |
| It is known, that L® can be equipped with the norm

||l flle = sup {/ﬂ f(w) g(w) p(dw) :/Q‘P(Ig(w)l) p(dw) < 1}

where ¥ is the function complementary to ® in the sense of Young
(ctf. [Z]).

Putting together Theorem 5.2 and Proposition 5.2 we obtain now

THEOREM 5.3. If f is strongly measurable then f € P (u, X) if and
only if there exists a Young’s function ® such that z*f € L2 ) for each
¥ € X* and lim,_,, ﬂtﬂ = o0.

As a very particular case we get the following;

COROLLARY 5.2. Let f : Q — X be strongly p—~measurable.
If there is p > 1 such that z* f € Ly(u) for each z* € X*, then
feP(u,X).
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Consider now the problem of the integrability of all scalarly integrable

and strongly measurable X —valued functions. It appears that ¢ is the only
distinguished space.

THEOREM 5.4. If X does not contain any isomorphic copy of co,

then each strongly measurable and scalarly integrable X —valued function
is Pettis integrable.

Proof. In view of Theorem 5.1 it suffices to consider functions
f:Q — X of the form f = Y °, z,xg, with pairwise disjoint E, — s.
We have then

D 15*(za) [ Ew) = /Q |z* fldu < oo
n=1

This means that the series ) >, z,u(E,) is weakly unconditionally
Cauchy. Since X does not contain any isomorphic copy of ¢ the se-
ries is convergent. Thus, Theorem 5.1 yields the Pettis y—integrability of

f. ¢

Example 4.1 shows that ¢y does not possess such an integration prop-
erty.

6. Criteria for Pettis integrability.

The principal tool of this section is the core, the notion related to
Rieffel’s essential range of a strongly measurable function.

DEFINITION 6.1. Let f : Q — X be a function and let E € X. The
core f over E, denoted by cor( E), is the set given by the formulae

corf(E) = [ {comv f(E\N) : N € N(w)}

Let us look first at some basic properties of the core.

PROPOSITION 6.1. If f € P(u, X), then for each E € X

1
cors(E) =m{mfpfdp Fex} FC E}
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Proof. Fix E € I} and notice that if z* € X* then z* f > ap-ae.
on E if and only if - [ 2*f du > a foreach F C E, F € X} Nowif

H(z*,0) = {x € X : 2*(x) > a} then
cory(E) = n{H(x*,a) :T°f>a p—aeonE}=

1
p(F)

=ﬂ{H(m*,a),m*[ /fdu]Za, FCE,FeZl}=
F

= TR 1 . +
-com{u(F)Lfdu.FEZ”,FgE}

PROPOSITION 6.2. Let f,g : Q — X be weakly measurable func-
tions. If f is weakly u—equivalent to g, then cor f(E) = corj( E) for every
E € ZXZ. Conversely, if for each E € Z,f the relations
cors(B) = corg(E) # @ hold, then f and g are weakly u—equivalent.

Proof. 1f f is weakly equivalent to g, then

CO'I”f(E) = ﬂ( {H(m*, (l) . x*f 2 a u—a.eon E} =

ﬂ(H(m*,a) ‘3’9 >a p—a.eonE}= corg( E)

for arbitrary F € X.

Conversely, suppose now that for some z* the equality z*f = z*g
p-ae. fails. Let us assume that pu{w : z*f(w) < z*g} > 0. Then,
thereisaset £ € %, such that sup{z* f(w) : w € E} < inf {z*g(w) :
w € E}. It follows, that €onv f( E) Ncomvg( E) = @ and this contradicts
the assumption corf( E) = cory(E) # . &

The following result is simple but quite interesting. In the case of a
Pettis integrable function it follows directly from Theorem 4.3,

LEMMA 6.1. If f : Q — X is scalarly integrable and K C X* is
weak* countably compact (and convex) then Ty(K) is a (weakly) closed
subset of L1(u).
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Proof. Suppose g is in the closure of Ty(K) and take (z¥) C K
with lim, 73, f = g y-a.e.. Let z* be a weak* cluster point of (z*). Then
z* € K and clearly z* f = g p—a.e. This means, that g € TsK andso Ty K
is closed.

If K is convex then — according to Mazur’s theorem — its weak closure
coincides with the norm one. &

Denote now for each F C X by F the set B(X*) N FP°.

PROPOSITION 6.3. If f is scalarly integrable, then f is Pettis inte-
grable if and only if Ty is weakly compact and

W =(HTHF) : F e Fx} = {0}

Proof. Assume that f is Pettis integrable. Then T is weakly compact
in virtue of Corollary 4.1. Take an arbitrary g in W and foreach F € Fx
let 73 € F be such that g = Tyz%. Note that lim 2% = 0 in the weak*
topology (Fx is ordered by inclusion). By Theorem 4.3 g = Ty} — 0
weakly in L;(p) and so g = 0 p-a.e.

Assume now that T is weakly compact and W = {0}. According
to Remark 4.3 and Corollary 4.2 it is sufficient to prove the weak*—~weak
continuity at zero of the restriction of Ty to B(X*). To do it consider
(z%) C B(X*) thatis wcak*—convcrgent to zero. Then, foreach F € Fx
the net (z}) is cventually in F. If g is a weak cluster point of (Ts(z%)),
then g € T'y( F"), since Ty ( F") is weakly compact by Lemma 6.1. Hence
g=0 p-ae. and Tz} — O weakly in Li1(p). &

REMARK 6.1. In the above Proposition the family Fx may be re-
placed by Fx.

COROLLARY 6.1. A scalarly bounded and weakly measurable func-
tion f is Pettis integrable if and only if \{Ty(F) : F € Fx} = {0}

Proof. Ty(B(X™)) is uniformly integrable and bounded in L( ),
hence it is relatively weakly compact o
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LEMMA 6.2 Suppose f is weakly measurable and corg(E) # @ for

eachE € X;. If * € X*, thenz*f 0 p-a.e. ifand only if z* =0 on
COI‘f(Q)

Proof. Assume that z* f is not y-a.e. zero. Then we can find ¢ > 0
and E' € Z} such that 2*f > « (or < —a) on E. Let the first inequality
holds. Then@ # cors(E) C {z € X : (z*, ) > «} and since corf(E) C
cors(£2), the functional z* is not constantly zero on cor £(Q). &

Now we are able to prove the main result of this section.

THEOREM 6.1. Let f : Q — X be scalarly p—integrable. Then f is

Pettis p—integrable if and only if cor;( E) #  for each E € X} and Ty is
weakly compact.

Proof. Assume that cors(E) # @ foreach E € 2, and take
9 € {Ty(F) : F € Fx} with g = o*f forsome z* € X*.

- According to Proposition 6.3 we have to show that
g = 0 p~ae. If g is not y-a.e. zero then there is — in view of Lemma
6.2 — an element z € cory(Q) such that (z*,z) # 0.

Consider foreachn € N a functional 27, € {n2} withg = z* f y-a.e.
If y* is a weak* cluster point of (z2), then clearly we have g=y*f u-ae.
Moreover, since z; € {n&} the inequality |(z%,z)| < 1/n is satisfied for
each n. It follows that (y*, z) = 0. On the other hand, setting 2* = z* — v*
we have 2*f = 0 p-ae., while (2*,z) = (z*,1) — (v*,3) = (z*,2) # 0
and this contradicts Lemma 6.2. ¢

REMARK 6.2. The function f : [0, 1] — ¢ considered in Example

4.1 has the property that cor;(E) # @ for each E € L* but T is not
weakly compact.

PROBLEM 5. Let f : Q — X** be weak* scalarly bounded. Assume
that X N cory(E) # @ foreach E € I}. Does there exist g € P(u,X)
that is weak* scalarly equivalent to f?

Denote by Wx the family of all WCG subspaces of X.
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LEMMA 6.3. If H is a convex weak*—countably closed and relatively

weak *—compact subset of X*, then the following statements are equiva-
lent:

(@) HNFL <0 for all F € Fx.
(b) 0 € A
(c) HNW +# 0 for each W € Wy.

Proof. (a)=> (b): If 0 ¢ HY", then there is 2o € X such that
zo(z*) # O for each z* € H™'. It follows, that H N FX = @, when-
ever F' = lin{zo }.

(b) = (c): Let W be a WCG subspace of X andleti : W — X be
the identity map. Since 0 € H™" and W is angelic, there is a countable
set D in ©*(H) such that 0 € D*". Let C C H be a countable set such
that *(C) = D. As H is relatively weak*—compact and weak*—countably
closed, we have C*" C H and C"" is weak *—~compact. Hence
0 € D¥" C*(C¥") C i*(H).

Letz* € H be such that s*(z*) = 0. It is clear, that z* € W< and so
the condition (c) is satisfied. ,

(¢) = (a) is obvious. &

LEMMA 6.4. For each scalarly integrable X —valued f the equality

[(WTAE) : F e Fx} = {{TH&) : G € Wx}

holds.

Proof. Take h € (\{Tf(F) : F € Fx} and put
H = B(X*) NT;'(h). H is a convex weak*~countably closed subset
of B(X*) and H N F* # ¢ for all F € Fx. In view of Lemma 6.3 the
set H N G* is non—empty for all @ € Wyx. But this exactly means, that
h e N{THB : G e Wx} ¢

Now we are in a position to prove the next geometric characterization
of the Pettis integration. '

THEOREM 6.2. Let f : Q — X be scalarly integrable. Then
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f € P(u,X) ifand only if there isa WCG spaceY C X suchthatz*f =0
p-a.e. for each x* € Y and Ty is weakly compact.

Proof. To prove the necessity of the condition assume that
f € P(p,X). Then Ty is weakly compact. Hence T?: Loo(p) —» X*
is weakly compact too, by Gantmacher’s theorem. In particular T} takes
Loo(p) into X and Y = T7(Loo(ps)) is a WCG space. |

Since T(g) = P — [, 9f du for each g € Loo(p), it is clear that
z* € Y yields z* f = 0 p-a.c.

Conversely, assume that Y’ € Wy is such that z* f = 0 u—a.e., when-
ever z* € Y'* and Ty is weakly compact. But then, T;(¥) = {0} and the
conclusion follows from Proposition 6.3. ¢

REMARK 6.3. If y is separable then the WCG subspace of X can be
replaced by a separable one in Theorem 6.2.

The following corollary of the above theorem is rather surprising:

THEOREM 6.3. Let ( f,,) be a sequence of X-valued Pettis u—inte-
grable functions and let f : Q — X be a scalarly integrable function
with weakly compact associated operator Ty. If for each z* € X*, the
condition 3 2, |2*fa| = O p-a.e. yields the equality z* f =0 p-ae,
then f € P(u,X).

Proof. Foreachn € N let ¥, be a WCG subspace of X such that
' fa = 0 p-ae. whenever z* € Y;}. If W, is a weakly compact set
generating Yy, then W = J32; 2 "W, is also a weakly compact set, and,
it generates a WCG space Y C X. If 2* € Y, then we have z*f = 0,
andso f € P(u, X). ¢

We shall formulate yet one more condition that is sufficient for the
Pettis integrability.

LEMMA 6.5. Letv : 2 — X™andk : X — X be finitely additive
with k(X)) being relatively weakly compact. If lz*v|(Q) < |z*k|(Q) for
every z* € X*, then v(X) C 2acor(Z) C X.
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Proof. Consider x as an X**—valued set function. Then, the weak
relative compactness of the range of x implies the equality Geo x(Z) =
aco” k(Z), where the last closure is taken in the weak* topology of X**.
Suppose, there is E € X such that »(E) ¢ 2acok(Z). Then, according
to the Hahn—Banach theorem, there exists £* € X* such that

2 sup{(z*, 2) : z € acor(Z)} < z*v(E)

Hence,
|z*6[(Q) < |z*V|[(E) < |2*v|(Q)

and this contradicts the assumption 4]

THEOREM 6.4. Let f : Q — X be a scalarly integrable function. If
there exists a finitely additive . : £ — X such that k(X) is weakly rela-
tively compact (the countable additivity of k is sufficient but not necessary
forit)and

fg " Fldu < "k |(2)

for each z* € X*, then f is Pettis p—integrable. If k(X)) is norm relatively
compact or separable then, the same holds for v¢(X).

Proof. Let v be the indefinite Dunford integral of f. Then, v and &
satisfy the assumptions of Lemma 6.5 and so »(X) C 2acos(Z) C X.
This proves the Pettis u—integrability of f &

As a very particular case we get

COROLLARY 6.3. Let f : Q — X be weakly measurable and
g : Q — X be Pettis u—integrable. If

/umwsfmmw
Q Q
for each x* € X*, then f € P(u, X).

Proof. In view of Corollary 4.1 the set ye(Z) is weakly relatively
compact in X ¢
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PROBLEM 6. Is it possible to assume that g € P( 1, X**) only?

PROBLEM 7. Let f, g : Q — X satisfy the assumptions of Corollary
6.3. Does there exist h € P(y,X) such that £ and h are not weakly p—
equivalent, forno p € Li(u) the equality z* f = pz*(h) p—a.e. holds for
all z* € X* and [, |z*f|dp < [ |z*h|dy for each z* € X*?

REMARK 6.3. It suffices to assume in Theorem 6.4 that |z*£|(Q) =
0 yields [, |z*f|du = 0. This generalizes Theorem 6.4 and is a conse-
quence of Theorem 6.2.

We shall finish this section with the following question:

PROBLEM 8. Let f : Q — X be scalarly integrable. Assume that for
each F € X there exists (E) € X satisfying for each z* € ext B(X*)
(= extreme points of B(X*)) the equality

z'v(F) = f ¥ fdu
E
For which X the above assumption yields the Pettis p—integrability of f?
PROBLEM 8’. The same as above but for X = C(K).

REMARK 6.4. Let f and v be as in Problem 8. It follows easily from
the closed graph theorem that (X ) is a bounded subset of X. Appealing to
Rainwater’s theorem concerning the weak extremal convergence (cf. [D],
1984), we see at once, that v is an X-valued measure.

Ifsup{ [ |z*fldp : * € ext B(X*)} < oo, then the o—additivity of
v follows directly from the definition of .

If X does not contain any isomorphic copy of [; or (X*, weak*) is
angelic (e.g. X is WCG), then f € P(u,X). If moreover f:Q —
X is strongly measurable, then the inequality Jo |2*fldu < oo for each
z* € ext B(X*) is sufficient ([D], 1984) to have feP(u,X).
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7. Integration of scalarly bounded functions.

As we have seen a scalarly integrable function need not be Pettis in-
tegrable even if it is strongly measurable. What can be said in the situation
of scalarly bounded functions? That not all such functions are Pettis in-

tegrable was already known to Phillips. We shall begin this section with
presenting of Phillips’s example.

EXAMPLE 7.1. (CH) Under the continuum hypothesis Sierpinski [S]
constructed a set B C [0, 1] x [0, 1] with the following properties:
(1) Foreacht € [0,1] the set {s € [0,1] : (s,t) € B} is at most
countable,
(2) Foreach s € [0,1] the set {t € [0,1] : (s,t) € B} is at most
countable.
Consider ([0, 1],L£,)) and define f : [0,1] — [[0, 1] by

[F()]1(t) = xB(s,1)

We shall prove first that f is weakly measurable. To do it we identify
2,10, 1] with the space ba[0, 1] of additive real-valued set functions de-
fined on all subsets of [0,1] and endowed with the variation norm (cf [D-S]).

If n € ba [0,1] then it can be uniquely represented as the sum 5 =

m + m2, where n1,m2 € ba [0,1], supp 7; is at most countable and 7,
vanishes on countable sets.

If s € [0,1], then

(£(8),m) = (f(8),m)+ (f(s),m2) =

f [f(s)](t)m(dt)+f [£(8)1(B)ma(dt)
supp p1 B,

where B, = {t € [0,1] : (s,t) € B}.

But since the set {s € [0,1] : 3t € suppm,(s,t) € B} is at most
countable, (f(s), m) = 0 A-a.e. Moreover, the set [0, 11\B; is at most
countable t00, so we have (f(s),n2) = 72[0, 1] M—a.e. It follows that f is
weakly A-measurable (even more is true, {f, n) is measurable with respect
to the Borel g—algebra of subsets of the unit interval) and being bounded,
it is also scalarly integrable.
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We shall prove now, that f ¢ P (), [0, 1]). Observe first, that if
n =06 andif g € [,[0, 1] is the Pettis integral of f over [0,1], then

/ (f(S),"I>d3= xB(s,t)ds=0
[0,1] 0,1}
in view of (1). Thus, g = 0 (i.e. g(s) =0 forall s € [0,1]).

On the other hand, if 7 is any normalized additive extension of ) to
P[0, 1] (the existence of such an extension was proved by Lo$ and Mar-
czewski [L-M], then (f(s),n) = [0, 1] M-a.e. Hence
(9,m) = fjo.3(f(s),m)ds =1 and clearly g # 0.

This contradiction shows, that f is not Pettis AM—integrable &

Since just considered function f is not Pettis A—integrable, there must
be at least one set £ € L£* such that cors(E) = §. The behaviour of f is
however much worse: cors[0,1] = §. To see it, let
B'={s€[0,1] : (s,t) € B} foreacht € [0, 1]. The properties of B
imply that \(B;) = 0 foreacht. If s € Bt then [ f(s)(£)] = 0. Hence, if
x € Conw f(Q\B?) then z(t) = 0. It follows that if 1 € cors[0,1], then
z(t) = 0 foreveryt. ButO ¢ cors[ 0, 1], as for each finite sum X o £( s;)
witha; > 0,Xa; = 1, we have [[Za;if(si)|| = sup, |Z aixp(si,t)| = 1.

We shall present one more example of a bounded non-integrable func-
tion.

EXAMPLE 7.2. (CH) Once again let ([0, 1], £, )\) be the basic mea-
sure space. Let (a¢) be any enumeration of [0, 1]. We identify [0,1] with
[0, w1] considered with the order topology and define

f: [031] — C([O,UJI])

by f(ag) = xr0.41-
It is easily seen, that if n € C*[0,1] then 7 is concentrated on a

countable set. Assume, supp n C [0,6] U {w;} with § < w,. Hence, for
& > 6 we have

(f(ag),ﬂ)=/

[0,w;

[N =/[ oD =

W
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= f[06]XIo,el(7)n(d7)+ f{ xtoa((dn) = nl0,61 = 1(0,u1)

Thus, (f, n) is constant off a countable set. It follows that f is weakly
measurable.

Suppose f is Pettis A-integrable and let g = fj, ;; fd). Then,

(9,7) = / (F(8),mydt = 10, wy) = / (0.0 (M) 0(d)
[0,1] [0,1]

If follows, that g = [0 w;)- But x[0,w;) & C[0,1] and so
f¢P(>\,C[O,W1]).

DEFINITION 7.1. X has the u—Pettis integral property (u—PIP) if
each scalarly bounded weakly y—measurable function f : Q — X isPettis
p—integrable. If X has the u—PIP for all finite complete (Q,X, u), then
we say that X has the Pettis integral property (PIP).

PROBLEM 9. Which Banach spaces have the y—PIP (or the PIP)?

The problem in the full generality is open, but several partial answers
are known. In particular, it is consistent with ZFC to assume that each
X has the A-PIP ([F-T]), necessarily denying CH, since as we have seen
CH yields the non-)\—PIP of [ [ 0, 1]. Clearly, all separable Banach spaces
have the PIP and, more generally, all measure compact Banach spaces have
the PIP. In particular, all WCG spaces have PIP. [, does not have PIP ([F-
T]). It is a consequence of Theorem 6.1, that each X with the (C)—property
has the PIP (X has the property (C) if each family H of closed convex
subsets of X, which is stable under countable intersections and does not
contain the empty set has non—-empty intersection). The reverse implication
fails for X = [;(®1) [E]. |

A non-trivial family of Banach spaces possessing the PIP is also given
by the following

PROPOSITION 7.1. If X does not contain any isomorphic copy of |
and X is separable, then X* has the PIP.
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Proof. We shall prove in fact a stronger property of X*: if
f: Q — X*is weak*-measurable and weak*—scalarly bounded, then
fFeP(u,X). ‘

Let f : Q — X* be a function possessing the just mentioned proper-
tiesand let vy : £ — X* be its weak* integral i.e.

(z, v B)) = /E (%, f)du

forallz € X and E € X. If z* € X**, then aécording to a theorem
of Odell and Rosenthal [OR] there exists a sequence (z,) C X such that
|lzal| < [|z**|] and lim, z, = z** in the weak*~topology, The Lebesgue
Dominated Convergence Theorem yields the equality

@) = [ (o, f)d o

It should be noted that the separability assumption is ésscntial (at least
if one assumes the existence of real-valued measurable cardinals),

PROPOSITION 7.2. [,(T') has the PIP ifand only if card T is not a
real-valued measurable cardinal.

Proof. Assume, that card T is not a real-valued measurable cardinal,
and take a weakly measurable and scalarly bounded function
f:Q — [ |(T). Thenfix E € X, define € I*(T") by

7(h) = fE (h, F(w)) ()
forall h € [(T') and put

£(A) = n(xa)

forall ACT.

If " D A, | 0, then XA, — 0 weak* in Io(T"), and so
(X4, f(w)) — 0 forallw € Q. Since f is scalarly bounded, we have
lim, k(A,) = 0. Hence « is a real-valued measure.
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Since, card I" is less then the first real-valued measurable cardinal,
there exists = (z,) € [1(I") such that

£(A) = (,X4) = Zreatsy

It follows, that z is the Pettis integral of f over E.
If card T is at least so large as the first real-valued measurable car-
dinal, then there is a universal real-valued measure u on P(I"). One can

easily see that the function f : I — [;(T") defined by f() = x() is not
Pettis y—integrable. &

PROBLEM 10. Which C( K) spaces have the PIP?

In connection with Theorem 6.4 the following question can be formu-
lated:

PROBLEM 11. Which Banach spaces have the following property: If
v : X — X™ is a measure, then for each z** € X*** the inequality

[Pz (1) |(Q) < |z*"*v|(Q)

holds for each z*** € X*** (P denotes here the canonical projection of
X*** onto X*)?

PROBLEM 12. Which Banach spaces have the u—PIP for every perfect
w?

The following two problems seem for me to be quite interesting (if the
answers are affirmative):

PROBLEM 13. Let f € P(u, X*) be weakly measurable and scalarly
bounded and let p be a lifting on L (u). It is known (cf [I-T] that a
function p1(f) : Q@ — X* can be defined by zp1(f) = p(zf), for

each z € X. Is p;1(f) Pettis p—integrable? Is p;(f) at least weakly u—
measurable?

PROBLEM 14. Let f € P(u,X) be weakly measurable and scalarly
bounded and let p be a lifting on L, (1) . Inthe same way as in the previous
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problem we can define p2(f) : Q@ — X** by setting

z*p2(f) = p(z*f), whenever z* € X*. Is p2( f) Pettis u—integrable or
weakly y—measurable?

8. Limit theorems.

It is the purpose of this section to prove the convergence theorems of
Vitali and Lebesgue type for the Pettis integral.

To prove the main results we need a deep theorem of James that char-
acterizes weakly compact subsets of a Banach space.

PROPOSITION 8.1. (Helly’s condition, cf [Da]) Let Z be a normed
space, let 23, . .., z}; be linear continuous functionals of Zandletc,...,c,
be real numbers. Assume that there is a number M satisfying for each point
(a1,...,8,) € R the inequality

n n
1> aic| < M| e
=1 i=1

Then, for each & > O there exists z € Z such that ||z|| < M + & and
z;(2) = c for each k € {1,..., n}.

PROPOSITION 8.2. (James) [J] Let C be a weakly closed bounded
subset of a Banach space X. If C is not weakly compact, then there is
6 > 0, a sequence (z,) C C and a bounded sequence (z}) C X* satis-
fying the folloWing conditions:

(@) z3i(z,) >0 ifk<m,
(b) z}(z,) =0 ifk>mn

Proof. Let C be the weak* closure of C in X** and let w € C\C.
Moreover, let A = inf {|jw — z|| : = € X}) Since X is norm closed in
X*,wehave A > 0.

Take an arbitrary 6 between 0 and A and then choose any
z] € B(X*) such that (w, z}) > 8 (the existence of such z} follows from
the fact that ||w|| > 0). Since w € C there is z; € C with (7}, z;) > 6.

The further construction goes by the induction. Suppose, we have
already x,,, 7 with n < m such that the following are satisfied:
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() 7o € Cand ||z3]| < 1,
(i) zi(zs) =0 ifk > m,
(i) z}(za) > 0if k < n,
(V) (w,z}) > 0if k < m.
Observe, that if (a1,...,am_1) € R™ ! then

m—1
A< Ea.-a:.-+ w||
i=1

and hence for n such that 6 < n < A we get the inequality

m—1
1< gl et wl

Setting in Helly’s condition Z = X*, ¢ = ¢ = ... = ¢y_1 = O,
Cm =1 fi = ziifi < m, f = wM = Tande = 1 — M we get
the existence of z = ¥ € B(X*) such that zy(z,) = 0ifn < m and
(w, z7,) = 7. Hence, (jj) is satisfied for k = m. The equality 5 = (w, z},)
yields (w,z*) > 6 and so (jv) holds for k = m too. We have to find yet
a point 1, € C satisfying (jjj). But this follows easily from the fact that
w € C. Indeed, if (y,) C C is weak™ convergent to w, then there is oy
such that (x}, ya) > 0 for each k < m and each o > a. We may take as
Tm any point y, with @ > ayp &

The theorem we are going to present now is an analogue of Vitali’s
convergence theorem. Conditions (a) and (b) of this theorem guarantee
that for each z* € X* and E € X the sequence { [, z*fadu : n€ N} is
convergent to [ z* fdu, and that the set {z*f : z* € B(X*)} is weakly
relatively compact in L (p). They may be replaced by any others guaran-
teeing the above weak compactness and the convergence of the appropriate
sequence of scalar integrals.

THEOREM 8.1. (Vitali Convergence Theorem for the Pettis integral)

Let f : Q — X bea function. If there exists a sequence of Pettis integrable
functions f, : Q — X such that:

(a) The set {z*f, : ||z*|| < 1, n€ N) is uniformly u—integrable.
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(b) lim, z*f, = =*f in u—measure, for each z* € X*,

then f is Pettis y—integrable and

lim /E fady = fE f

weakly in X, for each E € X.

Proof. Fix E € X, and let C be the weak closure of the set
{ [gfadp :ne N}. Since the classical Vitali’s convergence theorem
yields the convergence lim,, [, z* fodp = [, z* fdu, for each z* € X*,
we see that the sequence ([, fudp) is weakly Cauchy.

Hence, it is bounded and C\ { f;; fady : n € N'} contains at most one
point.

In order to prove our assertion, it is sufficient to show the weak com-
pactness of C, since this will yield the existence of the weak limit of the
sequence ( | B f,,dp) in X, and the limit point can clearly be equal only to
Jg fdu.

Suppose therefore, that C is not weakly compact. Then, according to
James’s theorem there exist & > 0,(z,) C C, and bounded (z}) C X*
such that

(z},2n) = 0 if k> nand (z},z,) > 0 whenever k < n.

Consequently, we can find a subsequence (gm) of ( f,) and a subsequence
(yr) of (z}) such that

(i) [pyigmdp =0 fork > m,
(i) [pyigmdu >0 fork < m,
(i) limp, [ 2*gmdy = [ 2*fdy foreach 2* € X*.
Consider now the set {y7}, f : m € N }. It easily follows from (a) and

(b) that this set is uniformly integrable and bounded in L1 (). Hence it
is relatively weakly compact. This yields the existence of a function h €
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L1(u) and a subsequence (z*) of (y},) such that lim ; j z* f = h weakly in
L1(u). Applying (ii) and (111) forall 2} we get the 1ncqua11ty Jezifdu >0

forall j € N. Hence,
/ hdu > 6
E

I want to show that h = z§f p—a.e. for some 2z} (this fact follows
at once from Lemma 6.1, but since we need some further information, we
shall provide more exact calculation).

To do it, we shall appeal to the theorem of Mazur, according to which,
there are non-negative numbers of* ... o, such that

k(m) k(m)
doof=1 and lim Y oz}, f) =0
j=1 j=1

in the norm topology of L( ).

Without loss of generality, we may assume, that the above conver-
gence holds y—a.e.

Clearly, if 2§ is a weak* cluster point of the sequence
(Ef('l") a7’ 2},m - m € N), then h = 2§ f p—a.e. In particular, we have

(iv) / 2 fdu> 0
E

On the other hand, if (w?, ), is a subnet of (Ef( ™ a2}, : m > m) that
converges weak* to 23 then, applying (i) we get

O=limf Wy, gndy = lim w:a/gndﬂ=23/9ndﬂ=f259ndﬂ
a Jg a E E E

The last three equalities are consequences of the Pettis integrability of the
functions g, and since the above collection of inequalities is true for all
n € N, it follows from (iii) that

fz(*)‘fd;L:O.
E

But this contradicts the inequality (iv), and so the theorem is proved ¢
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As an immediate consequence of Theorem 8.1 we get the following
generalization of the classical Lebesgue theorem:

THEOREM 8.2. (Lebesgue Dominated Convergence Theorem for the
Pettis integral) Let f : Q — X be a function satisfying the following two
conditions:

() There exists a sequence of Pettis p-integrable functions fn:Q =X
such that lim,, z* f,, = =*f in y—measure, for each z* € X*.

(B) There exists h € Li(u) such that for each z* € B(X *) and each
n € N, the inequality |z*fu| < h holds u-a.e. (the exceptional set
depends on z*).

Then f € P(u, X) and

lim f Fadu = f fdy
" JE E

weaklyin X, forall E € X.
Proof. The condition (a) of Theorem 8.1 follows from (3) &

EXAMPLE 8.1. As an application of the above theorems we shall
prove the A—integrability of f : [0,1) — L()) defined by f(¢) = X[0,6)-

First of all notice that f is weakly measurable, since each z*f is of
bounded variation.

Let m, be the partition of [0,1) consisting of the intervals
[(s—=1)/2%,i/2%),i < 2" and let

Fa(®) = Xpo,i/2%

Clearly, f, : [0,1) — Lo()) and |z*f,| < ||z*|| for all » and
' € Loo(X). Each * € L ()\) may be identified with an additive set
function 4 € ba( L) that vanishes on N'()). Hence,

=" fa(t) = p([0,i/2™) if t € [(s - 1) /2",i/2")

and

7 f(1) = p([0,1))
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forallt € [0, 1).
If E:n € m, isthatelement which contains ¢, then we have
|z* f() — 2" fu(2) | < |p|( Bt p). It follows from the boundedness of u that

ligl |.U'|(Et,n) =0

for all but countably many ¢t € [0, 1).
Thus, lim, z*f, = 2*f M-a.e. and f € P()\, Loo())) &

Also the next Lebesgue type result is a particular case of Theorem 8.1.

THEOREM 8.3. Let f : Q — X be a function satisfying the following
two conditions:

(/) There exists a sequence ( f,) of X —valued Pettis p—integrable func-

tions such that
lim/m*fndp=/x*fdu
" JE E

forall E € ¥ and z* € X*.
(B') There exists a finitely additive s : ¥ — X such that k(X) is weakly
relatively compact and for eachn € N and z* € X* the inequality

/;l |2% faldps < |27£|(Q)

holds.
Then f is Pettis y—integrable and

im [ fudy= [
" JE E
weakly in X forall E € X.
Proof. Notice, that foreach E € ¥ and z* € X*

l/ﬁﬂMﬁﬁ/meswwm
E » JE

Hence,

[ 157l < 212l
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and the Pettis integrability of f follows from Theorem 6.4. The weak con-

vergence of the integrals follows now from Theorem 8.1 and the comments
before it. ) $

It is natural to ask when the condition (o/) of Theorem 8.3 is sufficient
for the Pettis integrability of a function. If X contains an isomorphic copy

of ¢y, then () is too weak to guarantee the integrability. Indeed, let f be
the function considered in Example 4.1. With the same notation, we have

oo
fL'*f = Z a,,2 _nX(Z—',Z—"”]
n=1

fa(t) = 2x2-1 13(D), ..., 2 x(2-5 2-»17(1),0,0,0,...)

1imfas*f,,du=/a:*fdu
n JE E
forallz* € X*and E € X, but f ¢ P(p, X) o

It appears however, that ¢y is the only inconvenient Banach space.
THEOREM 8.4. Let X be without any isomorphic copy of cy. If

-+ Q — X is scalarly u—integrable and there are functions
fo € P(u, X) such that

lim / z¥ fudy = / z* fdy
" JE E
forall E € X and z* € X*, then f € P(u,X) and
lim / fadps € / fdu
n" JE E
weakly in X forall E € X.
Proof. In virtue of Corollary 3.1 the set Q can be decomposed into

pairwise disjoint set Q, € X, such that for eachn € N and z* € X*
the inequality |z*fxq,| < 7||z*|| holds u—a.e. It follows from Theorem



TOPICS IN THE THEORY OF PETTIS INTEGRATION 227

8.1 that f is Pettis integrable on each Q,,. Now it is sufficient to apply the
series characterization of Banach spaces not containing ¢y [B-P] &

9. Approximation by simple functions — The compact case.

The fact that each strongly measurable function can be approximated
by almost everywhere convergent sequence of simple functions is the start-
ing point for the whole theory of the Bochner integration. It yields in partic-
ular the approximation of each Bochner integrable function by a sequence
of simple functions convergent in the L ;—norm. Unfortunately, in the case
of the Pettis integral such an approximation is impossible (as we could
see in Example 3.1, the norm of Pettis integrable function may be even
non-measurable). However, still there is a wide class of Pettis integrable
functions that can be approximated in a weaker sense.

To prove the first theorem we need a few lemmata.

LEMMA9.1. Ifv:X - X isameasureand f : Q — [0,1] isa
X —measurable function, then

/ fdv e comv(X)
Q

(the integral is understood the sense of Bartle-Dunford-Schwartz [B-D-S] :
there is x € X such that [, f d(z*v) = x*(z) for each z* € X*)

Proof. Assume at the beginning that f = "7, a;xg, with0 < o; <
... £ am and E; being pairwise disjoint elements of X satisfying the
equality Q = U, E;. Applying the Abel transformation

m m m—1 i
D b= am ) b= (air1 —ay) D b
j=1 i=l j=l

1=1

we get

m m m—1 i
[ fdr =3 0B = a3 B = Y (aser 0 3 (B =
=1 i=1 j=1

i=1
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m—1 i
= am(Q) = } (air1 — a)u(|J Ey) € convi(E)
i=1 . J=1

* “1
since 0 < @y, — ;n= 1(air1 — a;) = ay <1

The general case follows from the density of simple X -measurable
functions in £,(X) (the space of all bounded real-valued 2 —measurable
functions endowed with the uniform norm) ¢

LEMMA 9.2. Letv : £ — X be a p—continuous measure. If
Ty : X* — L1(u) is defined by

d(z*v)

T.(z*) =
then for each g € Loo(p) the equality T*(g) = Jo 9dv holds.

Proof. The continuity of T}, is a consequence of the closed graph the-
orem. The rest follows from a direct calculation. &

LEMMA 9.3. Let I1 be a directed set, and let Uzr : X - X bea
bounded continuous operator, for each = € I1. If sup,||Ux|| < co and
lim, Ur(x) = z for each x € X, then the convergence is uniform on each
relatively compact subset of X .

Proof. Let K C X be a compact set. Then, fora givene > 0 there ex-
ists an e-net {z1,...,2,} C K of K. Let m, be such that
[Un(z:) — xi|] < € foreachi € {1,...,n} and each 7 > m,. If M is
an upper bound of {||Ux|| : @ € IT}, then we have for each z € K and
™ > Tt

Uz —3l| < inf {||Un(z~ 2|+ [Unzi — il + [Jos — ][} < (2+ M)e
It follows, that U,z — z uniformly on K. &
LEMMA 94. Letv : T — X bea p—continuous measure. If v(X)

is relatively compact in the norm topology of X, then for each positive €
there exists an X—valued simple function h such that

sup{||( E) —/Ehd,uu .EcZ}<e
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Proof. Let T, be defined as in the previous lemma. In virtue of
Lemmata 9.1 and 9.2, we have

T Ble(w Com(v(X) — (X))

since f € Bp,(u has a representation f = f; — f, with fj, f2:Q —
[0,1].

The Mazur theorem [cf [D-U], p. 51) yields the compactness of the set
conv (v(X) — (X)) and so T is a compact operator. The compactness
of T, is a consequence of Schauder’s theorem [cf [D-S], p. 485).

Thus,

K = {ﬂz—”’i)- . 2* € B(X")} = T(B(X"))

is norm relatively compact.

Consider now for each 7 € Iy the operator Uy : Li(u) — Li(u)
defined foreach g € L;(u) by

U(9) = 92 = 3 [ gdi)u(B) " xs
Eerm E
and notice that lim, Ur(g) = g in L;(u) for each simple g. Hence, the
same holds for all g € L1(p). In view of Lemma 9.3 the net (U,(g)) is
convergent to g uniformly on K.
Let f} be defined by

v _ v(E)
f-:r = E% W(E) XE

where 7 € ;.

Since for each z* € X* the net {z*f : n« € Iy} is a martin-
gale convergent in L (u) to %‘—‘Q (cf [D-U]) and since at the same time
z*fY = U,,ﬂfi:‘—"l), we see that {z*fy : w € Iz } is convergent in L (u)
to g%)_ and that the convergence is uniform on K.

Let us fix € > 0 and take mg such that

d(z*v)
— 2 f)|du < €
/ﬂl i frldu
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for each w > mp and each z* € X*.
In particular, if E € X, then

d
|z*v(E) — / *f"du|</| (z70) -2 flldp<e
Itis enough toput h = f¥ . o

The first approximation theorem is now an easy corollary of the above
lemma.

THEOREM 9.1. If f is Pettis u—integrable and vf(X) is norm rela-
tively compact, then f is a limit of a sequence of X —valued simple func-
tions, in the norm topology of P (u, X).

REMARK 9.1. A short calculation shows that the converse to the
above theorem also holds: If f € P(u, X), f = lim,, f, in the norm topol-
ogy of P(u, X) and vy, (X) is norm relatively compact for each 7 € IT
(= an arbitrary directed set), then vy(Z) is norm relatively compact too.

A few questions arise in the context of Theorem 9.1.

DEFINITION 9.1. X has the u—Pettis compactness property (u—PCP)
if for each f € P (u, X) the set v¢(X) is norm relatively compact. X has
the PCP if it has the u—PCP for each finite (Q, X, u).

PROBLEM 15. To characterize all X possessing the PCP (or the -
PCP).

PROBLEM 16. Which C( K')-spaces have the PCP?

PROBLEM 17. To characterize (Q,X, ) such that each X has the
u—PCP.

Several partial answers to Problem 15 are known:
(a) Separable spaces have the PCP,
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(b) Subspaces of separably complementable spaces have the PCP X is
separably complementable if for each separable subspace ¥ of X
there exists a separable space Z suchthat Y C Z C X, and, there
is a bounded projection of X onto Z). In particular WCG spaces and
their subspaces have the PCP.

(c) AL-spaces (because they are separably complementable). In particu-
lar C*[0, 1] has the PCP.

(d) [Ta, 1980] If [, is not a quotient of X and we assume that the union
of less than the continuuum A-null sets is A—null, then X has the A\—
PCP. If (MA) is assumed and X is the y—completion of a countably
generated o—algebra, then each X has the ;—PCP.

The following result due to Stegall [F-T] gives a partial answer to
Problem 17.

THEOREM 9.2. If i is perfect then each X has the u—PCP.

Proof. Let f be a u—Pettis integrable function (as it will be seen from
the proof it is enough to assume, that f is Dunford integrable and vrisa
p—continuous measure, to get the relative norm compactness vs(X)). In
view of Corollary 3.1 we may assume, that f is scalarly bounded. It is ob-
vious, that for each E € X the equality T}‘x E = v§(Z) holds, so in order
to prove the norm relative compactness of vp(X) it is sufficient to show
the compactness of T. To do it, choose any sequence (z}) C B(X™).
Since f is weakly measurable, (z¥ f) has a subsequence (z}, f) that con-
verges a.e. Otherwise, we could apply Fremlin’s subsequence theorem [F],
to get a subsequence without measurable cluster points, taken in the space
of all real-valued functions endowed with the topology of pointwise con-
vergence.

If z* is a weak* cluster point of (zy,) then z7 f — z*f pointwise,
and hence in L;(p), because of the Lebesgue theorem.

Thus, Ty is compact, and the assertion is proved. Q

EXAMPLE 9.1. The function f constructed in [F-T] shows that I,
does not have the PCP. In particular, no Banach space with the PCP can
contain /o, as an isomorphic subspace. However, the following is open:
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PROBLEM 18. Assume that X fails the PCP. Must X contain ¢y ?

PROBLEM 19. Which X have the 4~PCP and the p—PIP simultane-
ously?

PROBLEM 20. Which C(K) have the PIP and the PCP at the same
time?

10. Approximation by simple functions — The separable case.

The following theorem is the main result of this section:

THEOREM 10.1. Let X be an arbitrary normed space and let
f : Q — X be a Pettis u—~integrable function. Then the following are
equivalent
(i) {z*f : z* € B(X*)} is a separable subset of Li(u),
(ii) There exists a o-algebra £y C T such that (Q,Z, u|Xp) is separa-
ble, and f is weakly measurable with respect to 3.
(iii) There exists a sequence ( f,) of X—valued simple functions, such that
for each z* € X* one of the following conditions is satisfied:
(a) {z*fu : n € N} is uniformly integrable and p-a.e. convergent
toz*f,
(b) {z*f, : n€ N} is uniformly integrable and convergent in y—
measure to x* f,
(c) (z*fa : n€ N} is convergent to z*f in L1(u),
(d) {z*fa : n€ N} is convergent to =* f weakly in Li(p).
(iv) vs(X) is a separable subset of X .

Proof. (i = ii) Assume, thatthe set {z*f : £* € B(X*) } is separable.
Then there exists a sequence (z%) in B(X*), such that {z3f :neN)}
is dense in {z*f : * € B(X*)}. If I is the o—algebra generated by
all z7 f and by N(u) then, clearly u|Z, is separable and each z* f is To—
measurable.

(i) = (iii)a. Assume that f is weakly measurable with respect to a
separable (Q,Xo,u|Zo) andlet £ = o({E, : n € N}) C 3 be a
countably generated o—algebra, that is u|Zo—dense in Zy. Moreover, let
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my be the partition of Q generated by the sets E;, ..., E,. Put foreach n

o ud
S = ,; uw(E) X

with the convention 0 /0 = 0.

It is well known, that { f,,, o(m,),n € N } is an X —valued martingale
and lim, z*f, = E(z*f|Z) in L1(Q,£, u|E) and p|E-ae. (cf [D-UI).
Moreover, since the conditional expectation operator is a contraction on
L1(u), we have

[1a*las < [ 1o sl

for all n.

This yields the uniform integrability of {z*f, : n € N}. As by the
assumption £ is dense in Xy we have E(z*f|£) = z*f y-a.e. and so
lim, z*f, = =* f u—ae.

The implications @ = b = ¢ => d are obvious, and so it remains to
prove that (iii)d yields (iv) and (iv = i).

(iii)d = (iv) The condition (iii)d means that for each E € X the se-
quence (v;,(E)) is weakly convergent to v¢( E). Hence, v¢(X) is con-
tained in the weak closure of the set U2, vy, (X) and the last set is separa-
ble, since the ranges of all v;, —s are finite dimensional.

(iv = i) Suppose, that {z*f : z* € B(X*)} is non-separable. We
shall prove that v7(X) is non—separable.

To do it, take an arbitrary 27 € S(X*) and h; € Loo(p) such that
(h1,21f) = 1. Assume then, that we have already constructed for an
ordinal 8 < w; afamily {(z}, hy) : @ < B} with the following properties:
(@) z;, € S(z%),

(ﬂ) hy € Loo(/-‘);

(7) ztf € in{z}f : o < v} foreach < B,
san_ )1 fa=q9<p

(6) (h'lixaf)"{ ifa<77<,3

Since {z*f : z* € B(X*)} is non—separable, one can find Tg €
S(X*) such that 5} ¢ lin{z},f : & < B}. Then, applying the Hahn-
Banach theorem we get hg € Lo (p) such that (hﬁ,:r,pf) 1 and
(hg,z%f) =0 forall @ < 8.
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Consequently, we get anet {(z%, hy) : @ < w1 } satisfying (o) — (6)
for all «, B, 7y less than w;.

Consider now the operator T associated with f. We have
177 Chg) — T7(ha)|| > 1

whenever a < 3, and so the set T}‘( Loo(p) } is non-separable in X**. But
lin{xg : E € X} is norm dense in Loo(p) and so linvg(X) is norm dense
in T}‘( Loo(u)). It follows that v¢(E) is non-separable. This completes
the proof of the whole theorem. o

REMARK 10.1. The uniform integrability of the sets {z*fs :neN}
in the conditions (iii)a and (iii)b may be replaced by the uniform integra-
bility of the set {z*f, : n€ N, z* € B(X*) }. This follows easily from
the proof of (i = iiia), if one applies the uniform integrability of the set
{z*f : z* € B(X*}.

Combining Theorem 8.1 with Theorem 10.1 and Remark 10.1 we get
the following characterization of Pettis integrability in the case of separable
measure spaces.

THEOREM 10.2. Let f : Q — X be a function. Then, f is Pettis y—
integrable andvy(X) is a separable set if and only if there exists a sequence
(fa) of X—valued simple functions such that:

(J) The family {z*f, : n€ N, z* € B(X*)} is uniformly integrable,
(Jj) For each z* € X* we have lim,, z* f, = *f p-a.e. .

In the particular case of scalarly bounded functions we get the follow-
ing:

THEOREM 10.3. Let f : Q — X bea scalarly bounded function.
Then, f is Pettis u—integrable and weakly measurable with respectto a sep-
arable measure space (Q,Xo,u|Zo) if and only if there exists a bounded
sequence ( fn) of X—valued simple functions, such that

lim, z*f, = *f p-a.e. for all z* € X* (the exceptional sets depend on
T*).
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The boundedness of ( f,,) in the above theorem means the existence of
a positive number M such that foreachn € N and z* € X* the inequality
|z* fa] < M||z*|| holds p—a.e. and the exceptional set may vary with z*.
However, in this special case, when f,,-s are strongly measurable, it exactly
means that there exists M > 0, such that sup,, || fa(w|| < M u-ae.

As it has been proven in Theorem 8.2 the range of an indefinite Pettis
integral of a function defined on a perfect measure space is norm relatively
compact. Hence, it follows from Theorem 10.1, that such a function is
weakly measurable with respect to a separable measure space.

The following is open:

PROBLEM 21. Let (Q2,X,u) be a separable perfect measure space
and let f : Q — X be Pettis y—integrable. Does there exist a countably

generated o—algebra £ C X such that f is weakly measurable with respect
to the u|E —completion of £?

Observe, that there is a large difference between the 2|£—completion
of £ and the y—completion of £.

Without the perfection of u, the answer is negative (at least if one
assumes the validity of Martin’s Axiom).

DEFINITION 10.1. X has the uy—Pettis Separability Property (u—PSP)
if for each f € P(u,X) the set vf(X) is separable. Similarly, we define
the PSP.

PROBLEM 22. Which X have the y—PSP (or the PSP)? Which X
have the y—PIP and the y—PSP?

PROBLEM 23. Which (Q, X, u) have the property, that each X has
the u—PSP?

PROBLEM 24. Is it true, that if X has the (u-)PIP then it also has the
(p-)PSP?

PROBLEM 25. Which C( K) have the PSP?
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DEFINITION 10.2. X is p—Pettis essentially separable if each ele-
ment of P(u, X) is weakly equivalent to a strongly measurable function.
X is Pettis essentially separable if it'is u—PES for each .

PROBLEM 26. Which X are ( u—) PES?

PROBLEM 27. Which C(K) are PES?

11. The weak Radon-Nikodym property — The general case.

Throughout the previous sections we have been interested in the fol-
lowing situation. There is a function taking its values in a Banach space.
Under, what conditions is the function Pettis integrable? As it has been
shown, the integral is always a measure of o—finite variation,

Now, we shall consider the opposite case: For a given y—continuous
X—valued measure v of o—finite variation, find conditions guaranteeing the
existence of a Pettis y—integrable function f:Q — X,suchthaty = vy.

Several conditions ensuring the existence of a strongly measurable f
are known (cf [D-U]), but we shall be interested here mainly in the non—
strongly measurable case. Unfortunately, for such formulated problem no
satisfactory answer is known, so we shall investigate rather the following:
Which X have the property, that each X —valued measure of o—finite vari-
ation is a Pettis integral?

The following theorem is the starting point for the whole theory. Its
proof makes use of the lifting, however, in the case of a separable X, it
can be done without it. In the case of a measure of finite variation the
theorem is a consequence of a representation theorem of A4 and C. Ionescu—
Tulcea ([IT]). Explicitly it was first stated by Dinculeanu [Di]. The o—finite
case was proved by Rybakov [R]. We shall still present a more general
formulation,

THEOREM 11.1. Letv : T — X be a weak* measure. Iflv]is a

o-finite measure, such that N(p) C N( |v]), then there exists a weak*
scalarly integrable function f : Q — X* such that

(3, W(B)) = [E (z, f)du
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foreachx € X andeach E € X.

Proof. Assume first, that v satisfies the inequality W|(E) < Mu(E)
for all E € X and, take a lifting p on L,(u). Denote for z € X by f,
the Radon-Nikodym derivative of the measure (z,v) with respect to p.

Clearly, |fz| < M p-a.e., and so |p( f;)| < M everywhere.
Define f : Q — X*¥ (the algebraic dual of X) by

(=, f(w)) = p(f)(w)

foreachw e Q andz € X.

It follows, that |(z, f(w))| = |o( fz)(w)| < M||z|| for eachw € Q
andso f:Q — X*,

Since f; = (z, f) p—a.c., we get the equality

Lmﬂ@=ﬂmmw=ﬂﬁ@=@mm)

foreach F € X andeachz € X.

Consider now the general case. According to the scalar version of the
Radon—Nikodym theorem, there is ameasurable function h : Q — [0, c0)
such that

VI(4) = f h dy
A

forall A € X. It follows, that we can decompose Q into pairwise disjoint

sequence of sets £, € X, such that |v|(ENQ,) < nu( EN Q,), for all
EeXandne N.

As we have just proved foreach n € N there exists a weak*—measurable
fan 1 Qn — X* such that

(@0(B) = [ (@, fo)a

foreachQ, D E € X andz € X. Setting f = 3, faxa, we have for
eachz € X

Jy o 0iau= 32 [ o i =S lala =
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= (z, V)|(Q) < 00
Thus, (z, f) € L1(u) and foreach E € 3, the equality

M(E)) = | (s,
(z, v(E)) [E (%, f)dp
holds. o

REMARK 11.1 It is worth to notice, that there are weak*—measures
satisfying the assumptions of the above theorem which are not measures
in the norm topology of X*. In fact, v investigated in Example 4.3 has
such a property: for each A C N we have |v|(A) = cardA if A is finite,
and [v|(A) = oo otherwise. |v| is plainly a o—finite measure such that
Ny CN()).

The property saying that for each p—continuous X *—valued measure
v of g—finite variation there is a weak* measurable f:Q — X* such that

(3, u(E)) = /E (2, f)d

foreach E € X and z € X, can be called the p—Weak* Radon-Nikodym
Property (u — W*RNP). Soitisa consequence of Theorem 11.1, that
each conjugate Banach space has the W*RN P (please notice, that we use
this name in a different meaning than it is used in [Ta, 1984]). f will be
called the weak* density (or Radon-Nikodym derivative) of v with respect
to u.

As a consequence of Theorem 11.1 we obtain the following result [R,
1968]:

THEOREM 11.2. Let v : £ — X be a u—continuous measure of o—
finite variation. Then there exists a weak* measurable f:Q — X* such
that

(2", W(E)) = /E (2*, f)du
foreachx* € X*and E € X. o
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Of particular interest is the case when the X**—valued weak* density
of v:X - XisinP(u, X™).

DEFINITION 11.1. X has the y — W*RN P if for each X—valued
p—continuous measure of g—finite variation there exists f € P (u, X**)
such that

(m***,V(E)>=-/E($***,f)dIJa

foreachz™ € X™™ and F € X.
In the obvious way the W** RN P is defined.

DEFINITION 11.2. If the function, in the case described in the
previous definition, can be taken from P (u,X) then X is said to have

the u—Weak Radon-Nikodym Property (u—W RN P). In a similar way the
W RN P is defined.

REMARK 11.2. [;[0, 1] is an example of a Banach space without
the W**RNP. Indeed L,[0, 1] is complementable in L}*[0, 1] (cf. [H]),
so the W** RNP of L;[0, 1] would imply the RNP of the space, and it is
well known, that L;[ 0, 1] does not enjoy the last property.

It is interesting and useful to know, that the W/** RNP and the WRNP
are determined by a single measure.

THEOREM 11.3. If X has the A\ — W**RNP (resp. \-WRNP), then it
has also the W** RNP (resp. WRNP).

Proof. Let (2,2, ) be an arbitrary complete probability measure
space and let v : £ — X be a y—continuous measure of g—finite varia-
tion. Without loss of generality, we may assume, that y is non—atomic and
|lW(E)|| < u(E) foreach E € X.

(A) Assume first, that X is the completion of a countably generated
o-algebra £ C X with respect to uli. Let (E,) C X be a sequence
generating £ and let ¥ : Q — [0, 1] be its Marczewski function:

x(w) =2 " 37"xp, (w)
n=1
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It can be easily checked, that x~1: £ N x(Q) — P(Q) is a Boolean

o—isomorphism of Bio,;y N x(2) onto £. Let i : £ — [0, 1] be the

image of y under y and, let 9 : [0,1] — [0, 1] be a function defined by

MIO0,0())D = g([0,1D). If¢ = 0o X, then for each E € L, we have

ul§'(E)] = M(E) and the measure algebras of p and )\ are isomorphic,
Letnow  : £ — X be given by

v(B) = v[¢(B)]

We have |[#(B)|| < MB) for each B € £. Hence, by the assumption,
thereis f € P (), X**) (resp. P(), X)), such that v(B) = [ fdi.
It follows, that foreach E € T

U(E)=P—‘/}:Jfo£dp

(B) Assume now, that ¥ is arbitrary and notice that »(X) is a norm
relatively compact subset of X** (resp. X). To see it, consider an arbi-
trary countably generated o—algebra £ C X. With the same notation as
in (A), we have ¥(2) = #(L). In view of Theorem 9.2 the set B(L) is
norm relatively compact. Denote now by E the collection of all complete
measure spaces (2,A, u|A) withA C I being the completion of a count-
ably generated o—algebra T, with respect to pu|Zs. We order E upwards
by inclusion. In view of (A), for each A there is fa €P(p|A,X*) (resp.
P(u]A, X)), such that

U(E)—P—/fAdﬂ'
E

foreach E € A.
We shall prove, that the net ( f,) is Cauchy in the norm of P (1, X**)

(resp. (u, X)).
To prove it, fix e > 0 and take a simple function he : Q — X, such
that

sup ||v( E) —/ hedu|| < e
Bex E

(see lemma 9.4).
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Now fix A € E such that h, is A-measurable. Then, foreachA > A
| fs — hel < 4 sup [[W(E) — / hedpl] <
Eer E

It follows, that for A;,A; > A the inequality | fa, — fa, | < 2¢€ holds,
and so the net is Cauchy, as required.

But E is countably directed, so there exists Ay such that for each
A > Ay wehave | fa — fa, | = 0.

It follows, that each such f, is weakly p—equivalent to f,, and so for
each F € X, we get the equality

mm=P-fh@
E

This completes the proof. &

REMARK 11.3. The measure ) in Theorem 11.3 can be replaced by
any non-atomic perfect measure.

PROBLEM 28. Let & be the first real-valued measurable cardinal, and
let 4 be a non—atomic probability measure on P( k). Suppose, that X has

the u—W** RNP (or the u—WRNP). Does X have the W** RNP (resp.
WRNP)?

PROBLEM 29. Let (Q, X, i) be a perfect measure space, such that
@ QCQandX=QnE.
(b) p(ENQ) = ji(E) foreach E € E.
Assume, that X has the y — W** RNP (resp. the u—WRNP). Does X
have the i — W** RNP (resp. ji—WRNP)?
The reverse implications always hold.

The above problem is strongly connected with the following one:

PROBLEM 30. Let (Q,X, ) and (Q, £, ) be two measure spaces
satisfying the above conditions (a) and (b). Suppose, f € P(u,X) is
given. When does there exist g € P (1, X) such, that g|Q is weakly p—
equivalent to f? For which X, each f € P(u, X) can be extended to
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an arbitrary (perfect) “superspace” (Q,£, %) satisfying (a)~(b)? Which
(Q,X, ) are good for all X9

 Evenif we assume, that v¢(Z) is norm relatively compact, the answer
may be negative [SSW].

PROBLEM 31. LetY 2 X and (Q,X, ) be fixed. Assume, that
eachy : £ — X that is y—continuous and of g—finite variation has an
Y-valued Pettis y—integrable density. Does it follow from this, that X has
the 4 — W**RNP? Suppose, Y has the property for each (Q,X, ). Does
X have the W**RNP? ,

If [0, 1] cannot be covered by less then the continuum closed M-
negligible sets, then the answer is affirmative ([Ta, 1984], p.87).

To prove further results, we need yet new notions.

DEFINITION 11.3. X has the p—Compact Range Property (u-CRP)
if each p—continuous measure v : ¥ — X of g—finite variation has norm
relatively compact range. If X has the p—-CRP for each y — then we say
that X has the CRP.

PROPOSITION 11.1. If X has the W™**RNP, then it has the CRP,

Proof. Let (2, %, i) be a perfect measure space satisfying the con-
ditions (a), (b) formulated in Problem 29, andlety : T — X be a fi-
continuous measure of o-finite variation. Define § : £ — X by setting
U E) = v(ENQ). Itis clear, that v is fi—continuous and #(5) = u(X).

Since X has the W**RNP, there exists f € P(f1, X**) such that for
eachr*c X*and E € £

(2, W E)) = /E (2", f)dy

In virtue of Theorem 9.2, the range of ¥ is norm relatively compact.
Hence, the same holds for v. ¢

PROBLEM 32. Is it possible to replace the W**RNP and the CRP in
Proposition 11.1 by the u—W** RNP and the p—CRP respectively, if i is a
fixed measure?
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It follows from the proof of Proposition 11.1, that the answer is yes,
if Problem 29 has the affirmative solution.

PROPOSITION 11.2. ¢y and L;(p) fail the CRP, for a non-purely
atomic y.

Proof. Let (&,) be the Bernoulli sequence on (2 ,%, ) (i.e. g, take
only values +1 and -1 with the same probability and are independent). Then
e, — 0 weakly in L{(u) but (g,) does not contain any norm convergent
subsequence. In particular v(E) = ( f E s,,du) is a cp—valued measure
without norm relatively compact range.

In the case of L;(u), the measure v : X — L;(u) given by
v( E) = x g has non—norm relatively compact range. &

DEFINITION 11.4. If X, is a sub-c-algebraof £, f € P(u,X), and
g € P(Q,%,u|%),X), then g is called the conditional expectation of
f with respect to Zo (we shall write g = E(f|Zo)) if [ f du = [ gdu
forall F € Xy.

DEFINITION 11.5. Givenadirected set (IT, <), afamily of c—algebras
2, C Z, and functions f, € P((Q,Z;,ulZ;); X) with w € II, the
system {fy,Zz;m € I1} is a martingale if 7 < p yields X, C Z, and
E(fp|Zs) = fx. The martingale is bounded if there is M > O such that
foreachz* € X* and each 7 € II the inequality |(z*, fx)| < M||z*|| holds
p—a.e. The martingale is convergentin P(u,X) if thereis f € P(u, X)
such, thatlim, | f — f] =0

The following gives a martingale characterization of the WRNP and
the W**RNP.

THEOREM 11.4. For a Banach space X the following are equivalent:
(i) X has the WRNP (resp. W** RNP).

(ii) Given any (2,X, 1) and any bounded martingale {f,,Zn;n € N}
of X —valued Pettis y—integrable (simple) functions, then
{fn,Zn;n € N} is convergentin P (u, X) (resp. P (u, X**)).

Proof. Assume (i) is satisfied and take a bounded martingale
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{fa;Zn;n €N} inP(u,X). Assume that M > 0 is such that
[(z*, fa)| < M||z*|| p-a.c. (the exceptional sets depend on z*).
- Let2o =J2; Z,and let ¥ : £y — X be given by

U(E) = lim / fadp
" JE

foreach F € &.
Clearly, |(z*, 5( E))| < Mu(E)||z*|| foreach z* € X* and E € 5.
Hence, ||#(E)|| < M p(E) and ¥ extends uniquely to a measure

vt Xg = 0(Zy) — X satisfying the similar condition for all E €3,.
Setting foreach E € T

W E) = [E E(xz|%0) dwy

we get an extension of v; to the whole X satisfying for all E € X the
inequality
IW(B)|| < M u(E)

Since X has the WRNP (or W**RNP), we get f € P(u,X) (resp.
P(u,X*)) being the density of v with respect to y.

Since X has the W** RNP, it has the CRP (by Prop. 11.1). Thus in
a similar way, as it has been done in the proof of Theorem 11.3, we can
show, that {( f,,Z,) : n € N} is a Cauchy martingale in P (pu, X**).

Since (v|Z,)(E) = [g fudy foreach n € N, we have (z*, fa) =
E({(z*, f)|Z,) for each z* € X* and this gives

li’rzn / |E(z*f|Z0) — z* fu|ldpu = O
Q
Together with the Cauchy condition, this yields
lim | f, - f] =0

Assume now, that (ii) is satisfied and take a measure v : ¥ —» X
satisfying for each £ € X the inequality

IW(B)| < u(E)
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Define for each n € [Ty the function fr by

( E)
fr=
g, u(B) X2

and let ; = o(w). {(fr,Za);7 € IIz } is a bounded martingale in
P(p,X). Ifm < m < ... then, by the assumption, {(frs:Zr,);n€EN}
is convergent in P(pu, X ) (resp. P(u,X*)). It follows, that the whole
martingale is Cauchy, i.e.

V(e > 0)ImV(E > mo)V(n > mp)

sup {/Q (=", fe — fo)ldp : z* € B(X*)} <e
Let f: Q — X* be a weak* density of v with respect to p:
@B = [ (&, f)au
E
foreachz* € X* Ec X.
Since vy, = v|Z;, we have E(z*f|Z;) = o*f; forall z* € X*. It

follows from the martingale convergence theorem, that
V(z* € B(X*))3[n(z*) > m V€ > m(z*)]

[l e ldn < e
Q

Hence, for each 7 > mp and z* € B(X*)

SV Fem s < [ ot [N S Pl < 26

Equivalently,

li;n sup {/Q z*, f — fa)ldp : z* € B(X*)} =

It follows, that there exists in Iy asequence 7 < 2 < ...suchthat

lim sup {/| — fa Mdy : = EB(X*)}
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and so, in particular

im [ (2", fu)d = (3, (B))

foreachz* e X*and Ec X.

In this manner, if g = lim,, f;, € P(u, X) (resp. P(pu, X**)), then
foreach E € X, we get the required equality

v(E) = Lgdn ¢

A similar martingale characterization can be given for the CRP [M.
1980]:

THEOREM 11.5. X has the -CRP if and only if each bounded mar-
tingale in P (p, X) is Cauchy in the norm topology of P (u, X).

The following however is open:

PROBLEM 33. For which X and (2,X,p) each Cauchy martingale
inP(u, X) is convergent?

This can be reformulated equivalently:

PROBLEM 33'. Which X have the property, that each y—continuous
X-valued measure of o—finite variation and with norm relatively compact
range has a Pettis y~integrable density? |

PROBLEM 34. Assume X has the property, that each X —valued u—
continuous measure of o—finite variation and with norm relatively compact
range has a Pettis y—integrable density. Does X possess the y—WRNP?

PROBLEM 35. Assume, that X has the W**RNP or the CRP. Does
there exist Y with the WRNP such that X C Y isomorphically?

A lot of further problems concerning the WRNP, the W**RNP and
the CRP can be formulated yet, but we shall pose rather a different one,
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that is devoted to the Pettis differentiation of a single Banach space valued
measure.

PROBLEM 36. Let X and (Q,X, ) be fixed. For each E € DI
denote by A,( E) the average range of v over E:

_JvE) +
AL(E) = {M(F) :FCE, FEZ”}
What conditions has to satisfy the set A, = {A)E) : E € E*} in

order to ensure the existence of a Pettis y—integrable density of v with
respect to u?

In the strongly measurable case the solutions are well known. The
best reference is [D-U]. In the non-separable case no general solution is
known.

We shall finish this section with investigation of measure taking values
in a Banach space with Schauder basis.

THEOREM 11.6. Suppose (e,,) is a basis in X and (e}) is the associ-

ated sequence of coefficient functionals. Let ( f,) C Lq (u) and a measure
v:X — X be such that

e;y(E)=/fndp for E€eXandneN.
E

Then the following three conditions are equivalent:
(i) v has a Pettis u—integrable density.
(ii) Y"1 faen converges strongly u—a.e.
(iii) 3 2| fnen converges weakly u—a.e.
Either of them implies that

v(E)=P—/Zf,.e,,dp, forE € X
En:l

Proof. Notice first, thatif f : Q - X andv : ¥ — X isapu—
continuous measure then, the set

W= {a:* €eX*:2"f e Li(p) and z*v(E) = /

¥ f du forEeE}
E
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is weak* sequentially closed.
Indeed, it follows from the definition of W that

/ |z* fldp < ||=*|| [[¥||(E) for E€X and 2* € W
E

where ||v|| denotes the semivariation of ». This —together with the Banach—
Steinhaus theorem — gives the uniform integrability of any sequence ( z* f)

such that (z}) C W and z}(z) — z*(z) foreach z € X. Hence, Vitali’s
convergence theorem gives

' f € L1(p) and /x;fdu-—v‘/.x*fduforcachEEZ.
E E

This yields * € W proving the weak* sequential closeness of W.

To prove the implication (iii) — (i) put f = }°%°, f,e, and
V = {ZZ,an€} 1 an €R,p € N}. Then V is weak* sequentially dense
inX*and V C W. Hence X* C W.

To establish the implication (i) — (ii) assume that v( E) = [, fdu for
E € X where f : Q — X. Then, by assumption, e’ f = f, u—a.e. Hence,
according to the definition of basis, f = >, fue, holds u~a.e. which
yields (ii).

The implication (ii) — (iii) is clear. &

COROLLARY 11.1. (Dunford-Morse) If X has a boundedly complete
basis, then X has the Radon-Nikodym property.

Theorem 11.6 can be used to get a simple proof of Rieffel’s character-
ization [cf D-U] of measures having Bochner integrable densities [M, 1976
and L-M].

COROLLARY 11.2. (Rieffel). Let v be an X —valued p—continuous
measure defined on X.. If for every E € Z,f there exists F' € %, such that
F C E and A,(F) is norm relatively compact, then there exists a strongly
measurable f : Q — X such that

u(A)=P—/fdu foreach AcX .
A
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Proof. Using the method of exhaustion it is easy to see that there is a
closed separable subspace of X containing A ,(Q). Thus, we may assume
that X itself is separable. In view of a Theorem of Banach and Mazur (cf.
[H]) X can be considered as a subspace of C[0, 1].

Let (e,) be an orthonormal basis of C[0, 1] and let (ey) be the asso-
ciated biorthogonal sequence. In order to prove the existence of a strongly
measurable f : Q — C[0, 1] such that

(x*,v(E))=/a:*fd,u, for z* € C*[0,1] and EeX
E

it is sufficient, in view of Theorem 11.6, to prove the y—a.e. convergence
of the series Y, f,e, where

(e;,u(E))=/fndu for z* € C*[0,1],neNand Ec X
E

To do it consider F € 2‘;‘ with the norm relatively compact A u(F). since
(ey) is a basis we see that

v(A) _ hd 1
)~ 2 (w7 i) e

1

uniformly for A4 € 2y and ACPF.
Hence, given € > 0 there exists ny with

||/z;;mf,,e,,¢u||gsu(,4) for ACF, A€ and p>m>mn.
A

This yields ||Z2.,, faen|| < € p—a.e. and so the series Y 21 fnen is
a.c. convergent in the norm topology of C[0,1]. One can easily show that
f =3 w1 fuen has almost all its values in X ¢

PROBLEM 37. Let X be a Banach space with basis. What property
of the basis is necessary and sufficient for the WRNP (=RNP in this case)
of X7 Which Banach spaces possessing basis have the WRNP?

PROBLEM 38. Letv : T — X be a measure of finite variation and
let (e,) be a basis of X. Is there a result similar to that in Theorem 11.6
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guaranteeing the norm relative compactness of »(X)? What property of
(es) is equivalent to the relative norm compactness of the range of each
X —valued measure of finite variatiorn?

PROBLEM 39. Assume, that X has the property that each of its closed
subspaces with basis has the CRP (the WRNP or the W** RNP). Does X
itself enjoy the same property?

12. The weak Radon-Nikodym property of conjugate Banach spaces.

In this chapter I present a proof of the following result totally describ-
ing the conjugate Banach spaces with the WRNP.

THEOREM 12.1. X* has the weak Radon—Nikodym property if and
only if X contains no isomorphic copy of l;.

The necessity has been proved in [M-R] and the sufficiency in [Ja]
and [M, 1979].
We shall begin the proof with the following

PROPOSITION 12.1. [, does not have the WRNP

Proof. Let , be the dyadic partition of [0,1] into 2 * intervals and, let
s be the collection of all possible unions of elements taken from =r,. If
(Ay) is an enumeration of U, 7y, then clearly lim, A\(A4,) = 0. Define
ameasure v : L — ¢y C [y, by setting

v(E) = (MEN Ay))

Then, v(L) is a norm relatively compact subset of cg,
lv(E)|| < M(E) for each E € L and v is without Pettis A—integrable
derivative in [. Indeed, let f : [0,1] — I = I} be a weak* density
of v with respect to M. It means in particular, that if (e}) is the standard
biorthogonal sequence in [, then

MEN A = (3, /(B)) = /:E(e,";,f)d)\
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foreachne N.

But the sequence (x 4,) is pointwise dense in {0, 1}1%11, Thus, if y 4
is non-A-measurable cluster point of ( XA,) then x 4 is A-a.e. equal to a
pointwise cluster point of ( (e}, f)). Such a point is of the form (™, f)
for a functional z*** € X***. This means, that f is not weakly measurable
and hence it cannot be a Peitis integrable density of v with respect to ). ¢

DEFINITION 12.1. A uniformly bounded family H of real-valued
functions on (Q, X, u) has the Bourgain property if foreach E € X and
each pair a < b of reals, there is a finite collection F CP(EYN z, +, such,
that for each function A € 7 one can find F € F with
inf {h(w) :w € F} > a or sup{h(w) 1w € F} <b.

The utility of this property lies in the following result:

PROPOSITION 12.2. If H satisfies the Bourgain property, then each
function in M is measurable and each function in the pointwise closure of
H is the almost everywhere pointwise limit of a sequence from H.

Proof. 1t is easy to see that the Bourgain property of H yields the same
property of the pointwise closure of . In order to prove the Proposition
take f € H% (7 —the topology of pointwise convergence) and an ultrafilter
U onH which has f as a cluster point. Then, put for E € X ande >0

H(E,e) = {h € H : sup h(E) — inf h(E) < €}

It follows, that if E € E* then, there exists FF € E N Z* with
H(F,e) € U. Using Zom’s Lemma, we can find for each posmve €a
maximal family P, of pairwise disjoint sets in Z; such, that C(F,e) e U

foreach F' € P,. Itis obvious, that u(Q \Urep, F) = 0. Moreover, if R,
is the family of all finite subcollections of P,, then

fe N NHE"

R€ER: EER

and the set on the right hand side is a member of /.
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Now let foreach m € N the sequence {As, : n € N} be an emu-
meration of Py ,, and let

We have p(Q\B) = 0 and for an arbitrary Wmyn € Amay, the sequence
(hm) defined by

R = le F( W) XA

is on B uniformly convergent to f. Taking for each m € N a function

fm € ﬂ n H(Ak,n; l/k)

k=1 n=1

such that
| fm(win) — flwim)| < 1/k

foreach 1 < k,n < m, we get a sequence ( f,,) C H that is y-a.e.
convergent to f. This gives the required measurability and approximation.

¢

DEFINITION 12.2. Let S be a topological space and let 7 be a positive
finite measure defined on a o—algebra B containing all the Borel subsets of
S. nis said to be hereditary supported, if for each B € B’+ there exists
AeP(B)NB 7 » such that

(x) foreach open U,wehaveUNA=0orUNAe€B;.
We shall write A = supp(n|A).

Itis easily seen, that if 1) is hereditary supported, then foreach B € B;
there exists A € P(B) N B, such that (*) is satisfied and 5( A) = 7( B)

The following are two examples of hereditary supported measures:
1) Each Radon measure.
2) Let (Q,X, ) be complete and let p be a lifting on . Let C, be the
topology defined by taking as its basis, the family
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{p(A\N : A€ Z,N € N(u)} (cf [I-T1, p. 59). Then, 1 is heredi-
. tary supported with respect to C,,.

PROPOSITION 12.2. Let S be a topological space and let H be a uni-
formly bounded family of real-valued continuous Junctions on S. More-
over, let 1) be a hereditary supported measure on a o-algebra B D Bo(S).
Then, if H does not contain any sequence equivalent to the standard unit
vector basis of |y, then H has the Bourgain property.

Proof. Suppose, that H does not have the Bourgain property. This
means, that there exists T € By such that T = supp(4|T) anda < b
such, that for each finite collectlon R CP(T) NB; there is f € H with
inf f(R) < a and sup f(R) > b, forevery R € R.

Put R = {T'}. It follows, that there is f; € H such that if we define
An, A € Bby

Aun={s€T: fi(s) <a}
A ={se€T: fi(s) > b}

then Ay, A1z € B;.
We shall now construct inductively a collection

{Anm :m=1,...,2% ne N} of sets from B; and a sequence ( f,) C
M satisfying the following properties:

Anr12m-1 UAni12m C Anm

frr1(s) <a if s€ Am-l,Zm—l

Jar1(8) > bif s € Apr12m

Assume, we have already constructed {f, : m = 1,...,k} and
{Aam : m = 1,...,2™n = 1,...,k}. By the assumption, we can
find for each m € {1,...,2*} aset T}, € B; N P(Akm) such, that
Tk,m = supp(Tk,m). Moreovcr there is fr+1 € 'H with

inf fis1(Thm) <o and  Sup frer(Thm) > b

forevery m € {1,...,2*}.
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Put now

Ake12m-1 = {8 € Tkm : fre1(8) < a}

Ape12m = {8 € Tkym : fre1(s) > b}

It follows that Ay.1,m € By foreverym € {1,...,2%*1}. Rosen-

thal’s argument [Ro] shows, that the sequence ( f,) is equivalent to the
standard basis of /; in the sup norm. o

As particular cases of the above proposition we get the following re-
sults:

COROLLARY 12.1. Let p be a lifting on Loo(Q, X, 1) and let H be a
uniformly bounded family of real-valued functions defined on Q and such,
that K = p(H). If H does not contain any sequence equivalent to the
standard basis of 1y, then H has the Bourgain property.

COROLLARY 12.2. Let X be a Banach space containing no isomor-
phic copy of l;. If p is a complete finite Radon measure on B( X*) equipped
with the weak* topology, then the family H = B(X) has the Bourgain
property.

Now we are ready to present a proof of Theorem 12.1.

The proof of the sufficiency:
Letv : £ — X be ameasure satisfying the condition

lv(B)|| < u(E)

forall E € £, and let p be a lifting on Loo( ).
By the weak* Radon-Nikodym property of X* there exists
f:€Q — X* such that

p((z, f)) = (z,f) foreach z € X,and

(z,u(E)) = /(a:,f)du foreachze Xand E€X .
E
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Fixe >0, F € T and 2** € B(X*). Then put

H={(z,f): 2 € B(X), |z —z,u( B))| < €}

Since X contains no isomorphic copy of [;, it follows that 4 contains no
sequence equivalent to the standard basis of [;, in the sup norm. In view
of Corollary 12.1, H has the Bourgain property.

It follows from the Goldstine theorem, that (z**, f) is in the pointwise
closure of M and so there are z,, € X, n € N, such that (z,, f) € K for
each nand lim, (z,, f) = (z**, f) u-ae.

Hence we get

(B}~ [ (a7, F)dul < 26
E
by the Lebesgue Convergence Theorem, and this proves the WRNP of X *.

The proof of the necessity:

Assume, that X contains a subspace Y that is isomorphic to [;. Then,
lo is isomorphic to X */Y 1. Denote the isomorphism by R. Moreover, let
T' be an isomorphic embedding of L[ 0, 1] into l,. Then
RT : L;[0,1] — X*/Y is an isomorphism.

By the lifting property of L;[0, 1], there is an operator
S : L[1[0,1] — X* such that RT = Q o S, where Q is the quotient
mapping of X* onto X*/Y'+.

Letv : £ — o, be the measure constructed in the proof of Proposition
12.1. Thenk : L — X* givenby k( E) = Sxg foreach E € L is an X**—
valued A—continuous measure of finite variation satisfying for each E € £
the equality Qx(E) = Rv(E).If g : [0,1] — X* were such that

@ wB) = [ (=, 0

foreach E € L, z** € X**, then R~1Qg would be the Pettis integrable
derivative of v, what is impossible by Proposition 12.1. &

In a similar way we can prove the following result of Haydon [Ha]
(which in fact is a particular case of Theorem 12.1):
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THEOREM 12.2. If X does not contain any isomorphic copy of I, then
each element of X** is measurable as a function on B( X*) with respect to
any complete weak* Radon measure i defined on Bo( B(X*) ,weak*), and
the identity function on B(X*) is Pettis u—integrable.

Proof. According to Proposition 4.1 for each u—measurable
E C B(X*) thereis v(E) € B(X*) such that

(z,v(E)) = -/I;(a:*,:z:)du

foreveryz € X.

From now on we can copy the proof of Theorem 12.1, applying Corol-
lary 12.2 instead of Corollary 12.1. &

Since the canonical projection of X *** onto X* is weak*—continuous,
we get the following:

PROPOSITION 12.3. A dual Banach space has the WRNP if and only
if it has the W**RNP.

We shall apply now Theorem 12.1 to present a condition that is suffi-
cient for the Pettis integrability at least for a certain class of Banach spaces.

* DEFINITION 123. A set W C X is weakly precompact if each
bounded sequence in W has a weakly Cauchy subsequence.

LEMMA 12.1. Let X be a separable Banach space and let
f: Q — X* be a weak*—scalarly u—bounded and weak*-scalarly p—
measurable function. Assume, that for each & > O there is E € T with
#(Q\E) < 6 and such that the set {(f, z)x : ||z|| < 1} is weakly pre-
compactin Le.(p). Then f € P(u, X*).

Proof. Fix§ > 0 and E € X as above. Define T : X — Loo(p)
by T'z = (f,z)xe and observe that the assumption guarantees the weak
precompactness of 7'(B(X)). According to [DFJP] T factors through a
Banach space without any copy of I;. It is now a consequence of Theorem
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12.1, that T™ : Loo(p)* — X* factors through a space possessing the
WRNP. In particular, the same holds for T* : L1(pz) — X*. Hence there
is g € P(u,X™) such that

T*xF=P—/gdu
F

foreach FF € X.
In particular,

(xr, T) = /F (g, 7)du

and so foreachz € X

(f,z)xe=(9,%) u—a.e.

The separability of X yields fxg = g p-a.e. and so fyxg € P(u, X*).
The boundedness of f implies f € P(u, X*). &

DEFINITION 12.4. Let K be acompact space. A function f : K — R
is said to be universally measurable if it is measurable with respect to the
completion of each Radon measure defined on Borel subsets of K.

THEOREM 12.3. Let X be a separable Banach space and let K be a
compact space. If f : K — X* is scalarly bounded and scalarly univer-
sally measurable then f € P(u, X*) for each Radon .

Proof. Let 6 > O and p be a Radon probability on K. Since X is
separable, there exists a compact set L C K such that y( K\L) < 6§ and
(f, z) is continuous on L for each z € X. Let

A={f,z)|s - |l=f] < 1}

and M, ( L) be the set of all real-valued measurable functions on L equipped
with the pointwise convergence topology. As f is universally measurabie,
the set A is relatively compact in M,(L). According to a theorem of
Bourgain-Fremlim-Talagrand [BFT, Theorem 2F], every sequence in A
has a pointwise convergent subsequence and so, it is weakly precompact in
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C(L). A direct application of Rosenthal’s theorem [Ro] says, that A con-
tains no copy of the standard unit vector basis of I;. Since, the canonical
embedding of C(L) into L. (K, u) is a contraction, the set {{f,z)xs :
||z|| < 1} contains no copy of the /;-basis in the Lq( K, @)—norm either.
Thus, it is weakly precompact and Lemma 12.1 completes the proof. &

PROBLEM 40. Which non-separable Banach spaces have the prop-
erty, that given compact K and a scalarly bounded and scalarly universally
measurable f : K — X*, the function f is u—Pettis integrable for every
Radon p?

The function constructed in Example 7.1 shows that in general even
the weak measurability with respect to the Borel sets is not sufficient for
the Pettis integrability.

We shall finish the considerations with proving that the function
f 1 [0,1] — Lg()) given by f(t) = X1o,z (and considered already
in Ex. 7.1) is Pettis integrable with respect to any Borel measure on [0,1].
Indeed, if n € L}, (p) thenn = n* — 5=, where 57", 7~ are taken from the
Jordan decomposition of 7.

Ift € [0, 1] then,

1 1 1
(0,70 = [ fodn= [ fwan' - [ sdn =

1 1
=/O xro.5dn’ —-/O Xrondn” =n7([0,t)) —n7([0,t))

Thus, (7, ) is a difference of two monotonic functions of ¢, and so it
is Borel measurable. The conclusion follows from Theorem 12.3 &

A similar result holds for the function presented in Example 3.3.
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Comments

The examples are mainly taken from [D-U, 1977] and [Ta, 1984].
40 problems are formulated. Some of them are taken from the literature
(mainly [E] and [Ta, 1984]) but some are formulated for the first time (at
least I never read about them). The bibliography is far of being compete.
In fact only papers directly connected with investigated topics are quoted.
The same can be said about the whole notes. Some important topics have
not been touched even (e.g. local theory of sets with the WRNP, and several
geometric properties of Banach spaces). ,

Chapter 2. Theorem 2.2 is due to Tortrat [T].

Chapter 3. Proposition 3.1 is taken from [M, 1979]. It is a conse-
quence of a folk result concerning the existence of a dominating function of
a pointwise bounded family of real-valued functions. Theorem 3.3 comes
from [E].

Chapter 4. The Pettis integral was introduced in [P] where also its
basic properties were established. The o-finiteness of v in Th. 4.1 is due
to Rybakov [R, 1971]. Theorem 4.2 is a variation of a result from [D-F].

Chapter 5. Theorem 5.1 is due to Brooks [Br]. Theorem 5.3 was
proved by Uhl [U]. Theorem 5.4 was proved independently by Diestel [D,
1973] and Dimitrov [Dm)].

Chapter 6. The notion of the core is due to Geitz [G]. He also proved
Theorem 6.1 for perfect u. Its final form was proved by Talagrand [Ta,
1984]. Also from [Ta, 1984] theorems 6.2 and 6.3 are taken. Lemma 6.5
and Theorem 6.4 were independently proved by Drewnowski and Musiat.
Proposition 6.3 comes from Huff [Hu].

Chapter 7. Example 7.1 is taken from [Ph]. The notion of the PIP was
introduced and investigated by Edgar [E]. Also Prop. 7.2 comes from [E].

Chapter 8. Theorems 8.1 and 8.2 were first proved in [G] for perfect
measures, and then, they were generalized (independently and with differ-
ent proofs) by Talagrand [Ta, 1984] and Musiat [M, 1985] to the case of
arbitrary measures. The proofs are taken from [M, 1985]. Theorem 8.4 can
be found in [M, 1987].

Chapter 9. Theorem 9.1 is taken from [M, 1980] Theorem 9.2 is due
to Stegall [F-T]

Chapter 10. Theorem 10.1 is taken from [M, 1985] but it was also
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independently proved in [Ta, 1984]. The PES property was defined in [D-
U, 1983].

Chapter 11. The weak Radon-Nikodym property was introduced by
Musial [M, 1979]. The W** RNP was introduced by Janicka [M, 1980].
Theorem 11.3 was proved by Musiat in [M, 1982]. The CRP was intro-
duced in [M, 1980], where also Proposition 11.1. Theorem 11.4 and The-
orem 11.5 can be found.

Chapter 12. Theorem 12.3 was proved in [RSU]. The Bourgain prop-
erty was introduced by Bourgain (unpublished) (cf. [RS]). Its basic prop-
erties were also proved by Bourgain.
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