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Let (Q,X, P) be a probability space.
A subset of K of L;( P) is called uniformly integrable if

lim sup/ |fldP =0,
€0 feK J[|f]>c]

thatis, if givene > 0 thereisac, = ¢ > 0 sothat fort > S s 1F1dP <
eforall f € K.

This definition, which is preferred by probabilists, has another ver-
sion.

THEOREM 1. A subset K of L1(P) is uniformly integrable if and
only if K is bounded and given e > 0 thereisa § > 0 so thatany E € X
with P(E) < 6 has [, |f|dP < eforall f € K.

(*)  Lectures presented at the School on Measure Theory and Real Analysis.
Grado (Italy), October 14-25, 1991.

(**) Address of the Author: Department of Mathematical Sciences, Kent State University,
Kent, Ohio 44242 (USA).
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Proof. Suppose K is uniformly integrable. Take E € ¥ and notice

/ fldP = f |F1dP + f |ldP
E En[|f|<el En[|f]>c]

g/ch+/ If|dP
E [ f]>c]

=cP(E)+/ IFdP .
[1f]>el

This holds in particular for E = Q and so for any ¢ > 0

that

171l < e+ [{ L

which, if we choose ¢; > 0 so that f[lfl>cnl |fIdP < 1forall f € K,
gives
Ifll<er+1.

K isbounded in L;( P). Again, for general E € ¥

f |f|dchP(E)+f |f|dP
E Uf]>el

tells us that if we choose c big enough then f[ 1>l | f|dP can be made small
uniformly for f € K; this having been done, careful control of P( E) will
ensure complete control of [, | f|dP uniformly for f € K. More precisely,
if € > 0 is given then K ’s uniform integrability assures us of ac > 0 so
that f[|f|>c] |fIdP < €/2 forall f € K; but now should P(E) < = then
Je|fldP < eforall f € K.

Conversely, suppose K is bounded and foreach e > 0 thereisa § >0

such that whenever P(E) < § wehave [, |f|dP < eforall f € K. Then,
regardless of ¢ > 0, we have

cxilfisa < |Flxtif>a

and so

Pilfl>a< [ 1ndP< [ Iflap= i)

[ f]>el
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If welet M = sup{||f||: : f € K} then we see that
M
Pllfl > cl L =

forall f € K. It follows that if c is chosen so that -‘ci < 6 (6 corresponding

to the ever-present € > 0) then P[|f]| > ¢] < & so Jis15a [f1@P < e for
all f € K and K is uniformly integrable.

EXAMPLES.
1. Suppose p > 1. Then bounded subsets of L,(P) are uniformly inte-
grable. Indeed, sets that are bounded in L,(P) are bounded in L ( P)

and Holder’s inequality ensures us that for E € £ and ||f]|, < M we
have

/Elf [dP < ||£llpllx£lly < MP(E)'/e

where %+ % = 1.

2. More generally, if @ : [0,00) — [0,00) is an increasing function
such that & — 00 as z — oo and if [ ©(|f(w))dP(w) < M <
oo for all f € K, then K is uniformly integrable. Indeed, ife > 0 is
chosen then one can find T, such that @ (t) /t > M/e forallt > T,
It follows that for all f € K

[ indP<s [ @olap<e.
[ f]>T,] [f]>Ts]

We hasten to add that conditions such as 2. arise frequently in both
harmonic analysis and probability in the study of tail behaviour of special
sums.

Actually, 2. is quite close to the heart of things with regards to uniform
integrability. Here’s an old gem of de la Vallée Poussin.

THEOREM 2. (de la Vallée Poussin). For K C L1( P) to be uniformly
integrable it is both necessary and sufficient that there exist a convex even
function ® : R — R such that ®(0) = 0, limy0o 22 = 00 and
SUP feg JO(f(w)])dP(w) < oo.

As one might expect, not all (bounded) subsets of L ;—spaces are uni-
formly integrable. To highlight a natural example we look to L[0, 1].
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EXAMPLE. Suppose that (f,) C L1[0, 1] are disjointly supported
functions, non-negative real-valued and having fol fa(t)dt = 1 for each
n. DRAW the graphs of such! It ought to be plain that the supports of f,
necessarily shrink to a set of measure zero yet in no way can we force the
indefinite integrals to behave. In fact, and this is very instructive, for such
a sequence ( f,,) it is so that regardless of scalars (a,) we have

DN anfalli =) lanl s

after all, [Znanfa| = Zn|as|fs so integrating term—by-term soon reveals
(41).

Part and parcel of the study of uniform integrability is the remarkable
fact that the above example is, in a very strong sense, the only obstruction
to a bounded set’s uniform integrability. Before we come to understand
why this is so, it is important to relate uniform integrability with the “weak
topology” of the Banach space L;( P).

Weak topologies on Banach spaces came to be because the norm topol-
ogy of a Banach space is inadequate. There are two weak topologies of
interest to us. They are delicate to the touch, each has its own character
and we must be careful to be sympathetic to each.

First, let us talk about the weak topology of a Banach space X. Sup-
pose we denote by X * the linear topological dual of X, that is, X* consists
of the linear continuous functionals on X. X* is itself a Banach space and
there is a weakest locally convex linear topology on X which ensures each
member z* of X* of its continuity; this is what’s called the weak topology.
It’s a linear topology on X in which a net (z4), converges to £ € X if
(2*(34q))q converges to £*z for each z* € X*. Every weak neighborhood
of zero contains a set of the form

W(ai,..., 25,6 = [ \[zi(2)| < €],
k<n

sets which contain subspaces of finite codimension. The weak topology
is a locally convex linear topological Hausdorff topology on X such that
the dual of X, when X is equipped with this topology, is X*. The weak
topology is not complete nor is it metrizable if X is infinite dimensional. -
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Nevertheless, the weak topology is a good friend in the study of the finer
structure of X .

Starting with the Banach space X passto X™* and on X* we can define
the “weak*” topology; a net (z%)a in X* converges in the weak* topology
to an z* € X* if (z}(7))q converges to z*(z) foreachz € X. Again,
the weak* topology in X* is a locally convex linear Hausdorff topology;
the dual of (X*, weak*), the topological dual is X! In fact, the weak*
topology is defined so as to make such so. Every weak* neighborhood of
zero contains a set of the form

W(z1,...,2n,€) = [|[|2*(zk)| < €] .
k<n

The weak* topology is neither complete nor metrizable if X is infinite
dimensional.

The weak and weak* topologies are kin. They are not the same (in
general) but each helps understand the other. Principal in this understand-
ing is an appreciation of compactness in each topology.

The weak* topology appreciates bounded sets: if B C X*isabounded
set, then B¥" is weak* compact. This is a famous theorem of Alaoglu.

In the weak topology, compactness is more elusive but, like the fair
maiden, it is worth pursuing. IN FACT, the famous theorem of Eberlein
and Smulian tells us that a subset K of a Banach space is relatively weakly
compact if and only if K is relatively weakly sequentially compact, a sit-
uation which occurs precisely when K is relatively countable compact;
what’s more, if K is a weakly compact subset of X and A C K thenevery
point of A¥*%* is the weak limit of a sequence of points from A. Weak
compactness, once in hand, is an analyst’s dream. All’s well — sequences
suffice!

How does one ascertain when a relatively weakly compact set is so?
Here’s the basic strategy — the only general strategy available. Take a set
K in the Banach space X that’s norm bounded (by the way the Banach—
Steinhaus theorem should warn us off looking for weakly compact sets in
all the wrong places — they are norm bounded). Look at K as a subset of
X* and take K’s weak* closure K" up in X**: if K%¥" never passes
outside of X then K is relatively weakly compact and K *¢%* g precisely,
K%, Thatthisissoisa simple comparison—of-topologies argument made
possible through the good graces of K**"’s weak* compactness.
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Okay, so what? Here’s what!

THEOREM 3. (Dunford-Pettis). A subset K of L1(P) is relatively
weakly compact if and only if K is uniformly integrable.

This theorem is more than fifty years old. It is still stunning. What's
more, its proof is still worthy of serious study.

On the one hand, we have the duality concepts so pertinent to the
notion of weak compactness. How can they be handled, controlled? Here’s
how! The dual of L{(P) is Lo (P) where the action of g € L(P) on
an f € L1(P) is given by

o(f) = fg F(w)g(w)dP(w) ;

this is the Radon-Nikodym Theorem in action. Under this identification,
l19]loo = 119]|L.(p)+ and all is well in life.

What about L ,( P)*? Here we hit asmall, a very small, snag, L,,( P)*
can be described but it requires us to pass into the nether-land of finitely
additive measures. More precisely, if 4 : ¢ — R is a bounded, finitely
additive measure, then f gdu can be made sense of for any g € Loo(u).
How? Well, if g were simple, then it’d be easy and it’d be easy to see that
| [ 9dp| < ||9]lool2|(2) where ||g||oo is the (essential) supremum norm of
g € Loo(P) and |p|(Q) is p’s total variation. The density of simple func-
tions in L ( P) tells us that [ gdu is well-defined for each g € Loo(P).
The careful student will note that we’ve told a small lie here — one ought to
make sure that [, gdp = [, hdp foreach E € X ensures g = h P-almost
surely—so one must ask of y that |u|( E) = 0 whenever P(E) = 0.

So be it.

Here’s the punch line: Ly (P)* can be identified with the (Banach)
space ba,(Z) of all bounded additive measures i : ¥ — R that vanish on
P-null sets. Here the identification of z* with y entails

2*(g) = /Q o(w)du(w) ,

where

llz"|| = lul (L) .
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All this is well-known and easy.
Take K C L1(P) and suppose K is uniformly integrable. Thanks to
Theorem 1, we know that K is L ( P)-bounded and that for each ¢ > 0

thereisa§ > 0 so that [ |f|dP < eforall f € K whenever P(E) <
6. BUT K'’s boundedness ensures us that j ®eck* C Lo(P)* is weak*

compact. If we take u € K"***" then u(xz) can be approximated by
xe(f)’s where f € K, that is, we know that at least

[u(B)| = |u(xEg)| < sup I/ fdP|
feEK JE

_<_supf |f|dP .
E

feK

It follows that given ¢ > O thereisa § > 0 so that if P(E) < 6 then
[u(E)| < € : p is countably additive and P—continuous, y belongs to
Li(P)!

The converse is not so easy, nor should it be. There are bigger fish
to fry. In fact, a critical argument in establishing the converse goes back
to Lebesgue and Vitali (albeit their interest was in case of Q = [0,1],

Z = {Lebesgue measurable sets} and P = Lebesgue measure). Here’s
what Lebesgue and Vitali had to say (about this).

THEOREM 4. (Lebesgue-Vitali). If ( f,,) is a bounded sequence in
L1(P) such that for each E € T we have

lim / fadP =0,
n JE
then {fy, : n € N} is uniformly integrable.

If not(!) then there is an €, > 0O such that regardless of m € N and
6>0thereisan Es= E € X with P(E) < 6 and an n > m such that

I/ fadP| > ¢, .
E

THINK ABOUT IT!
OK?
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Find E; € ¥ and n; so that

| fmdpl > €
Ey

Find 6; > O so that if P(E) < é;, then [ |f, |dP < ¢
Find E; € X and mp > m so that P(B;) < & yet

| fnzdplzfo-
E;

Find §; > 0 so thatif P(E) < 6;, then [, |fy, |[dP < £ and, if you
must, ensure yourself that §; < 6;/2.

Continue in this way to find sequences ( Ey) in X, positive integers
m<m<...<mn <...and positive numbers §; > 0 so that 6,1 <
6k/ 2 and

[ fudPize
E;
while

P(Eg+1) < 6;/2

and if P(E) < &, then | fE fudP| < 3. OK?
Of course, it follows that

P(Ege1U...UEgqnU..)) < P(Egs1) + ...+ P(EBrem) + ...

51: 5k+1

< I

< &
so that

€0
_/ | foe | < ik
Ep U UEg mU...
If we let
Ar = Ek\(Egs1 U.. .U Egen U.. 1)

then

| [ fwdP|= | fudP|
A E\(Ex1U.)

NLMWFI fudP|

Eyn( Ege1U...)
€0
>3—.
= %
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But the A}’s are pairwise disjoint and A, C E; so

P(Ap 1 U...U..) < & .

Letk; =1.
Let k2 be any m > k; so that

[ fmapl<
Ay, 4
Let k3 be any m > k, so that

€0
A"l UA[;2

In general, k; will be any m > k;_; such that

€0
| faydPl < 2.
Aw U Ay,

A consequence? Of course,

3
[ fog@Pl2 2eo
Ay,

Also,

P(Ag, UAg,,U...U..) <

S P(Ak;+l UAIC,'+2 U e

< 51;}
so that

€0
T, | < =
|'/;1k- UA;. U nk]l 4

j+1 j42
Let@Q = A UAL U...
Then regardless of j

f f,,,;j dP = ( + /
Q A, U...UA;;’.__l A

kj

+ f ) foe, AP
Aki*'l UAki+2 u...

49
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which in modulus must be
> e /4.

OOPS!

How does the Lebesgue—Vitali Theorem relate to the Dunford—Pettis
Theorem? Well, suppose K C L;(P) is relatively weakly compact. To
show K is'uniformly integrable consider the alternative: K is bounded so
there must be an g > O so that regardless of n we can find f, € K and
E. € X so that even though P(E,) < ¢, | [ fadP| > €. But (f,)
must have a weakly convergent subsequence ( f,, ) with weak limit f, say
in L1 (P); it follows that (gx = f,,, — f) is a bounded sequence in L ( P)
that goes to zero weakly. In particular, foreach E € ¥

lim/gde=0
k JE

{9k : k > 1} must be uniformly integrable thanks to the Lebesgue—Vitali
Theorem. It follows that {gy + f : k > 1} = {f,, : k > 1} is uniformly
integrable too. OOPS! . '

Crucial to the above argument is the fact that both relative weak com-
pactness and uniform integrability are sequential in nature. A set K C
L1(P) is relatively weakly compact (respectively uniformly integrable) if
and only if every sequence ( f,,) from K has a subsequence ( f,, ) such that
{fw) such that {f,, : k > 1} is relatively weakly compact (respectively,
uniformly integrable).

ACTUALLY, the proof of the Lebesgue—Vitali Theorem holds promise
for much more than what’s delivered in the Dunford—Pettis Theorem. A
careful inspection of the proof as presented above will soon uncover the
following: if K is a bounded non uniformly integrable subset of L;( P)
then one can find a sequence ( fi) in K, and € > 0 and a sequence ( E)
of pairwise disjoint members of X such that for all &

| frdP| > €.
E;

Now for a real treat.

Rosenthal’s Lemma. Let (u,) be a bounded sequence of bounded
real-valued finitely additive measures defined onX, € > 0 and (E,) be a
sequence of pairwise disjoint members of .
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Then there is an increasing sequence (m) of positive integers such
that for each k.

|t (Ui B < €.

Proof. Let||u,|[1 < M foralln. SplitN into a countable union Up M),
of pairwise disjoint, infinite subsets M,.

Optimistically speaking, MAYBE there’s a p for which no k € M,
satisfies

|kl (Usens, j7eEf) > €.
If this happens, then I'm happy since it means that for each k € M,,

|kl (Ujen, i Br) < €
and all that need be done is list the members of M, in ascending order

Mp = {m1 < my <N}.
Realistically, it may be that for each p there’s a kp € M, such that

|k, [(Usens, jp, Ej) > €.

Notice that
| [(Ug Bi) + |k, |(Ujens, 24, B
< | l(UgEy) + |2k, |(Un B\ U, Ex,)
<M.

Hence

|k, |(UEE) < M — €.

Replacing () by ( ki,) and ( Ey) by (Ey,) in our arguments above
we can take an optimistic view, which will be quickly rewarded if appli-
cable or we can take a realistic view. Realistically though we soon find
ourselves with an inequality of the form

|k, [(UEL,) < M —2¢.

M is only so big so realism only lasts so long. Sooner or later (but some-

time) optimism wins the day. And when it does Rosenthal’s lemma is
proved.
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We have in mind to apply Rosenthal’s lemma to a sequence ( f,,) in
the norm bounded non-uniformly integrable set K C L;( P) which comes
accompanied by an € > 0 and asequence ( E,,) of pairwise disjoint meme-
bers of X such that

l[E"fndPlzé-

The measures we wish to consider are p,(E) = [ fadP and € = €/2.
The result is a sequence n; T oo such that

/ \fruldP <
Ush En;

So what? Well, here’s what: if (a,,) is any scalar sequence then

(ST Y

|| Zkakfu |1 2 / |Zkak fa, (w) |dP(w)

Ug E',.k

> [ 1Bsnfu (@), @)1EPW) — [ [Broifo () x4, ()| 4Pw)

> 5 f 0k Foe ()| dP(w) — Zea | For () |dP(w)

B, Ujsk En;

_ €
> Ezklan{ - EZklakl ]

Since ( f,, ) is bounded (say by M) we always have

1) arfullt < MY lak|
k k

SO

5 Yo lonl <[ Y anfall < M Yo
k k k

We’ve proved the following.

THEOREM 6 (Kadec—Pelczynski). If K is a bounded non—uniformly
integrable subset of L1 ( P) then K contains a sequence which is equivalent
to the unit coordinate vector basis of ;.

In truth, more is so. The sequence extracted above is what Rosenthal
called “relatively disjoint”. Such sequences span complemented copies of
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¢y in L1(P). Since there are uncomplemented copies of £; in [1[0, 1]
(though they’re not easily located), this indicates the special character of
the above line of argumentation. Before broaching a new line of investi-
gation involving uniform integrability and weak compactness in L;( P) it
seems worth while to collect a number of equivalent conditions some of
which we’ve seen and some of which we’ve not seen.

THEOREM 7. Let K be a subset of L1( P). Then the following state-

ments regarding K are equivalent.

1.
2.

3.

K is uniformly integrable.

K is bounded andfor eache > 0 thereisa$ > 0 such that ifP(E) <
6 then [, |f|dP < eforall f € K.
For each e > 0 thereisa c, > 0 so that for ¢ > Co

I/ fdP|<e forall f € K .
[1f[>c]

K is bounded andfor eache > O thereisa§ > O such that if P( E) <L
6 then| [, fdP| < eforall f € K.
K is relatively weakly compact.

No sequence in K is equivalent to the unit coordinate vector basis of
4.

K is bounded and given any sequence ( E,) of pairwise disjoint mem-
bers of

limlf fdP| =0, uniformly f € K .
n E,

There are a few surprises in this next theorem.

THEOREM 8. Let X be a closed linear subspace of Li(P). The

Jollowing statements about X are equivalent.

1.

Bx is uniformly integrable.

2. By is weakly compact.

3. X is reflexive.

4,

5. X contains no subspace isomorphic to ¢, that's complemented in

X contains no subspace isomorphic to £;.

L1(P).
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6. X does not contain £%’s uniformly. A Banach space contains £}’s uni-
formly if there is a K > O so that for each nthereisal — 1, linear
operator u, : £} — X such that ||u,|| ||u;}|| < K.

7. X does not contain £}'s uniformly complemented.

8. Thereis 1 < p < 2 and a probability . on X such that X is isomor-
phic to a closed linear subspace of Ly(u).

One would be irresponsible if when talking about uniform integrabil-
ity no notice was given to probability. To give a bit of the background we
recall that if ¥y is a sub—o—field of the o—field £ and f € L;(P) then
there is a Z,~measurable function, called the conditional expectation of f
given X,, denoted by E ( f|Z,) defined by the relationship

/E fdp = /E E(f[S,)dP

whenever F € X,.
This follows, by the way, from the Radon-Nikodym Theorem applied

to the measure [, fdP(E € Z,) which is absolutely continuous with re-
spect to P’s restriction to Z,,.

We list here a number of properties enjoyed by the conditional expec-
tation; their proofs may be found in many books on probability, a few in
analysis and too few in measure theory.

THEOREM 10.

1. E(|%,) takes L1(Z, P) into L1(Z, P) in a linear, monotone non—
increasing manner with E( f|Z,) actually in L1(X,, P) for each f €
Li(Z, P); further more, for f € L1(Zo, P),E(f|Z) = f P|z,—
almost surely so that E (|Z,) is a linear projection of L1(X , P) onto
L1(Z,, P).

2. If fu, fo € L1(Z,P) and f, 1 f, almost surely, then E(falZ) T
E ( fo|Z,) Plz, almost surely.

3. If fu, f. 9 € L1(Z, P) and | f,| < g almost surely while f = lim,, f,
almost surely, then E( f|Z,) = lim, E( f,|X,) P|, almost surely.

4. If ! is a sub o—field of X, and f € L(Z,P), then E(fIZ"
E (E (f|Z,) |Z") P|z+ almost surely.

5.If f,gand fg € Li(Z,P) with f € Li1(Z,, P) then E ( fg|%,)
fE(g|Z,) P|z, almost surely.
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6. If1 <p<Looand f € Ly(Z,, P) then E(f|%,) € Lo,(%,P) and

ECHZ I < 111l

A sequence ( f,) in L1(Z, P) is called a martingale if there is a cor-
responding increasing sequence (Z,) of sub o—fields of ¥ such that fn 18
2, measureable and E ( £, [Z,) = f«P|z, almost surely.

Though martingales have been under intense scrutiny for better than
half a century, the grand dad of martingale theorems is still one of the most
stunning.

THE MARTINGALE CONVERGENCE THEOREM (Doob) Every L,-
bounded martingale sequence is almost surely convergent.

It is natural to ask when a martingale is convergent in mean. The
result, also due to Doob, is as follows:

MEAN CONVERGENCE OF MARTINGALES An L,—bounded mar-
tingale sequence converges in L1—mean if and only if it is uniformly inte-
grable.

Of course the L;-boundedness cited above is done so for emphasis
and is not necessary since each of the pertinent conditions implies ;-
boundedness.

Doob’s Theorem on mean convergence was proved by Doob directly
using the very definition we started with of uniform integrability. However,
it could have been culled from an old result of Vitali which in our terms
goes as follows.

THEOREM 11 (Vitali). A subset K of L1( P) is relatively norm com-
pact if and only if it is relatively weakly compact and relatively L,( P)—

compact (i.e. relatively compact in the topology of convergence in pro-
bability).

Proof. Suppose K is relatively weakly compact and relatively L,—
compact. Let (f,) C K andlet M = sup{||f|| : f € K}. Thereis a
subsequence (g,) of ( f,) that converges in L,( P) to some f; the M-ball
in L1 (P) is Lo—closed, thanks to Fatou’s Lemma and so llfll1 £ M. Of
course gp, —f — 0 in Lo(P) and {g,— f : n> 1} is uniformly integrable.
Therefore given € > 0 there’sa § > 0 so that whenever P(E) < 6 we
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have [ |9» — f|dP < e, for all n. Moreover, there isan N = N, € N so
that if n > N then
' Pllgn—fl> €l <6

after all (g, — f) is L,( P)-null. Let n > N and you realize that

||9n-;flll=/ +/ lgn — fldP < e+ €= 2¢
llgn—FfI<el  Jl|gn—fl>el

and so ||g, — f||1 — O.
Martingales are ever present in the study of weak convergence in
L1(P). Here’s why.

THEOREM 12 (Gaposhkin). Suppose (Q , X, P) is a non—atomic prob-
ability space and ( f,,) is a weakly null sequence in L1( P), then thereis a
subsequence (g,) of (f,) and a sequence (d,) C L1(P) such that

> " llgn — dalls < 00
n

and yet for each n,
E(d,|d1,...,dn-1) =0 almost surely .

Such sequences are called martingale difference sequences because
if we let H, = X2 ,d; then (H,) is a martingale sequence. Martingale
difference sequences enjoy many of the properties of independent random
variables and all the properties of orthogonal sequences.

Remarkable as Gaposhkin’s Theorem is, its proof is more so.

Proof. Letm; = 1.

Choose A( D and A( D to be disjoint members of T with A(ll) U A(Zl) =
Q and P(A“)) P(A(D)

Define d; = xAgn — X4 Plainly, [ didP = 0 and ||fs —d|: <
maX(l,22IIf:

I#2  For future convenience, we let B = max(1,2||f1]|+ 2).
Pick np > m; so that

(1) '
[ miPI< 557 =12
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Approximate f,, on A(ll) and A(zl) by simple functions ffz) and féz) SO
closely that

1
/Agn |fm = £iP|dP < P—;-f%)-)- i=1,2.
Set
Fo= A0 xap + 137 xap0
Put
dy = f» —E(f2|d1) .
Of course,

E(d2|d1) =0 almost surely .

It is plain and easy to see that on Af- D,

1
E = — ;
therefore, on A{" we have almost surely that

|E(f2]d1)|
< lE(]?Z - fnz |dl)| + IE(fnz Idl)l

_ 1 . 1

1 P(AD) 1
< P(ADy 3-22 © P(A&")I/Agn T 0P
1 1 PAY) 2

S 3.22 " P(AMy 3.22  3.22°

Now we can compute ||dy — fi, ||1: We do it piecemeal:

_/A(-,) |d2 — fo, |dP = /A‘.” |72 —E(f|d1) — fu |dP

<[ V= tuldP+ [ E(hlanap)
ASI) Af-l)

o Py | 2PA”) _ PA®)

= 3.22 3.22 7 22
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Summing over the A{" s gives

o = fulls <3 [ 102~ fuldP

The next stage starts by listing the sets of constancy 4{? ., AD of
dz and make no mistake about it d; is a simple function thanks to the utter
simplicity of d;. The sets ( Af 2 )i<i, Partition Q into disjoint members of
2 and both d; and d, are constant on each A( 2 1t follows that the o-field
o(d,dz) generated by d; and d; is just that generated by {A( 2 <wn}
and so is finite. What’s more, for any g € L;(P), on A(Z) we have

1

E(g|di,d2) = m e

gdP

Now choose n3 > my so that
P(A“’) .
|/(2 fas dP| < EWER i=1,...,1n.

Approximate f,,, on Af-z) by a simple ff 3 so that

P(A?)
— £3 el
o T — 7P <5557
Set
fz= Effa)x,;g» :
i<y
Define

ds = f3 —E(f3|d1,da) ;

note that ds is simple, E(d3|di,dz) = 0 almost surely.
Check that on each Af- 2

2 P(A)
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Use this to conclude that
/ |E(f3|d1,d2)|dP < 2
3.23
so that
Ids — Fallt < 25
Tra la, tra la!

Let’s pursue just one consequence of life as a martingale difference
sequence. We have in mind the sequence provided by Gaposhkin.

THEOREM 13 (Freniche). Any weakly null martingale difference se-
quence (d,,) in L1(P) has norm null arithmetic means.

Proof. Keeping in mind the fact that a weakly null sequence in L ( P)
is uniformly integrable, let M > 0 be (momentarily) fixed and supply an
€ > 0 to the proceedings.

Lete, = d'nX[ldnls M and let h, be given as follows
hi=e1,hy = E(eqlds,...,dp1) n>2;

by golly, (e, — hy) is a martingale difference sequence that’s uniformly
bounded by 2 M and adapted to the sequence o(dy, ...,d,). Moreover,
(en — hy) is an orthogonal sequence!! THINK ABOUT IT!! If (Ay) is
any martingale difference sequence adapted to the sequence (X, of sub o
fields with A, € L, ( P) then

[ Ansabmap = [ EBmintalza)ap

_ /A,,,E(Amﬂ,lzm)dP =0

Zdn= E(dn—en)'l' E(en—hn)"' Zhn
n<N n<N

n<N n<N
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Uniform integrability lets us choose M so big that ||d, — e||; < € for all
n as well as assuring that ||h,||1 < € as well. It follows that

122 dally 11D Cdn— el + [ D Cen — hadl1 + | 3 il

nKN n>N n<N n<N

< Ne+ || ) (en—h)|l2 + Ne
n<N

< Ne+2MVN + Ne.

So
1 2M
— d < €4 — + .
N” E_N: ”1 - /—-N €

and the band plays on.

Close on the heals of Gaposhkin and Freniche is the following beau-
tiful result about L ( P).

COROLLARY (Szlenk). Any weakly null sequence in L1(P) has a
subsequence with norm null arithmetic means.

In case you’re wondering about atoms being present: don’t worry, be
happy. The atomic piece of L;( P) is isomorphic to a subspace of 1, a
Banach space long known to enjoy the “Schur property” — weak and norm
convergence of sequences in £; coincide.

Armed with Gaposhkin’s Lemma. Aldous and Fremlin took a close
look at 1 ( P) and, with the help of some of the many beautiful inequalities
available to martingale difference sequences, proved the following.

THE ALDOUS-FREMLIN DICHOTOMY Let ( f,) be a bounded se-
quence in L1(P). Then either ( f,) has a norm convergent subsequence
or (fn) has a subsequence ( g,) which admits lower €,—estimates, that is,
Jfor some subsequence (g,) of (f,) and some C > 0, regardless of the
scalar sequence a,, we have

(Y [0l <13 angalls -

It has always been so that uniform integrability’s role in functional
analysis was tied closely to the study of operators, particularly between -
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classical Banach spaces and general Banach spaces. The Dunford—Pettis
Theorem itself was used immediately by Dunford and Pettis to study “rep-
resentable” operators. Here’s what they proved.

THEOREM 14 (Dunford—Pettis). Let u Li(P) — X be a repre-

sentable operator, that is, suppose there is a strongly measurable g : Q —
X that's P—essentially bounded such that

uf = Bochner ffgdP feLipP).
Then u takes weakly compact sets in L1(P) to compact sets in X .

Proof. If u were representable by a simple g then 4 would be a finite
rank operator hence compact and so in such a case 4 would take bounded
sets into compact sets.

Generally, representable operators are close enough to the above set—
up to ensure they take uniformly integrable sets into compact sets.

If e > 0 is given and K is uniformly integrable, then using the defi-
nition of strong measurability and Egoroff’s Theorem we can find a simple
function h : Q — X such that P[||h — g|| > €] is small-small enough

that all the integrals f[“h_g”>d |f|dP are very small regardless of f € K.
The result will be

uf=/fgdP=/f(g—h)dP+/fth

=/ f(g—h)dP+/ f(g—h)dP+/fth.
[lf~sll<el [l —gll>¢

For f € K we get that

uf = something of + something of + [ fhdP .
small small
norm norm

Conclusion: {uf : f € K} is totally bounded in X.

Dunford and Pettis went on to prove that ifu : L1(P) — X isa
weakly compact linear operator with a separable range, then u is repre-
sentable. Soon thereafter, Phillips noted the following
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THEOREM 15. (Phillips). Every weakly compact linear operator u :
L1(P) — X has a separable range.

Proof. Again uniform integrability plays a role.

Letu : L1(P) — X be a weakly compact linear operator. To prove
u(L1(P)) is separable it’s enough to prove {u(xg) : F € 2 } is separa-
ble, and this will follow if we can show {u(xg) : E € I} is relatively
compact. Solet ( E,,) be asequence from X and look at £, = a(Z,,)) the o—
field generated by the E,,’s. If we look at L1(Z,, P|x,) we get a separable
closed linear subspace of L1( P) and s0 u, = u|,(z, p-3,) is weakly com-
pact and has separable range. By the Dunford-Pettis result cited above,
up is representable hence {u,xg) : E € X,} is the image of uniformly
integrable family—namely, {xg : E € X,}. Theorem 15 follows now from
Theorem 14.

So weakly compact linear operators from L;( P) to any X are repre-
sentable and hence map weakly compact sets to compact sets. This enun-
ciates what is usually called the Dunford—Pettis theorem for operators on
Li(P).

A particularly striking consequence of the above circle of ideas is a
frequently useful theorem of Grothendieck (which he ascribes to Phillips!):
if K is a weakly compact subset of a Banach space and y is a regular Borel
(probability) measure defined on ( K, weak) then i’s support is separable.
The idea behind the proof is so elegant it deserves a few words. We may
as well suppose p is a probability. Next, the Krein—Smulian Theorem says
K’s closed convex hull and its absolutely (=balanced) closed convex hull
are both weakly compact so we might just as well assume K is a abso-
lutely convex and weakly compact. Now p has a barycenter in K: there
is a unique € K such that for each z* € X*, z*(2) = [, z*(k)du(k);
it follows that if f € By,),) then there is a unique u( f) € K such that
for each z* € X*, z*(u(f)) = [ £*(k) f(k)du(k). The operation u :
B,y — K extends to a weakly compact linear operator v : Li(u) — K
by homogeneity. u has a separable range, i.e., there is a separable closed
linear subspace X, of X such that u(L;(u) C X,. Plainly, K N X, con-
tains 4’s support. .

Broaching the subject of representable operators leads us to the ques-
tion of uniform integrability in the spaces of vector—valued Bochner in- -
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tegrable functions. Here the picture is understandably murkier and it has
only been in the past decade or so that any real understanding has emerged.

To put things in context we start with the probability space (Q, X, P)
as before, let X be a (real) Banach space and look for 1 < p< ocoatthe
space of all (equivalence classes of) functions f : Q — X that’re strongly
P-measurable and such that || f(-)|| € L,(P) with A = 1 IIFON |p-

The study of the Lebesgue-Bochner spaces is replete with examples
of results sure to elicit a shrug and an “Oh yes, that’s nice...” from the
uninitiated. Too bad. Much is missed in this way.

For instance, a beautiful result of Kwapien says “X contains a copy
of ¢, if and only if forany 1 < p < oo and any (Q,X,P), Ly(P,X)
contains a copy of c,”; while this might be met with a blasé attitude it
in fact covers a very pretty piece of mathematics. Indeed Kwapien was
interested in bigger fish and he caught one: he showed that in order for
the almost sure boundedness of the sum X, f» of independent integrable
random variables with values in a Banach space to imply the almost sure
convergence of the sum it is both necessary and sufficient that the space be
void of subspaces isomorphic to c,.

In this case L,( P, X) possesses another mysterious quality. Itis plain
that if X contains c,, then Ly([0,1]1X) does too; ACTUALLY, and here
we see the mixture of Ly[0,1] and X really work, if X contains an iso-
morphic copy of c,, then Ly([0,1]),X) contains a complemented copy
of c,. This result is due to Giovanni Emmanuelle, inspired no doubt by
an earlier gem of like ilk due to Pilar Cembranos. Let’s see Jjust why c,’s
presence in X forces its complemented presence in Ly([0,1]), X).

Basic to our considerations is the following: suppose Z is a Banach
space and u : Z — c, is a bounded linear operator such that for some
series Xy, 2, in Z, X, uz,, is not unconditionally convergentin c, even though
2 |2*24| < oo for each z* € Z*. The series Zpuzy, is a wuc (weakly
unconditionally Cauchy) but not an uc (unconditionally convergent). Now
Bessaga and Pelczynski showed that in such a case there’s subsequence
(vs) of (2,) such that (v,) is equivalent to c,’s unit coordinate vector
basis and u(,,] is an isomorphism onto Y = [u(v,)], where [ ] denotes
the closed linear space of its enclosure. But ¢, is complemented in any
separable super space (this is a famous theorem of Sobczyk) so [u(vy,)] is
the range of a bounded linear projection S. If P : Z — Z is the operator
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(ul[v,1) ~1Su, then P is a bounded linear projection of Z onto [v,], an
isomorph of ¢,. ‘

~ To build on this we recall that a subset K of the Banach space Z is
limited if whenever (2}}) is a weak* null sequence in Z* we have

lim sup |z;(k)| =0 ;
" keK

K C Z is limited if and only if given any bounded linear operatoru : Z —
Co» uK is relatively compact. If Z contains an unlimited sequence ( z,)
that's equivalent to the unit coordinate vector basis of c,, then Z contains
a complemented subspace that’s isomorphic to c,. Indeed, if (z,,) is such a
sequence it must be because for some weak* null sequence ( 2%) in Z* and
some subsequence ( zy,, ) of (2,) and some €, > 0 we have 2% (z,,) > €,
forall m. Define u : Z — ¢, by uz = (25,(2));m. T2y, is a wuc but
Zmuzy, isnot an uc simply because ||uzy, || > |25 (2n,| > €, for all m.
Plug in the general procedure described in the previous paragraph, turn it
on with the work of this paragraph and find your complemented copy of ¢,
inZ.

How does the above procedure apply to Ly([0,1],X)? Well, in
L1[0,1] look to the Rademacher sequence (r,); () is biorthogonal to
itself, i.e. (1) viewedin L1 [0, 11* satisfies r(ry) = [ Tm(£) () dt =
Omn. Let (z,) C X be equivalent to c,’s unit coordiante vector basis and
let (z}) C X* be a bounded sequence that’s biorthogonal to (z,,). Since
there’s k, K > O such that

kmax |as| < || 6% < K max |an|
for any (a,) € c, we have

kmax |a,| < ||Ea,,'r,,(t)a:n]| < K max |ay|
n
for any (a,) € c, and any ¢t € [0, 1]. On integrating we see that

1
k max |a,,|g/0. |20 G (1) Zo|dt

= “Enan'rr ® xn“LI[O,l],X) < K max(ay) .
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So (r, ® z,) is equivalent to c,’s unit coordinate vector basis. But
(7n ® zy) C Li([0,1],X)* is weak” null yet (74 ® Tn, ™m ® z7,)
= f Ta(t) T (t) £3,(T,) dt does not go to zero uniformly in nas m — oo
— after all, for m = nthe above integal is =1. So (7, ® z,,) is unlimited.
Fini. The same holds for 1 < p < oo, too.

So surprises exist in the study of the Lebesgue — Bochner spaces. So,
too, do difficulties in the study of weak compactness therein. Uniform
integrability still plays a central role.

Uniform integrability in its pristine form remains the same: K C
L1(P, X) (as we call the space of Lebesgue-Bochner integrable functions)
is uniformly integrable if

im sup [ {|fw)[l4Pw) = 0
€= feK JI||fl|>cl

as before, with nary a skip in heart beat, K is uniformly integrable if and
only if K is Lj-bounded and for each € > O there is a § > 0 such that
if P(E) < 6 then [,||f(w)]|[dP(w) < eforall f € K. Once more if
we try to mimic the Lebesgue-Vitali Theorem’s proof we discover that for
bounded K C L;(P,X), K is uniformly integrable if and only if given
any sequence ( E,,) of pairwise disjoint events

limsup [ ||f(w)||dP(w) =0
" feK JE,

Vitali’s Theorem holds, too, and we even have by precisely the same rea-
soning as before the following

THEOREM 16. (Uhl’s vectorial version of the Kadec—Pelczynski The-
orem). If K is a bounded non-uniformly integrable subset of L1(P, X),

then there is a sequence ( f,) in K such that ( f,) is equivalent to the unit
coordinate vector basis of £;.

Anyone with a nodding acquaintance with the unit coordinate vector
basis of £; can soon realize the following

COROLLARY. IF K is a conditionally weakly compact subset of

L1(P,X), that is, if every sequence in K has a subsequence that’s weakly
Cauchy, then K is uniformly integrable.
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Generally speaking Uhl has given the best consequence regarding uni-
formly integrable collections without resorting to hypotheses on X. A
natural hope would be to recapture something akin to the Dunford—Pettis
Theorem. Sorry folks but it’s not in the cards. What can be said of the

Dunford—Pettis Theorem in its pristine form was known by Dunford and
Pettis.

THEOREM 17. (Dunford—Pettis in souped—up style). suppose X is a
reflexive Banach space. Then K C L1( P, X) is relatively weakly compact
ifand only if K is uniformly integrable.

A word or two of warning are in order.,

The proof of this vector-valued version of the Dunford—Pettis Theorem
is not a trivial modification of its scalar counterpart. New ideas come to
the fore to save the day as well as give waming of obstructions to further
generalization. Let’s talk about some of these ideas in more detail.

Naturally, if we want to discuss duality results (and we are talking
about relative and conditional weak compactness) then some care must be
taken to describe L1 (P, X)*. Isit Loo( P, X*)? Sometimes it is and some-
times it’s not; when it is then for f € L;(P, X) and g9 € Lo(P,X*) it’s
easy to show that g(-)(f(-)) € L1(P) and

o(f) = /Q 0(w) (F(w) dP(w)

makes sense and handles duality perfectly well with ||g||oo = ||9]|1,(px)e-
HOWEVER, this duality is available if and only every operator
v : Li(P) — X*is representable! So, if X is reflexive (ensuring X*
is) then we know a bit about the problem: at least duality is behaving!. Ina
word, reflexivity is just what’s called for to conclude to the equivalence of
uniform integrability and relative weak compactness — indeed if X is any

Banach space for which these notions agreee for all subsets of L1( P, X),
then X must be reflexive.

Since the case of X reflexive is so old and so well-documented we
turn to some of the more delicate relationships involving uniform integra-
bility in the vector—valued setting. To make clear what we’re about we
have to discuss L1(P, X)* when not every operator u : Li(P) — X*
is representable. In this case, L1 (P, X*) is not Lo (P, X™*) but it’s still
describable and the description is better than a kick in the knee.
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Using the lifting theorem, one can identify L;( P, X)* with the space
LI (P,X*) ofall g : Q — X* such that g(-)(z) € Loo(P) for each
z € X and such that ||g(-)|| € Leo(P), too. In this case, perfectly good
sense can be made of

o(f) = / 9(w) (F(w)) dP(w)

since f is strongly measurable. It’s this pairing that completely describes
the duality between L;(P, X) and L;(P,X)* = L3.(P,X*). (In fact,
such a modification also allows a complete description of L,(P,X)* =
L3(P,X*)incase (1 < p< ooand%+ % = 1).

Using this duality, Pisier (with a bit of help from Maurey) was able to
show that conditional weak compactness follows from uniform integrabil-
ity in a very special class of spaces.

THEOREM 18 (Pisier & Maurey). In order that uniformly integrable
subsets of L1(P,X) be conditionally weakly compact regardless of
(Q, X, P) it is necessary and sufficient that X not contain any subspace
isomorphic to ¢;.

The proof of the above Theorem relies essentially on Rosenthal’s £;
theorem and some ideas the roots of which are found in the theory of oper-
ator ideals. In fact, Pisier relates the phenomenon of uniform integrability
implying conditional weak compactness with the validity of certain vector—
valued versions of the Riemann-Lebesgue lemma.

In 1982, Talagrand characterized weakly Cauchy sequences in general
Li1(P, X)’s. His results involved sequences that were not necessarily sub-
sequences of a given sequence but rather were convex combinations of tails
of such a sequence. It was to wait until 1990 before anyone saw the conve-
nience of Talagrand’s formulations (by the way, the results of Talagrand in
his 1984 paper are quite pretty, non—trivial in the extreme, of great interest
to anyone who’s reading his stuff but not necessary to repeat herein!). In
1990, A. Ulger formulated a criterion for weak compactness in L ( P, X);
his criteria were the first of their kind but lacked the crispest formulation
possible. In any case, Ulger’s work evolved with the end result:

THEOREM 19 (ﬁlger—Schachermé;éT—Ruess—Diestel). The following
Statements regarding a subset K of L1( P, X) are equivalent.
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1. K is relatively weakly compact.

2. K is uniformly integrable and given any sequence ( fy) in K there is

- asequence (gy) So that g, € co{fn, fae1 -..} Such that (g,(w)) is
norm convergent for almost all w € Q.

3. K is uniformly integrable and given any sequence ( f,) in K there is

a sequence (hy) So that h, € co{fy, fas1... .} such that (h,(w)) is
weakly convergent for almost allw € Q.

Proof. We’ll rely on a folklore Lemma unearthed by Ulger, which he
derived from James’s theorem on attainment of suprema by linear func-
tionals on potentially weakly compact sets. Ulger showed the following
fact:

For a subset A of a Banach space X the following are equivalent:

(a) A is relatively weakly compact.

(b) Given any sequence (a,) in A we can find a norm convergent se-
quence (by) so that b, € co{as,an1 -..}.

(c) Given any sequence (a,) in A we can locate a weakly convergent
sequence (cn) so that ¢, € co{an,Gr=1,..., }.

This Lemma in hand suppose (1) of Theorem 19 holds. By UHL’s
version of Kadec-Pelczynski, K is uniformly integrable. Take a sequence
(fx) from K. By (1), (f,,) has a subsequence ( f!) which is weakly con-
vergent to some f € L;( P, X). By Mazur’s theorem, there is a sequence
(fa) of convex combinations of ( £1) ’s tails such that fil = finLi(P, X)-
norm. We plainly have that £ € co{f.f..; } C co{fa, fa+1,.. }. Since
(fa) converges in mean, ( f) converges in probability and so ( f}) has
a subsequence (g,) that is almost everywhere convergent; it is clear that
gn € co{fn, far1,.. }. How about that?

(2) implies (3) as a matter of nature.

- Let’s suppose (3) holds. Suppose (f,) C K and pass to
gn € co{fn, far1..} with the idea being that (g,) is almost everywhere
weakly convergent. Let g(w) := weak lim,g,(w) (if each exists) and
let g(w) = O if not. How about g? g is scalarly measurable and P-
essentially separable valued. Pettis’s measurability theorem tells us that
g is strongly measurable. Of course, ||g(w|| < lim||g(w) || for almost all
w € Q sog € L1( P, X) thanks to Fatou’s lemma. ACTUALLY, g is the
weak limitof (g,) in L (P, X). Infact, we might as well assume X is sep- .
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arable and view a typical h € LI (P, X*) = L1(P,X*) : h(w)(g(w)) =
lim,, h(w)(gn(w)) holds for almost all w € Q. K (and its convex hull)
is uniformly integrable so {h(-)(gs(-)): n > 1} is uniformly integrable.
Vitali’s Theorem comes on the scene:

h(g) = / h(w)(g(w)) dP(w)

= lim [ h(w)(ga())dP(w)
= lim h(gn) .

Ulger’s Lemma is ready for the KILL: K is relatively weakly compact.
And that’s all she wrote!

Uniformly integrable sets also play a central role in the study of weakly
compact sets in Banach lattices. Without going into all the details let’s see
how this comes about. Incidentally, the study of Banach lattices has proved
a fertile outlet for measure theory and nowhere is that more so than in the
representation theory of Banach lattices.

Let E be an order complete order continuous separable Banach lat-
tice. It is a well-known byproduct of the representation theory of Banach
lattices that there exists a probability space (Q, X, P) suchthat E is an or-
der ideal in L ( P) with the following properties: Lo.(P) C E C L{(P)
with L,( P) dense in E and the inclusions are continuous. What’s more,
E* may be identified with those measurable functions h on Q such that
||h||E« = sup{f hfdP : ||f|le < 1} < oo with [ hfdP = h(f) defin-
ing the duality. It is easy to describe the relatively weakly compact subsets
of E.

THEOREM 20. (Dieudonné). Suppose E is as above. Then a bounded
set A in FE is relatively weakly compact if and only if for each h € E*,
hA = {hf : f € A} is uniformly integrable.

‘ Proof. Since the map g — hg is a continuous linear operator of E

into L;(P), hA is relatively compact if A is. Apply the Dunford—Pettis
Theorem.

On the other hand, if we assume h A is a uniformly integrable for each

h € E* and let (g,,) be a sequence of members of A, then (g,) has a sub-
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sequence ( f,,) which converges weakly in Li(P) to some f € L1(P) -
after all A = 1 - A must itself be uniformly integrable hence a relatively
weakly compact subset of L1( P), thanks again to the Dunford—Pettis the-
orem. Now if € > O is given, and h € E* is fixed (though arbitrary), then
we look at [ h( f, — f)dP: for any ¢ > 0, we have

h( fn — AP = h( fn — )dP .
f(f f (/[|mgc1+/[|h|>c1) fo=F)

Now we can choose c big enough that P |h| > c] is quite small and hence
f[|h|>c1 h(fa—f)dP < €/2 for all m, this because {hA — hf} is uniformly
- integrable. This being done, we can make f” ni<c) B fa — f) dP small sim-
ply by noting f[IhISCI h(fa — £)dP is just [ hyjip<cq(fa — f)dP and so
can be made < €/2 by picking n large enough. That’s all we need. Theo-
rems 19 and 20 can be parlayed into a characterization of relatively weakly
compact subsets of L,( P, X) for 1 < p < co. So used, here’s the result.

THEOREM 21 (Diestel-Ruess-Schachermayer). Suppose 1 < p <
oo. Then the following are equivalent statements regarding a bounded sub-
set K of Ly(P, X).

1. K is relatively weakly compact.

2. given any sequence (f,) in K there is a sequence (g,) so that gn €
co{fn, far1,-..} Such that (g,(w)) is norm convergent for almost all
w € Q.

3. given any sequence ( f,) in K there is a sequence (g,) so that g, €
co{fu, for1 ...} such that ( gn(w)) is weakly convergent for almost
allw € Q. :

We close these discussions with a few words about spaces of measures
and relatives of “uniformly integrable sets” that live in such spaces. Our
main objects of study will be ca(X), the space of all real-valued countably
additive measures defined on a o—field £ of subsets of a given set Q and
rca( Bogq), the space of all regular members of ca(Bog) where Q is a
compact Hausdforff space and Bog denotes the Borel o—field of Q, i.c.
Bogq is the o—field generated by the topology of Q. Each is a Banach space
when equipped with the variation norm. Moreover, each is very Li-like;
indeed, each is an L ( ) —space for some unruly 4. The study of relatively -
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weakly compact subsets in each of these spaces is fascinating and touches
on some of the prettiest limit theorems in general analysis.

Plainly related to uniform integrability is the notion of uniform (abso-
lute) continuity. If 4 € ca(Z) is non-negative (denoted by i € ca*(X)),
then K C ca(X) is said to be uniformly u—continuous if given € > 0 there
is a 6 > 0 such that |n( E) | < e whenever u( E) < & for all € K. Now
it is easy to show that for any 5 € ca(X) andany E € X

sup{|n(F)|: F €Z,F C E}

< |n|( E) = variation of 7 over E
<2sup{|n(F)|: FEX, FCE};

from this one quickly deduces that K is uniformly y—continuous if and only
f1K|={|nl :n€ K} is.
Here’s a classic.

VITALI-HAHN-SAKS THEOREM. Let (py) C ca(X) and suppose
each p,, is absolutely continuous with respect to u € ca*(X). Assume
lim,, u,( E) exists foreach E € X.

Then {un : n > 1} is uniformly p—continuous and po(E) =
lim, u,(E) defines a member of ca(X) which is absolutely continuous
with respect to y.

Just as we found in our proof of the Lebesgue—Vitali Theorem, be-
haviour on disjoint sequences of events is worthy of note. K C ca(X) is
uniformly additive if given € > 0 and a sequence ( E,,) of pairwise disjoint
members of £ we have an ne € N such that if n > n then

D (B < €
n2ng

forall 4 € K. Again K is uniformly additive if and only if |K| is.
Another classic.

NIKODYM’S CONVERGENCE THEOREM. Let (u,) C ca(Z) be
such that lim, u,,( E) exists foreach E € X.

Then {uy : n € N} is uniformly additive and u(E) = lim,, pn(E)
(E € X) defines a member of ca(X).
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These are theorems about weak compactness and a key to why this is
S0 is a beautiful result of Bartle, Dunford and Schwartz.

THE BARTLE-DUNFORD-SCHWARTZ THEOREM. Suppose
K C ca(X) is relatively weakly compact. Then there exists a probability
measure jy'on X such that K is uniformly u—continuous.

It is worth mentioning that ;1 can be chosen in the closed linear space
of K.

Finally, we mention another of Nikodym’s contributions that is of-
ten overlooked in topological vector space texts even though it provides a

stunning non-trivial example in barrelled spaces.

NIKODYM’S BOUNDEDNESS THEOREM. Suppose K C ca(X) sat-
isfies sup{|u(E)| : u € K} < oo for each E € . Then sup{|u(E)| :
b€ K, E€ZX} < oco. Inparticular, K is bounded in ca(X).

Weak compactness? Let’s just state the facts.

THEOREM 22. Let K C ca(X). Then the following statements re-
garding K are equivalent. |
1. K is relatively weakly compact.
2. Givenasequence (uy) in K thereisa subsequence (n,) of (1) such
that for each E € X, lim,, n,,( E) exists.
3. K is bounded and uniformly additive.
4. K is bounded and there exists a probability measure i onZ such that
K is uniformly y—continuous.
5. |K| is relatively weakly compact.
In truth the proof of the above theorem makes frequent call on the
results involving uniformly integrable sets that we discussed earlier.
For instance, suppose K is bounded and uniformly g—continuous for
a given probability measure y. Then each € K has a Radon—Nikodym
derivative f; € L1(u); moreover, for any f € L, (p) the measure

7(E) = /E fdu

satisfies

Inl(B) = fE \Fldu .
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It follows that the map f — f(_) fdp defines an isometric isomorphism
of Li(p) intoca(X). A subset of L1(u) is relatively weakly compact in
Li(p) if and only if its image under this isometric isomorphism is rel-
atively weakly compact in ca(X). But K’s uniform p—continuity, and
hence that of | K|, quickly translates to the following about the family
{fn : m € K}: givene > O thereis a § > O such that if u(E) < 6,
then [, |fy|dp < e for all 5 € K. The Dunford—Pettis Theorem now tells
all.

Though we make no use of them in our discussion, we’d be remiss
in our duty if we didn’t mention the situation of weak compactness in
rca( Bog) . In a nutshell, here’s what’s so.

THEOREM 23 (Dieudonné-Grothendieck). Let K be a bounded sub-
set of rca( Bog), then the following are equivalent statements about K .

1. K isrelatively weakly compact. |

2. K isuniformly regular, thatis, givene > 0 and a Borel set B thereisa
compact set F' C B and an open setU C B such that |u|(U\F) < €
forally e K.

3. K is uniformly additive an disjoint open subsets of K, that is, given
€ > 0 and a sequence (U,) of pairwise disjoint open subsets of K,
there is ne € N such that for n > ne, Zpsn |8|(Us) < € for all
peEK.

To see just one example of how one can use these results about spaces

of measures we present a famous result about operators on spaces of con-
tinuous functions.

THEOREM 24. (Grothendieck). Let u : C(Q) — X bea weakly
compact linear operator, where Q is a compact Hausdorff space and C(Q)
is the Banach space of continuous real-valued functions defined on Q..

Then u takes weakly convergent sequences in C(Q) to norm conver-
gent sequences in X .

To begin, we recall that C(Q)* is rca( Bo)g—thanks to Messrs F.
Riesz, S. Saks, A. Markov and S. Kakutani. It follows from this and the
Lebesgue Bounded Convergence Theorem that a sequence ( fn) InC(Q)

is weakly null precisely when ( f,,) is uniformly bounded and lim ,, f,,(w) =
0 foreachw € Q.
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A moment of reflection will soon convince you that Grothendieck’s
theorem plainly holds if the operator in question is the inclusion C(Q) —
L1(u) for some non-negative y € rca( Bog). The inclusion is weakly
compact — after all on its way from C(Q) to L;( 1) it passes through the
reflexive space Ly (u). Further, by our remarks about weak convergence
in C(£2) and Lebesgue’s theorem (again) weakly convergent sequences in
C(£2) are norm convergent in L;( ).

The proof we are about to employ will try to show that within ep-
silonics every weakly compact linear operator is more-or-less dominated
by a multiple of the natural inclusion C(Q) — Li(p) for some py €

rca*(Bog).
| Letu : C(Q) — X be agiven weakly compact linear operator. Then
u* 1 X* — C(Q)* is weakly compact, too. Hence u*( Bx+ = closed unit
ball of X * is weakly compactin C(Q)* = rca(Bog) C ca(Bog). Hence
by the Bartle-Dunford-Schwartz Theorem, there is a regular Borel proba-
bility 4 on Bog such that {u*z* : ||z*|| < 1} is uniformly y~continuous.

CLAIM: Given €> 0 there is K¢ > 0 such that for any f € C(Q2),

llefll < Kell Allzw + €l flloo -

In other words, u’s behaviour is almost dominated by the behaviour of a
multiple of the inclusion C(Q) < Li(u).

Suppose the CLAIM is false, It’d be because for some e > 0 no
matter what n € N we choose there’d be an f,, € C(Q), ||falloo = 1, say,
such that ‘

|lufall > nl|falleiw + € - (%)
On dividing everything in (x) by n, we see

fn €9
G 2 1 fallzaw + —.

If we let n — oo, then || f,|1,(4) — O soon follows.

By passing to an appropriate subsequence we can assume that (fo)
goes to zero p—almost surely. For each nthere is an 2, € X* with ||z%|| =
1 such that 23 (ufy,) = ||ufu||- Let y, = u*z}; {4 : n € N} is uniformly
p—continuous. Here’s the catch: ( £,,) is uniformly bounded and p—almost -
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surely null; Egoroff’s theorem tells us that f,, is y—almost uniformly null.
Simple epsilonics tell us that lim,, [ fad,, = 0 too. BUT (x) says

[ fadun = vz

= Tpufy

OOPS!

Once the claim is in hand it is easy to see that if ( f,) is weakly null
in C(Q) then (uf,) is norm null in X. After all, if ¢ > O is given we can
find K¢ > O so that

lufll < KellFllicw + €l flloo -

Since ( f,) is weakly null in C(Q), (f,) is L1(u)-norm null. Hence,
there 5 an ne such that for n > ng, ||fa]] < €/Ke. It follows that if
n .- ne we have

lufall < Kellfallpiw + €| falloo
< e+ esup ||falloo
n

which is good enough for even the roughest of knowledgable critics.

Notes and Remarks

Since most of what we’re discussing herein is old and well-documented
we will be brief. Anyone interested in uniform integrability really ought to
read Dunford—Schwartz [DS] and Diestel-Uhl [DU] on the subject.

Theorem 1 is as old as the hills and is usually reserved for exercises
in advanced courses in measure theory.

Theorem 2 is proved, for example, in Meyer’s “Probabilities and Po-
tentials” [MPP] wherein uniform integrability is viewed from a different
vantage point. Recently, J. Alexopoulos [A] has sharpened the theorem of
de la Vallée Poussin. Here are a couple of his more striking results.



76 JOE DIESTEL

THEOREM (Alexopoulos). Let K C (P) be uniformly integrable.
Then there exists a convex, evenfunction® : R — R such that®(0) = 0,
lim, o ®(x) /T = 00, ®(z2) < MO (2)Q(x') for z, o' large enough
and K is relatively weakly compact in L ( P).

If K is relative compact in L1(P), then ® can be chosen as above
with K being relatively compact in Lo ( P).

Our proof that uniformly integrable sets are relatively weakly com-
pact was shown us by D.J.H. “Ben” Garling. It seems to be the most nat-
ural proof from general principles of abstract analysis and affords us the
opportunity of talking about bounded finitely additive measures,

The proof we follow of the Lebesgue—Vitali theorem is much like that
of the original.

The Lebesgue—Vitali theorem, the Vitali-Hahn—Saks theorem and both
theorems of Nikodym can be proved by either following a sliding-hump
approach or calling on the Baire Category Theorem. Each approach has its
benefits.

Elegance is apparent when the Baire Category theorem is used, as it
is, for instance in Dunford-Schwartz. On the other hand, the sliding hump
arguments are “elementary” but not easy and, oftentimes, let one see Jjust
what the obstructions to a given phenomenon are.

Rosenthal’s lemma provides one with the ultimate tool to go looking
for a “sliding hump”. My understanding of this remarkable lemma comes
from numerous conversations with one J. Jerry Uhl Jr. as indeed does my
understanding of many of the topics discussed herein. The interested reader
really ought to acquire a copy of Uhl’s unpublished lecture notes on Rosen-
thal’s lemma which were the basis for the treatment of the basic limit the-
orems of Vitali-Hahn-Saks and Nikodym in [DU] but contain so much
more.

The last two conditions cited in Theorem 8 are due to H.P. Rosenthal
[HPR] and are a motivation for the development of the theory of type and
cotype in Banach spaces.

Of course, the Doob Martingale Convergence theorem is found in vir-
tually every advanced graduate texi in probability and its uses in analysis
continue to grow.

In connection with Vitali’s theorem, we hasten to note a stunning re-
cent result of Maria Girardi used by her to characterize the completely coii-
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tinuous operators on L ( P).
Let f € L1(P) and E € X with P(E) > 0.
The Bocce oscillation of f on E is given by

1 1
—_P(E)_/I-.;lf—_—P(E) LfdPIdP.

A subset K of L;( P) satisfies the Bocce criterion if givene > 0 and
E € X with P(E) > 0 there are finitely many subsets of E each having
positive probability such that the Bocce oscillation of any f € K over any
of these sets never exceeds e.

Here’s a companion to Vitali’s theorem.

THEOREM (Maria Girardi). If K C Li(P) is uniformly integrable
and satisfies the Bocce criterion, then K is relatively norm compact.

Gaposhkin’s theorem is found as a special case of Lemma 1 in [G].
It was used by Aldous and Fremlin [AF] to derive their dichotomy. They
needed as well some martingale inequalities of the Burkholder-Gundy type;
Leonard Dor also derived inequalities of this sort that can be used in this
connection. My lectures [DM] at Complutense University in Madrid dis-
cuss Dor’s work as well as a derivation of the Aldous-Fremlin result there-
from. Freniche’s paper [F] derives the Szlenk result in a beautiful way from
Gaposhkin’s work.

We did not mention in the text (but did in the lectures) a result of

Komlos which makes frequent use of the idea of uniform integrability. The
result

KOMLOS’ THEOREM. Let ( fn) be a bounded sequence in L,(P).
Then thereisan h € L1(P) and a subsequence (g,) of ( f,) such that for
each subsequence (hy,) of (g,) we have h = lim y ¥ Soncy hnP—almost
surely.

The theorems of Dunford, Pettis and Phillips mentioned in connection
with representable operators are given detailed treatment in both [DS] and
[DU].

Uhl’s version of the Kadec-Pelczynski theorem appears in [DU] as
does the souped-up version of the Dunford—Pettis thcorem.
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The theorem of Pisier & Maurey was independently derived by J.
Bourgain whose proof in [B] gives important insights into just how to rec-
ognize £; inside vector-valued function spaces.

Emmanuelle’s theorem also has a short note of Bourgain [BE] as a
precursor; Bourgain shows that if £, embeds in X, then L,( P, X) is not
isomorphie to a dual for 1 < p < oo. This is, by far, the easiest paper
Bourgain has written; naturally, it answers a question of mine!

Again, Talagrand’s paper on “Weakly Cauchy Sequences in L( E)”
is worth reading and studying in detail. One really ought to have mastered
Haskell Rosenthal’s £;-theorem and its proof first and there is no better
place to learn of it than from [HPR £, ], after close study of [HPR¢; ], [DSS]
makes sense. A

Ulger’s paper [U] was really a pleasant surprise. Though Ulger only
obtained the cited characterization of weak compactness in L( P, X) for
uniformly bounded families, he hit on the correct formulation of the result.

The result of Dieudonné [DK] is old but still pretty. It has beenused by
Creekmore [Cr] to characterize weakly compact sets in the Lorentz spaces
Ly, and by Ando to characterize weak compactness in Orlicz spaces.

" The results on weak compactness in ca(X ) are discussed in [DS] and
[DU] along with generalizations. Our proof of the theorem of Grothendieck
about weakly compact operators on C( K) is different from his [G] or that
of Bartle, Dunford and Schwartz [BDS]. Rather, this proof is due to A.
Pelczynski who showed it to me because it modifies to the case of weakly
compact operators on the disk algebra; corollary to the proof of Theorem
24 is a result of Chuck Seifert and myself [DSei] to the effect that a weakly
compact operator v : C() — X takes bounded sequences to sequences
admitting of subsequences with norm convergent arithmetic means. The
same bold for weakly compact operators on the disk algebra, any C*—
algebra [J] or into the predual of a von Neumann algebra [BD].
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