MORE ABOUT TWO PARAMETER SOR METHOD (*)

by SAADAT MoUSSAVI (in Oshkosh) (**)

SOMMARIO. - Dato un sistema lineare Az = b, uno spezzamento A = Ay — A;
porta alla successione iterativa xp = Bxy_1 + Ccon B = Aj 14, e
C = Ay b, Il vertore dell’ errore & e, = z) — Tsoluzione € fornisce ey =
Ber_1 = ... = B¥ey. Percio |le|| = ||B*eo|| < ||B¥|| - ||eo|| ~
Crpp(B)*? - ||eo||. Dungue la convergenza a breve termine (rispettiva-
mente a lungo termine) puo essere migliorata minimizzando le norme di B

(rispettivamente il raggio spettrale di B). In questo lavoro si considerano sia

il raggio spettrale che le norme di differenti matrici iterative in competizione
fra loro.

SUMMARY. - Given linear system Az = b, a spliting A = Ay — A; leads
to the iterative sequence Ty = Bxzy_1 + C with B = Ay 1A and C =
Ay Yb. The error vector is €k = Tk — Tsolution Which yields ey = Bep_1 =
... = BFeq. Hence ||ex|| = ||B*eo]|| < ||B¥|| - ||eo|| & Cipp( B)*¥P -
||ea||- Therefore the short-term (long-term) convergence may be improved by

minimizing norms of B (spectral radius of B). In this paper we consider both
the spectral radius and the norms of competing iteration matrices.

1. Preliminaries.

The well known “SOR” method is obtained from a one part splitting
of the system matrix A, using one parameter w. -

M. Sisler introduced a new method by using one parameter for the
lower triangular matrix L. Later he combined the above two methods to
get a two parametric method [8],[9] and [10]. :

D. Young considered yet another two parametric method (MSOR).

(*)  Pervenuto in Redazione il 6 aprile 1991.
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Oshkosh, WI 54901 (U.S.A.). ' :
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The two parameters weight the diagonal of a positive-definite and consis-
tently ordered 2-cyclic matrix [7]. For the first time G. Golub and J. dePillis
used Singular Value Decomposition (SVD) to improve MSOR for the case
that the coefficient matrix A is symmetric [12]. We generalized their results
and also consider a special non-symmetric case.

2. Introduction.

To find the solution vector g to the linear system Az = b, where Aisa
sparse n X nmatrix and b is a given n-vector of complex n-space, usually
A is not easy to invert. Therefore, one seeks an easy-to-invert part of A,
say Ao. Hence

A=Ay - A (2.1.1)

or equivalently,
A= Ao(I - AgtA1) = Ao(I - B) (2.1.2)

where B = Ab‘l A, is called the iteration matrix.
Relation (2.1.1) is called an additive splitting which defines the {z}
for an arbitary fixed o via,

AoTpe1 — A1ze=b k=0,1,2,...
or equivalently
zke1 = AglA1zk+ Ag'h k=0,1,2,...

Tpe1 = Bzp+ Ag'b k=0,1,2,...

Looking at relation (2.1.1), it is clear that if {z;} converges at all, it must
converge to ., = A~!b (vector solution), where Az0, = b.

Relation (2.1.2) shows that {z;} converges to Tz, = A~1b for each
zo ifand only if p( B) < 1, where p( B) is the spectral radius of B [1]. Use
relation (2.1.2) to measure the asymptotic convergence R, of the sequence
{z} where R, is defined by R, = — log p( B) which carries information
on how fast the sequence {z}} converges.
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In fact ﬁ represents, asymptotically the number of iterations that suf-
fice to produce one additional decimal place of accuracy in z’s.

The above splitting is called stationary since there is no altering of
parameter from iteration to iteration. It is called one part splitting since
each ;.1 depends only on one previous vector zg.

Examples of one-part stationary splitting are represented in the fol-
lowing important iteration methods.
JACOBI: Choose

Ay = D, Ai=L+U
then
Bjacobi = Bj = D—I(L + U)
where D is the diagonal part of A and —L, —U are strictly lower and upper

triangular parts of A respectively.
S.0.R.: Choose

Ao=lD—L, A= (-1——1>D+U
W W

then
B=B,=(D-wl)™M((1 —w)D +wl) . (2.1.3)

Successive Overrelaxation (SOR) method was developed independently by
Frankel [2] and Young [3], [4] in 1950. ‘
Modified successive overrelaxation (MSOR) method first considered
by Devogelaere [5] in 1958. Here is how it works. Consider the matrix A
in the following form
A= [D 1 M ]

N D,

where D and D, are square non-singular matrices. Use w for the “red”

equations corresponding to D; and w’ for the “black” equations corre-
sponding to D, then

1
L p, o]
Ag=|¥

and

1 _ —
A1=A0—A=[(“‘ 1) Dy M ]

0 (L -1 D,
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Therefore, iteration matrix B, , is defined by

— A=l _ (1-w) I wF |
Buown = 4o A“[w'(l—w)a ww’GF+(1—w')I2] 2.1.49

where F = —Dy'M and G = —D;!N.
Young [6] has proved that if A is positive definite then

p( B)wb < ﬁ( B(w,w’))

where p( By, ) is virtual spectral radius of B, ).
Golub & dePillis [12] considered the matrix A = [ 1\%” 1}4} , they
g

used the singular value decomposition of the corner matrix M
M=UzV (2.1.5)

where p x p matrix U and ¢ x ¢ matrix V are orthogonal and X is the p x ¢
“diagonal matrix” defined by

Z; 0 - 0 01
0 % 0 0O - . 0
=1 - : (2.1.6)
0 - - - %0 -0
I;;:p pxai:p)

where
2125 >...2%,>0.

From (2.1.5), it is clear that Z,-z the eigenvalues of Matrix M M (and of
M?*M) are the squares of the singular values of M. The number of non-
zero singular values Z; of M equals the rank of matrix M.

They showed that the eigenvalues and 2-norms of matrices By, . and
A(w,w') are related as follows:

a) 0(Bww)) = 0(A(w,w")) (2.1.7
b) p(Buw)) = p(A(w,w')) = max |lo(Ai(w, w"))|] (2.1.8)
©) [|Buwnllz = |A*(w,w) |2 = max [|[Af(w,w") |2

for all k. (2.1.9
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where A (w,w’) is the following matrix

A (w,w) O 0 i
Awwy=| O : (2.1.10)
: Ap(w,w’)
0 0 (1—w),)

where each 2 x 2 matrix Aj(w,w’) is given by

(l—w) wZ, .
w'(1 - w)Z; (l—w')+ww’2'.2] ,4=1,2,3,...,p
(2.1.11)

A{((A),U)’) = l:

where Z; are the singular values of (2.1.6).

3. Three parameter SOR method.

LEMMA 3.1. IfA = [A” Au] is a square matrix with square
An Axn

diagonal submatrices Ay and Ay, then

det An A | _ [ det Ay -det(Axp — AzlAfllAlz) if Al_ll exists
Ay Axn ] det Ay -det(A; — A12A521 Az) ’if Ale exists .

Proof. Without loss of generality let Ay, be non-singular

I —ApAy | [Au An _[I 0 ][Au-A4nrAz An ©
0 I Ay Ax 0 Axn A5} Ax I|

(3.1.1)
Hence -

I —ApAzn | [An Ar]) _
det ([0 I An An|) "

_ I 0 A11—A12A2—21A21 0
““"([0 Azz” AjAn 1))
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Which implies that

An An | _ -1
1.det [A21 Azz] = det A2 -det( Ay — A2145 A2)

Dy

N D ‘
singular matrices. u € o(By) if and only if y*> € o(GF) where F =
~D7'M and G = —D;'N.

LEMMA 32. Let A = [ ] where Dy and D, are non-

Proof. For Jacobi iteration matrix B; we have the following splitting.

D1 O 10 -M
w= |0 5] 4=y 7]
hence,

_ 0 -Di'Mm 0 F
Bf=A°1A1=[—D2-1N 0 -]=[G 0]'

Clearly u € o( B) if and only if

. mdet |THL F | _
det(B,—uI)—dct[ G —Mfz]—o' (32.2)

By Lemma 3.1 and relation (3.2.2)

| —ph|-|—pl — G(—pkL)'F|=0 (3.2.3)

relation (3.2.3) holds if and only if 4 € o(1GF) or equivalently y? €
o(GF).

THEOREM 3.3. Suppose that A = [1]2,1 1];42 ] where D, and D,

are non-singular matrices and the easy to invert part of matrix A is given

” LD, 0
= | w1
Ao [CVN &Dz] '
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Let u € o(By). If ) satisfies
A+w-—DO+w —1) = () + (1 — @) ww'p? (3.3.4)
then ) is an eigenvalue of B, . a)-

Conversely, let A € 0(Buu ,a)), then every i satisfying (3.3.4) is an
eigenvalue of B;.

Proof.
_ wD7! 0
Brusr = 4571 = [—aww’D{llNDfl w'D{l] |
. (L -1)D, -M
(@—DN (1-1DD,
or equivalently
_| (I1-w wF

B(W,wl,a) - [wl(l _ aw)G awleF_'_ (1 _w[) IZ:I (3.3 .5)

where F = D' M and G = D;!N.
A is an eigenvalue of B(, . q) if and only if det(Buuw,a) — M) =0

Bluway — A = | =@ =21 o
(ww' ) w(l —oaw)G aww'GF+{(1-w)-=-XNL|"

By Lemma 3.1
dCt(B(w,wl’a) A =(1 —w —)\)?P-

(1+ o) —)ww'
(1—-w-MN)

where p is the size of I;. By relation (3.3.6) det(Byw o) — M) = 0 if
and only if

-det [(1 —w' =N - GF)] (3.3.6)

(1+ al — )ww’
(1 —-w-=2>

det [(l—w’-—)\)Ip_— G’F] =0. (3.3.7D
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Relation (3.3.7) holds if and only if

, (1+ o) — a)ww'
(1 —w —A)eal: d—w_n GF]
or equivalently
Urw=NA-w =Y arm. (3.3.8)

(1+ a) — v)ww'

On the other hand, by Lemma 3.2, u? € o(GF), then

Q+w-—DO+w —1) = (ar+ (1 — a))ww'p? .

REMARK
(1) fa=1 and w = w’ then (3.3.4) reduces to SOR Method.
(2) Ifa =1 and w # w’ then (3.3.4) reduces to MSOR Method.
(3) Ifw = w' and & = £ then (3.3.4) reduces to AOR Method [13].

4. Singular value decomposition and Jacobi method.

Io =M idlet M = USV', N = QSR be

the singular value decompositions of M and N respectively. Where p x p
matrices U, R and ¢ x g matrices V, Q are orthogonal, and p x ¢ matrix
%, q x pmatrix S are “diagonal matrices” defined by

Suppose A =

"I 0 0 0-
0 % 0 0 0
X =
0 0 0
Lo %, 0 0l
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fs1 0 - - 0 0 07

0 S$2 0 . . .

. 0 0 0
S=10 sp-1 O (4.1.0)

0 0 0 s

0 0 0 0

LO O 0 0 0J
axp
The Jacobi iteration matrix B; for matrix A is
_10 M

Bj = [N 0 ] . | (4.1.1)

Substitute M = ULV, N = QSR! for M and N respectively in (4.1.1),
and “factor out” the orthogonal matrices

=3 5] fake 3]

N 0 QSR 0
B.-[U 0][0 ][R o
7710 Q][s o]lo vt|-

K T F3

Hence Bj = KT;L'.
Now
BB} = (KT;L)( KT;LY)*

B;B} = KT;T}K* . (4.12)

Equivalence relation (4.1.2) implies that the eigenvalues and 2-norms of
B;B} and T;T'} are agreed, i..
1=1,2,...,p
k=1,2,...,p

IBfll2 = |IT}||2 for all k.

G(B,-B}) = o(I“,Tjt) = {s?’,Zﬁ

and
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Since ||T|2 = p[T*T' 1% [6],

- 1
0 S||{0 Z]\*
sk =inte =5 (|5 §][% 5])
" Q2 1
=p< SO 2(:)2]> = maz{s1, L1} .

Furthermore, since o(T") < ||T'||2 [6],

p(Bj) = p(T;) < maz{s1,Z1}. (4.1.3)

On the other hand by Lemma 3.2
[p(Bj)1? = p(NM) = p(QSRIUZV?)

<||QSELIUZV!||z = [IS|2][Z (|2 = s1%4
Therefore
p(Bj) < V12 . (4.1.4)
By relations (4.1.3) and (4.1.4) one could conclude that

p(Bj) = p(T;) < min{maz{s1,Z1},V/s1Z1}.

The above argument give us the following theorem:
L, -M - t
_N I, ],andletM = UXV?,

N = QSR? be the singular value decompositions of M and N respectively.
Then

@ [IBfll2 = |ITHl,  forallk, whereI“,-:[O 2]

S 0
® |IByll2 = moas1, 21}
© p(Bj) = p(T}) < min{maz{s1,Z1},Vs121} .

THEOREM 4.1. Suppose A = [
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S. SVD and three parameter SOR method.

i\pf —IM]’ and let M = UZV? be the singular
- q

value decompositions of M. Where p x p matrix U and g X g matrix V
are orthogonal, and p x ¢ matrix X is diagonal matrix defined by (2.1.6).
If the easy to invert part of A is given by

lr 0
= w-P
Ao [O‘Mt 514]

Suppose A = [

then, the iteration matrix for this method is

_ a4 [ (A—wi wM
Buwa = Ay A1 = [w’(l —oaw) M oww' MM + (1 —-w’)Iq] '

. (5.1.1)
Substitute M = UX V' for M in (5.1.1)

(1-w)i, wUX Vvt
Buww,a) = [w’(l —aw) VI aww'VEITUZVE+ (1 —w) IqJ
I
“Factor out” V and U

Buwa=|Y O] (A-wi wE .
WIDT 0 V] [w(1—aw)Zt aww'ItE + (1 —w) ],
br r.(ﬁm,wr'.m)
Jut o
0 Vv
Qt

Hence, B w,a) = QT (wuw,a) Q' Where matrix @ is a unitary matrix.
There is a permutation matrix [12] P such that

A(U),w’, a) = Pr(w,w’,a)Pt =

(A (w,w’, ) 0 0 T
= 0 (5.1.2)
. Ap(w,w', a)
i 0 0 (1 =W,
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where each 2 x 2 matrix A (w,w’, @) is given by

P (1 -w) wX;
Ai(w,w', @) = [w’(l—aw)}:,- (1 —w')+aww'zi2] ’
1=1,2,3,...,p

where I; are the singular values of (2.1.6).
Since A (w,w’, &) = Py w ) P* hence,

Buw ) = QP'A(w,w',0) PQ* for unitary QP*.  (5.1.3)

Equivalence relation (5.1.3) implies that the eigenvalues and the 2-norms
of B(ww,e) and A(w,w’, @) are agreed. Hence, if ) is an eigenvalue of
B(uwuw,a) it must be one of the eigenvalues of A;(w,w’, &) . Therefore,

A € 0(Bw,a) ¢ AGGA(W,W,; @))

A—(1-w) wx, =
#det[w,(l —oaw)X; A—(1 —w') + a(Uw'ZiZ]—O

sO+w-1DO+w —1— aww'Z?)

—(1 —aw)ww'E} =0
Or equivalently
O+w-DO+w =1 =(ar+ (1 —a))ww'E?
By Lemma 3.1 and singular value decomposition properties
{uf} = oll(B)1* = o(MM") = {2}}
Therefore
OA+w—DO+w =1 =(ad+ (1 — a))ww'p? .

Let us summarize the above arguments in the following theorem:

, _IM],and let M = USV?
— . |
be the singular value decompositions of M . If the easy to invert part of A
is given by .
=D 0
=|w
Ao [aM -7 ]

THEOREM 5.1. Suppose A =
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then the eigenvalues u; € o( Bj), \i € 0(Buw,a)) are related by the
following functional relation:

O+w—-D+w' -1 =(ad+ (1 - a))ww'p? .

Moreover, eigenvalues and 2-norms of matrices A (w,w', @) of (5.1.2) and
B(ww,a) are related as follows:

(@) o(Buw,a)) = 0(A(w,w, @)
(0 p(Bww ) = p(A(w,w',a)) = max ||o(Ai(w,w', a)) ||

© 1B ll2 = 1A¥(w,', ) > = max [|A4(w, ', @) |2 for al k.

6. A special non-symmetric case.

M ] ,andlet M = UZV*, N = QSR! be the

singular value decompositions of M and N respectively. Let UtR = D; =

diag(di,ds,...,dp) and Q'V = D, = diag(cy,cz,...,c,) be diagonal
matrices.

Jacobi iteration matrix for the matrix A is given by matrix (4.1.1)

0 M

Substitute M = ULV*, N = QSR for M and N respectively in B;
and “factor out” the orthogonal matrices.

5= (3 &][3 5[5 o

| A 7 \o o

Suppose A = [

N TN

L I K
Hence .
B; = LI;K . (6.1.1)
Notice that
Rt 0 UO_RtUO__D’fO_
KL‘[O tho Q]‘[o m]‘[ﬂ Dz]‘D

(6.1.2)
where D} and D7 are the complex conjugate of D; and D, respectively.
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Multiply (6.1.1) by K and K from left and right respectively.
KBjK'= KLT,KK®.
By relation (6.1.2), we have
| KB;K'= DI; . (6.1.3)
Unitary equivalence relation (6.1.3) implies that both the eigenvalues and

the 2-norms agree for both matrices B; and DI';. Matrix DI has the
following form

(40 0|00 - 0
0 @ :
0 4|0 0 0
DT; =
0 - -0l 0 0
0 - -0{0 - 0
. . ap
00 0|0 0 7|
(00 0= 00- 0 |
0 . P
00 0 % 0- 0
s1 - oo o0o-0- 0 N
0 s olo o - 0
0 0
0 ojo 0o o0- 0 | °
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Or equivalently
0 0 0 |Zdi0o- 0 -0
0 . .
0 0 0 Epd-,, 0
DI; =
sici 0 0 0 0
0 520 0 0 0
: 0
0 SpCp |
| 0 0 0 0 0 0 |
(6.1.4)
There is a permutation matrix P such that
'Al 0 0 07
0 A .
A = PDI;Pi=| . A, O (6.1.5)
0 0O 0 O
L O 0 0 0.

where each 2 x 2 matrix A; is given by

10 di%;
A= I:C‘,'s,' 0 ] )

Obviously by (6.1.4) and (6.1.5) u € o(DTI}) if and only if 4 € o(4;),

ie. -
det [‘“ d*'z*'] =0 .
CiSi —u
Or equivalently
B —cdisiZi=0 .
Hence,

u? = cidisiZ; (6.1.6)

which gives us the following lemma:
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Ly “M],andzetM - ULV',N =
-N I
QSR be the singular value decompositions of M and N respectively. If
UtR =D = diag(dl,dz, ,dp) anthV =D, = diag(cl,C2, ,cq)
are diagonal matrices, then p; € o(Bj) if and only if u? = cid;si%;.
(Where X; and s; are the singular values of M and N respectively).
Moreover, eigenvalues and 2—norms of matrices B; and A of (6.1.5)

are related as follows:
(@ o(B;j) =0(A)
(b) p(Bj) = p(A) = max |[eCAD ||
© 1Bz = 1AMz = max ||AH|> for all k.
Under the assumption of Lemma 6.1 if the easy to invert part of A is

LEMMA 6.1. Suppose A = [

given by 1
=, O
= |w’P
Ao [aN ;,%Iq]

then the iteration matrix corresponding to Ay is given by

- a-1 - ( 1-— w) Ip wM

Blowa) = 49" A1 = [w'(l —aw)N oww'NM+(1-w)I |~
(6.1.7)

Substitute M = UXV?, N = QSR! for M and N respectively in matrix
6.1.7)

B _ (1-w), wUZV?
(el = (1 — aw) QSR aww'QSRIUZVE+ (1 —w), | -

Factorout U, V, @ and R.

Bl = [U 0] [(1 ~w)U'R wZ ]

0 Q||w((l—-—aw)S aww'SRUI +(1-w)QV
L r(:.;.a)
. R O
0 vt
.

K
Hence
B(w,w’,a) = Lr(w’w’,a) K ° (6 ’1 '8)
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Multiply (6.1.8) by K and K* from left and right respectively.
KBuwwayK'= KL (yuwaKK*.
By relation (6.1.2),
K B(uuw,a) K' = DTy 4t a) - (6.1.9)
Unitary equivalence relation (6.1.9) implies that both the eigenvalues and
the 2-norms agree for both matrices B(y u o) and DIy wa)-

Now let us investigate all four submatrices of I'(, 4 q)-

@)

(1 —w)d; 0- - 0 N
0 (1 —w)dy - 0
(1—w)U*R = (1-w) Dy = '
0 0
i 0 (1 —w)d,d
WhCrCUtR=D1=diag(d1:d2:"‘adp)
(ii)
2 O . - 0--07
0 % O - 0-.0
wl =w )
0 0--0
\LO Z, O--O_‘
pxq
(iii)
_sl 0 0 0 O-
0 s2 O . . y
. 0O O 0 pXp
0 Sy_1 0
w'(l—ow)S = w'(1l—aw) T
0 0 0 Sp
0 0 0 0
. . . . }(q—p)xp‘
0 0 0 0 0.
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(iv) ,
st 0 - - 0 0 - 07
0 s2dr 2 . )
. 0 0 0
SR'UX = SDIX = :
: 0 SpdpZ, O - - 0
L 0 0 .. 0 13 . .0 1)
axp ' ax(g-p)
Hence, aww'SR*UZ +(1-w")QV = cww'(SDIZ)+(1—w") D, =
f'aww’slalzl 0- . . 0 0 0 7]
+1 —-wc 0
0 .
. o - . 0 0 0
= 0 oww' spdyZ, 0 . 0
+(1 -whe
0 - -0 0 (1 —w)epea 0
R 0 0O 0 O 0 0 - (1 =we,d

where Q*V = D, = diag(ci,cz,...,c,).
Therefore, the matrix DT is given by the following

(1 — w)|d]? - - 0|lwZidh -- 00 .. 0
0 - (I=w)dp]?| 0 - - wZd,0 . 0
w'(1 — aw)s16 0] oww'sidjc1Z;- -0 0 .. 0

H1 —whler?

0 w'(1 — aw)sptp | 0 - - cww’spdycyZ, O . 0
+(1 —w)|cpl
0 . 010 > 0(1 —w)|cps1]?- -0

0 - 0]0 . 00 - -(1 —w)|e,l?]
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There is a permutation matrix P [12] such that P DI" P* has only 2 x2
and 1 x 1 submatrices

A(w,w',a) = PDT Pt =

TAl(w,w',a) O 0 E
= 0 K ‘ (6.1.10)
: Ap(w,w', )

fork:=p+1,p+‘2,...,q
where each 2 x 2 matrix Aj(w,w’, @) is given by
[(1—w)|d.-|2 weds ]
w'(1 —aw)siti (1 —w)|c|?® + oww'sidisiZ
i=1,2,3,....p

where Z; and s; are the singular values of M and N respectively.
Hence, if ) is an eigenvalue of By, . o) it must be one of the eigen-
values of A;j(w,w’, ). Therefore

M € 0(Buwwa)) ¢ ) € o(A(w,w’,a))

[(1—w)|d;[* =M aww's;dic;Zi+ (1—w') |¢i|* =2] = ww' (1 —ow) 8,2 dic;
Or equivalently

[(1 —w)|di]* = XI[(1 = w)ci]* = M] = ww'siZidics
[1—o(w+ X+ |d>(1 —w))]. (6.1.11)

This argument results the following theorem:

THEOREM 6.2. Suppose A = [ I, -M ] and let M = ULV,

N = QSR be the singular value decompositions of M and N respectively.
If the easy to invert part of A is given by

1
i, o
Ag=|w P ]
0 [aN LIq
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andU'R = Dy = diag(di,dz,...,dy), Q'V = D, = diag(ci,c2,...,c,)
are diagonal matrices. Then the eigenvalues ji; € 0(Bj), i € 0( Bww',a))
are related by the following functional relation:

O+w—-DO+w —1) =(ad+ (1 — @)ww'p? .

Moreover, eigenvalues and 2—norms of matrices A(w,w’, @) of (6.1.10)
and By «) are related as follows:

(@ o(Bw,a) = o(A(w,w,a))

() p(Buw,w) = p(A(w,w',a)) = max |lo(Ai(w,w’, @))||

© (1Bl = AR, @)l = max Ak w, ', @l for all b

Proof. Since Q'V and U*R are diagonal orthogonal matrices then,
absolute value of each diagonal elements of these two matrices is identity,
i.e.

|dil|=1forall i=1,2,...,p

leil=1forall j=1,2,...,q.

Hence relation (6.1.11) becomes
[(1 —w) =2[(1 —w') =] = ww's;Zidici[1 — a(w+ X+ (1 —-w))].
Since by Lemma 6.1 u? = c¢;d, s;%;, therefore

Q+w—DO+w —1) = (ar+ (1 — @))ww'p? .
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