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SUMMARY.- In this paper we study the existence of periodic solutions for the
Liénard and the Rayleigh equations in presence of lower and upper solutions
which are not necessarily ordered. In this way several previous results in the
literature are completed and extended.

SOMMARIO.- In questo lavoro si studia Pesistenza di soluzioni periodiche per le
equazioni di Liénard e di Rayleigh in presenza di sotto e sopra soluzioni non
necessariamente ordinate. In questo modo si completano ed estendono vari
risultati precedentemente apparsi in letteratura.

A.M.S. SUBIJECT CLASSIFICATION: 34 C 25.
1. Introduction

In this paper we study the existence of 2z-periodic solutions to the
second order ordinary differential equations of Liénard type

X" =f@X)x +gkx +h(xx') (1.1)
and of Rayleigh type
x"=F@) +gk) +h(xx), (1.2)

wheref, g, F : R - R are continuous functions and 4 :R>>Ris continuous,
bounded and 2x-periodic in the first variable. It is a classical result (see
K], [K;], [R-M], [G-M], [L-L-V] that equation (1.1), or (1.2), has a
2x-periodic solution if there exists a pair of lower and upper solutions «,
B (of class C? and 2n-periodic) such that

a (t) < B (¢t), for everyt. (1.3)

(*) Pervenuto in Redazione il 4 aprile 1990.

(**) Indirizzo dell’Autore: Dipartimento di Scienze Matematiche, Universita degli Studi, Piaz-
zale Europa 1, 34100 Trieste (Italy).
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Here, we will investigate the case where a, $ do not satisfy this
ordering condition. We stress that in this frame one cannot generally
conclude existence. Indeed, the linear equation

X" =x + sin (f)

admits constant lower and upper solutions, but does not possess any
2z-periodic solution. This phenomenon becomes clear looking at the
cigenvalues of the linear differential operator S, :x > «x” - ax (a € Rfixed),
acting on 27t-periodic functions x. Namely, if a = 0, the spectrum of §; is .
the set {n%:n =0, 1, ...}, while, if @ # 0, the only (real) eigenvalue of S,
is 0. From this point of view, the assumption of the existence of a pair of
lower and upper solutions can be viewed as a control on the behaviour of
the nonlinearities at the right hand side of (1.1), or (1.2), with respect to
the eigenvalue 0. More precisely, the ordering condition (1.3) expresses
the fact that the right hand sides lie, in some sense, at the left of the
spectrum. Hence it order to achieve solvability, when (1.3) fails, it is
natural to put some additional hypotheses on the nonlinear terms to
prevent interference with the rest of the spectrum. The conditions we shall
introduce will correspond, for the linear equation

-x" = ax' + bx + h (¢),
with 4 : R > R continuous and 2x-periodic, either tob < 1 and ¢ € R
arbitrary (cf. (i), (j;) below), or toa = 0 and b € R arbitrary (cf. (i), Go)

below). Actually, the existence results for (1.1) and (1.2) we are going to
present will be derived from a more general theorem for the equation

x" = 4 (t7 x,x’),
wherep : R> > Ris a (possibly) unbounded continuous function, 27-peri-
odic in the first variable. We point out that the case of a bounded nonli-
nearity ¢ was already considered in [A-A-M], while the case of an

unbounded ¢ was discussed in [G-O], but in presence of constant lower
and upper solutions and using a different approach.

2. Existence results

Let us consider the second order ordinary differential equation

x" = (t,x,x"), (2.1)
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where ¢ : R® > R is continuous and 27-periodic in the first variable. We
recall that a 2z-periodic function « : R - R (resp. B : R - R) of class c?
is called a (strict) lower (resp. upper) solution of (2.1) if

-a” (t) < ¢ (t,a (t), a’ (1)), for everyt. (2.2)

(resp. -B" (t) > ¢ (¢, (1), B’ (t)), for every t. (2.2"))

As far as one is concerned with the existence of 2z-periodic solutions
to (2.1), the following result is classical (see e.g. [R-M, vol. II], [G-M, ch.

v]).

THEOREM 1. Suppose that
(h,) for every M > 0, there exists N = N (M) > 0 such that, if x is a
2n-periodic solution to

x" = Ap (t,x,x"),

for some A € [0, 1], with max, |x (f)| < M, then max, |x' (f)| < N.
Moreover, assume that there exists a pair a, B of lower and upper
solutions such that
(hy) a () < B (¢), forevery t.
Then equation (2.1) has at least one 27t- periodic solution.

The next theorem shows that assumption (h,) can be dropped, pro-
vided that (h,) is replaced by certain technical conditions (cf. (k) and (k)
below), which permit to avoid the resonance phenomena mentioned in the
introduction. Of course, theorem 2 is significant only when (h,) is violated.
In the sequel, for any continuous 2z-periodic functlonx we denote by Px

the mean value of x on a period, i.e. Px = (27r) f[o 2 (¢) at.

THEOREM 2. Suppose that
(k,) for every M > 0, there exists N = N (M) > 0 such that, if x is a
2n-periodic solution to

x" = 2A[p (t,x,x') - Pp (., x,x")],

for some A € [0, 1], with |Px| < M, then max, |x' (£)| = N,
and
(k,) there exist 0 s A < 1, B = 0 such that, if x is a 2n-periodic solution to
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x" = (t,x,x") - Pp (., x,x"),
with Fx - Pp (.,x,x') < 0, then max, |x (f) - Px| <A |Px| + B.

Moreover, assume that there exists a pair e, B of lower and upper
solutions. Then equation (2.1) has at least one 2n-periodic solution.

REMARK 1. Condition (k;) implies condition (hy). Indeed, if x is a
2r-periodic solution to

x" = dp (t,x,x"),
for some A € [0, 1], with max, |x (f)| < M, then it is a solution to
x" = Al (t,x,x") - Pp (., x,x")],
for the same 4, with |Px| < M. Hence, max, |x’ ()| < N.

REMARK 2. Weak inequalities in (2.2), (2.2') and (h,) are allowed (see
[G-M, ch. V]; cf. also [M-Wi)).

Now we produce some applications of theorem 2 to the existence of
2n-periodic solutions to the Liénard and to the Rayleigh equations.

PROPOSITION 1. Suppose that
(i) lim sup 5, ;g (s)/s < 1.

Moreover, assume that there exists a pair of lower and upper solutions.
Then equation (1.1) has at least one 2n-periodic solution.

PROPOSITION 2. Suppose that
(i) inf; |f(s)| > 0.

Moreover, assume that there exists a pair of lower and upper solutions.
Then equation (1.1) has at least one 2n-periodic solution.

PROPOSITION 3. Suppose that
Gy g is of class C! and sup, g' (s) < 1.

Moreover, assume that there exists a pair of lower and upper solutions.
Then equation (1.2) has at least one 2r-periodic solution.



58 PIERPAOLO OMARI
PROPOSITION 4. Suppose that

(j,) there exist constants a, b, ¢, with a > sup, ;. |h (¢, s,7) |, such that
F(s)-s=a|s| + bs + c, foreverys.

Moreover, assume that there exists a pair of lower and upper solutions.
Then equation (1.2) has at least one 2n-periodic solution.

REMARK 3. Proposition 1 holds true even for a more general equation
of the type

x" =f@)x +g(tx) + h(txx"),

where g : R? - R is continuous and 2z-periodic in the first variable,
provided that condition (i) is replaced (for instance) by: there are con-
stants ¢, d > 0and k € [0, 1[ such that -c < g (t,s) sgn (s) <k |s|, for every
tand every |s| = d.In this case the proof proceeds like that of proposition
1, but starting from step (3.4).

REMARK 4. It is easy to see that condition (j,) is satisfied if, for
instance, ‘

limg, , , F (s) = + « and thereis d > 0 such that F (s) < d, fors < 0,
(resp. lim,, o, F(s) = + o and there is d >0 such that F(s) <d, fors =0)
or
lim,, | o F (s) = - « and there is d > 0 such that F (s) = -d, fors = 0
(resp. lim,, _, F(s) =-o and there is d >0 such that F(s) =-d, fors = 0).
REMARK 5. Propositions 1-4 complete and extend in various direc-
tions previous results contained e.g. in [R], [D], [G-M], [M-Wa], [R-M],
[B-M], [I- Z], [Z]. In particular, we stress that substantial improvements

of the main existence theorems in [N] are obtained.

REMARK 6. When the lower and upper solutions are constants, prop-
ositions 1-4 can be (essentially) derived from [G-O], where more general
conditions than (i;) are also considered. Yet, the extension of the results
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in [G-O] to the case of non-constant lower and upper solutions does not
seem trivial, using the method of proof there introduced.

REMARK 7. Extensions of these results to boundary value problems
for second order semilinear elliptic equations will appear in a forthcoming
joint paper with Jean-Pierre Gossez.

3. Proofs

Proof of Theorem 1. We borrow some ideas from [A-A-M]. We also
use a result in [F-P], which we recall below as a lemma.

LEMMA. Let E, F be real Banach spaces, let L : E - F be a linear
isomorphism and let N : R X E - F be a completely continuous operator.
Assume that

1) the set {w = E:Lw = AN (0, w), A € [0, 1]} is bounded
and
(1) for every M >0, the set {w EE :Lw =N (v, w), |v| =M} is bounded.

Then equation

Lw = N (v, w) (3.1)

admits a connected set Z (C R X E) of solutions whose projection on R is
onto (i.e. projpZ = {vER: (v,w) €EX} = R).

In order to apply this lemma, we set E = {w : R - R of class C?,
2n-periodic and such that Pw = 0} and F = {w : R = R continuous,
2n-periodic and such that Pw = 0}. Of course, E and F, endowed respec-
tively with the C? and C° norms, are Banach spaces. We also set L : E »
F,Lw = -w",andN:RXE >F,N(v,w) = o (,v + w,w')-Pp (.,v +
w,w'). Clearly, L is a linear isomorphism and N is completely continuous.
Decomposing any 27-periodic continuous function x : R - R in the form

=v + w,withv = Pxandw = x - Px, it is easy to see that (I;) and (1,)
follow from (k;). Accordingly, there exists a connected set = (C R x E)
of solutions to the equation (equivalent to (3.1))

-w=9p,v+ww)-Ppo(,v+w, W’),
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such that projpZ = R. Hence, equation (2.1) has a 2z-periodic solution x
= v + w, if there exists (v, w) € Z such that Pp (.,,v + w,w') = 0. Define
Y:Z->R,by¥ (v,w) = Pp (.,,v + w,w'); of course, ¥ is continuous and
therefore W (Z) is an interval. Thus, three cases may occur: 0 € ¥ (Z), ¥
(£) CR*, W (2) C R". Since in the first case a solution exists, we assume
e.g. ¥ (£) C R™. This implies that, for each (v, w) € X, settingx = v +
W,

x" (t) = (t’x (t)’x' (t)) 'P‘P (.,x,x') <e¢ (t’x (t),X’ (t))’
for every ¢, i.e. x is a lower solution. Then let us take v* < 0 so large that
(1-A4)v* + B < min,f (¢).

Since projgX = R, there exists w* € E such that (v*, w*) € X, with
v* - Pp (., v* + w*, w*') < 0. By (k,), we have, setting a* = v* + w*,

a* (t) = v* + max, |w* (f)| sv* + A4 |v*| + B < min, 8 (t) < B (¢),

for everyt. Therefore there exists a pair a*, 8 of lower and upper solutions
satisfying (h,). Hence, using remark 1, it follows that all the assumptions
of theorem 1 are satisfied and then equation (2.1) has at least one 27-pe-
riodic solution. Similarly, one argues if ¥ (£) C R".

Q.E.D.

Proof of Proposition 1. We start observing, like in [G-O], that, if g (s)
- sgn (s) is unbounded from below on R, then there exist either arbitrarily
large negative constant lower solutions or arbitrarily large positive upper
solutions, and hence there is a pair of lower and upper solutions satisfying
(h,). Moreover, condition (h;) is also fulfilled in this case, because if x is
a 2z-periodic solution to

X" =A[f(@x)x" +g @) +h(txx")],

for some A € [0, 1], with max, |x (f)| < M, multiplying the equation by x
and integrating, we immediately get

[0 1% (017t < 22 M (max )y <pr 8 (5)| + supyg,, B @,5,7))).

Hence, using again the equation, we obtain max, |x’' (£)| =< N, for
some N = N (M) > 0. Then theorem 1 applies and yields the conclusion.
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Therefore, assume that there exists a constant ¢ > 0 such that

g(s) - sgn(s) = -, (3.3)
for every s. From (iy) and (3.3), it follows (cf. [M-Wa]) that there exist a

constant 0 < k < 1 and continuous functions y, d : R - R, with 0 < y (s)
< k, for every s, and sup, |8 (s)| < + =, such that

g(s) =y ()s + (), (34)

for every s. Now we are going to apply theorem 2. Let x be a 2z-periodic
solution to

x" =A@ x +gx) +h(tx,x)-P(gx) +h(,xx))], (3.5)

for some 4 € [0, 1], with | Px| < M. Multiplying the equation by x-Px and
using (3.4), we get

X @)1%dt =2 [ _ y@&@®) |x©-Px|?dt +

f[0,27¢] [0,27]

+A f 027] E@®) Px+3@ @) +hEx@®,x ) ) -Px)de

< kf[o - |x () - Px|%dt + 20)2 (k- M + sup;;, |0 (s) +

+h(t,s50])( f[ 0 1 ® - P 2dr) 12,

This implies that there exist constants c;, ¢, > 0 (depending on M)
such that

f[o,zz] lx' (£)|%dt < c,

and then
max, |x (f) - Px| < c,.
Using again the equation, after multiplication by x”, we obtain

max, [x’' (t)| < N,
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for some N = N (M) > 0. Hence condition (k;) holds. Next, let us prove
that condition (k,) is also fulfilled. Letx be a 27-periodic solution to (3.5),
withPx - Pp (.,x,x') = Px - P(g(x) + h (.,x,x")) < 0. Multiplying equation
(3.5) by x - 2Px (cf. [M-Wa)) and using the decomposition (3.4) we get

' 2, _
f[o’h] Ix (t)l dt =

=4[ o ? € ©O) I @ - Px\%de-2 [,y & () |Px|%ar +
2 [ (50 @ & ©) +
+h (t,x (t),x' (t) x () -Px)dt-2 f[o,h](a (x(@®) +

+ h(t,x (¢),x' (¢t))) Pxdt +
+ 2t PxP(@gkx) +h(,x,x"))

LI PNEI0 - Px|%dt + c5 (f . |x (@) - Px|de)'? + ¢4 | Px|,

[0,27]
for some constants c3, ¢, > 0. Hence, we derive

S0 1% ()%t < cs |Px| + cg

for some constants cs,cg > 0. Accordingly, max, |x () - Px| = O (| Px| 1/2)
and then there exist constants 0 < 4 < 1, B = 0 such that

max, |x (t) - Px| <A |Px| + B,

that is (k,) holds. Therefore theorem 2 applies and yields the conclusion.
Q.E.D.

Proof of Proposition 2. We apply theorem 2 again. It is easy to see that
conditions (k;) and (k,) (with A = 0) are satisfied, for any 27-periodic
solution x to equation (3.5), just multiplying the equation by (sgn f) - x,
integrating and using (i,).

Q.E.D.

Proof of Proposition 3. Let x be any 2n-periodic solution to the
equation
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* =AF @) +g®) +hExx)-PFE) +g@) +h(,xx))]
(3.6)

Multiply (3.6) by -x" and integrate. Using (j;) we immediately realize
that conditions (k;) and (k,) (with 4 = 0) are fulfilled, so that theorem 2

applies.
Q.E.D.

Proof of Proposition 4. Multiplying equation (3.6) by x', integrating
and using (j,), we obtain, for some constant c; > 0,

f[o,zm] Ix" (©)] dt < cy. 37)

Hence, condition (k,) (with 4 = 0) is fulfilled. From (3.7) and |Px|
< M, it follows

max, |x (£)| < ¢y,

for some constantc, = ¢, (M) > 0. Then multiplying equation (3.6) by -x"
and integrating, we find

(] [0,27] |x” (t)|2dt)1/2 < (27;)1/2 (m;,lxlslsc2 lg ()] + sup,;, |k (8, 5,7)])

and then
max, |x' ()| < N,
for some N = N (M) > 0. Thus condition (k) is also satisfied. Hence,

theorem 2 applies and yields the conclusion.
Q.E.D.

The results contained in this paper were presented at the “Réunion d ‘Analyse
Nonlinéaire” held in Bruxelles on November 10, 1989.
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