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SOMMARIO.- Mostriamo come la complessita delle formule di Hassard, Kazari-
noff e Wan (1981) riguardanti la biforcazione di Hopf in sistemi di equazioni
differenziali ordinarie possa essere ridotta usando una opportuna tecnica
formale nel calcolo delle derivate parziali di ordine superiore richiesto dal
detto metodo. ' :

SUMMARY.- We outline how the complexity of the formulce by Hassard, Kazarinoff
and Wan (1981) concerning the Hopf bifurcation in systems of ordinary
differential equations can be reduced computing the pertinent higher- order
partial derivatives in a suitable formal way.

1. Introduction

The quantitative analysis of a Hopf bifurcation of periodic solutions
from an equilibrium point, e.g. for an autonomous system of ordinary
differential equations, is usually much more difficult that just proving the
existence of such a bifurcation. We contribute to this problem showing that
the cumbersome computation of higher order partial derivative of some
composite mappings arising for instance in the method proposed by Has-
sard, Kazarinoff and Wan [6] can be avoided and substituted by a proce-
dure which is simpler in many cases: see Sect. 2. After a first reference
example concerning the Hopf bifurcation in the Lorenz system (Sect. 3),
we apply this idea in Sect. 4 to a single loop feedback control system of
large dimension (= 50), which has been proposed and studied by Sparrow
[12] in a biological framework and has recently received further attention
by Medio and the author as a continuous model in economics [7]. Studying
the Hopf bifurcation, the particular form of this system allows the appli-
cation fo the harmonic balance techniques developed by Allwright [1, 2].
We show that the general bifurcation formulz can equally be applied
without heavy computations. Applications to the n-dimensional metabolic
cellular control Goodwin system will be considered in a forthcoming paper
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[8]. Applications to fully nonlinear or multiple feed-back systems (where
no special technique is available) can be considered as well.

2. Remarks on Bifurcation Formula

Consider an autonomous system of ordinary differential equations

dx/dt = f (x;v) (2.1)

where x € R” and v is a real parameter on an open interval J, and assume
that a Hopf bifurcation occurs at v = v,. Namely, assume that, for f
sufficiently smooth, there is a point x* = x* (v) such that f (x* (v),v) =
0 for all v near v, and that a pair of simple complex conjugate eigenvalues
of the jacobian matrix.A4 ()i = (9;f;) (x* (v); ¥) crosses the imaginary axis
atv = v, while the remaining eigenvalues have negative real part. Then
it is well known that the sub-, super- or critical character of the bifurcation
and the period and the Floquet exponents of the bifurcating orbits can be
calculated by means of the so-called bifurcation formule. In particular
Hassard, Kazarinoff and Wan have fully displayed these formulz in their
book [6] to which we refer also for the formal statement of the Hopf
Bifurcation Theorem for ordinary differential equations (see also [11]).
For short, we shall call “HKW procedure” the Recipe-Summary presented
in the Ch. 2 of [6]. We recall that the first step in this HKW procedure is
the reduction of the jacobian matrix A(v,) to its real Jordan form. There-
fore we need to compute the eigenvalues A4, 4,, ..., 4, of 4 (v,), where Aq
and A, = A, is the pair crossing the imaginary axis atv = v; let u; be the
eigenvector corresponding to A;. Then we have to form an n X n matrix P
whose first and second columns are respectively Re u; and -Im u; while
the other columns span the union of the (generalized) eigenspaces of 4(v,)
corresponding to Aj, J 2 3. This leads to the composite mapping

F) =Qf(x* + Py), Q=P

and the next step is the computation of at least the 3-rd partial derivatives
of F with respect to the new variable y, to be evaluated atv = v,y = 0.
In some degenerate cases these derivatives have to be computed up to the
5-th order, or more. In several practical situation, this requires a tremen-
dous effort of symbolic manipulation, so that the analytic evaluation of the
bifurcation formule becomes sometimes practically impossible. In these
cases, for example, Hassard et al. ([6], Ch. 3] suggest the possible use of
numerical differencing to approximate the partial derivatives.
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We propose here an alternative technique. Namely, it is possible to
compute the p-th order partial derivatives of F without computing its lower
order derivatives, including F itself: It is enough to know the p-th order
derivatives of the original map f at the equilibrium x*, and solve some
algebraic linear systems, each having P as coefficient matrix but different
right hand sides. If n is large, this last step may possibly require numerical
techniques. Anyway, a numerical linear systems solver is conceptually

simpler and less complex than a numerical differencing routine.
In fact we have the following result.

PROPOSITION 2.1. Suppose thatf: R 2 U > R"'isaCP m f with U

open. Let P be a real constant n X n nonsingular matrix, Q = P, and let
x* € R". Then the map F defined by

F(y) = Qf @* + Py)

is C? on a neighborhood of 0, and for any multi-index a = (ay, @, ..., @,,)
witha; + a, +... + a, = p, we have

(99F1 (0), 0°F5 (0), .., °Fp, (0)) = (§1, &3, - &)
where & is the solution of the linear system P§ = b with right hand side
b = DPf (*) [PI"(P,I" ... [P
(P, is the r-th column of P, 1 < r < n).

Proof. Consider first G (y) = f (x* + Py). Then G is CP and its p-th
differential at y is defined by

DPG (y) [wl’ Wy ey wp] = Dpf (x* + Py) [Pwl, sz, evey PWp]

(see [3], p. 74). The theorem relating the p-th differential to linear maps
(see [5], p. 86) gives that D (QG) (y) = Q {DPG (y)}. Therefore we have

DPF (y) [wy, wy, .., wp] = QD Pf x* + Py) [Pw,, Pw,, ey PW],
and, evaluating aty = 0,

DPF (0) [wq, wp, ..., wp] = QD 2f (x*) [Pwy, Pwy, ..., Pw,)],
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In particular, the components of D PF (0) in terms of the standard
basis are the p-th order partial derivatives, so that

3%F (0) = DPF (0) [e1]%1[e,]*2 ... [e,]"
= O D?f (x*) [Pey]"1[Pe,]* ... [Pe,]* = Q DEf (x*) [P]*1[P,]* .. [P,]°,

for any multi-indexa = (ay, a,, ..., a,) witha; + a, +... + a, = p, where
P, is the r- th column of P.

As special cases, the 2-nd and 3-rd order derivatives of the compo-
nents of F are

(3:3Fy (0), 8;9;F3 (0), -, 3;9;F, (0)) = D?F (0) [¢] [¢]
= 0 D (*) [P}] [P]],
(0;0;0¢F1 (0), 0;30F1 (0), .., 9;9j8,F,, (0)) = DF (0) [e;] [¢;] [e4]
= 0 D (*) [P}] [P} [Pyl.

Therefore, once we have computed the partial derivatives of f, the
n-vector 9;9;F (0) is the solution § of the linear system

PL = DY (%) [P [P}, (22)
and the n-vector 9;3;0,F (0) is the solution of the linear system
Pt = D (*) [P}] [P]] [Py]. (23)

Remark that all these linear systems are independent one to each
other, hence, they can be solved by parallel algorithms. At this point we
can go back to the standard HKW procedure without supplementary heavy
non-linear computations.

3. A first example: the Lorenz system

We briefly consider, as a reference example, the classical Lorenz
system:

x=f(@;b,0r), x-= (x1, x5, x3),
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fG;b,0,r) = (0(xy-Xx1), -X3x3 + 1Xq - X5, X4%5 - bx3),
where b, o are fixed positive numbers, o > b + 1. The Hopf bifurcation
in this system has been already analyzed, e.g. in [6]. The bifurcation

parameter is r. It is well known ([6], [11], ...) that,ifr = r,. =0 (0 + b +
3)/(o - b - 1), then a Hopf bifurcation from the equilibrium

x* () = (-0 -1

comes out. The eigenvalues of the jacobian matrix A° of S (x*(r);r.) at
bifurcation are

)‘1 (rc) = 7l2 (’c) = iw, withw = (b (rc + a))l/Z’

Ay(r)) =-(o + b + 1).

The columns of the real 3 x 3 matrix P = (p;;) transforming the
JacoblanA into its real canonical form are:

2 "
Py = (P11, P21, P31) = (1, 1, 0%/(0xy))
Py = (P12, P22, P32) = (0,-w/o, 0 (1 + 1/0)/x]),
Py = (P13, P23, P33) = (L - (b + 1)/o, (1 + (o + b) (b + 1))/x)),
wherex; = (b (r - 1))Y2. The vectors P, - iP, and P, are the eigenvectors
of A° corresponding respectively to the eigenvalues Ay (r;) and A5 (r.). It

is also possible to compute formally

a; =Re X'4(r.)) = 0.5 b[o-b-1)/[w? + (0 + b + 1)7],
w, =ImA{(r) =05 - [bw® + 260 (0 + b + D)[w? + (0 + b + 1)},

(' = djdr).

Since f is quadratic in x, the 2nd differential of f at the considered
equilibrium and r = r_, is constant, while the 3rd one vanishes. Moreover,
only the following partials of fatx = x* (r.), r

03 =03 fa=1, Opfz3=0nf=1
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are non-vanishing. Using Proposition 2.1, we compute for each i, j from 1
to 3 the vector

b" = D *(r.); ) [P [P

Obviously b’ij = 0, while
b3 = Zpym=1,3 OhmS2 PhiPmj = - PP - P3P

bg = th=1,3 ahmf3phipmj = P1iD2j +P2iplj-

Only six 3 x 3 linear systems PCij = b’ (i =j) have to be solved. Then
we get the 2nd and 3rd partials of F (y) = P'lf &* + Py)iny = 0,r = r,,
thus:

3 Fry = &y Oy . = .
The linear systems have been solved by a library routine on a simple

PcHP9816S, and the solutions have been substituted in the formula of

K2=H2 (b) A b
18 28 38 492 50 B 728 80 98 199
1 | 1 : 1 ] { [ 1 1 1

1
T | T T 1 1 1 1 1 } >

o=100

Figufe 1



34 SERGIO INVERNIZZI

Hassard et al., getting the computed value of the coefficient ,uz as function
of b for o = 20, 40, 60, 80, 100.

The results are plotted in Fig. 1, where, for comparison, the signs “ +”
indicate the values obtained by Hassard et al. by the code BIFOR for o =
100 and b = 10, 20, ..., 70, as presented in [6; pag. 159, Table 3.4].

4. Application to a Single Loop Feedback Control System

We study in this section the quantitative properties of the Hopf
bifurcation of periodic solution from a positive equilibrium state for the
following one-loop n-dimensional feedback control system

dx,/dt = n (f (x,,) -x1), (4.1)
dxj/dt = n (xjq-%), j=2..,n, (4.2)

where f (s) = vse”,v > 0, and n = 3. The bifurcation parameter is v. We
shall see that the bifurcation occurs at v = exp {1 + [cos (n/n)]"}.
Equations (4.1)-(4.2) are a simple model for many natural phenomena
where a distributed time lag is present. The “essential” variables are the
“input” x; and the “output” x,, which controls the evolution of x;. The
remaining “hidden” variables represent the lag. A prototype of this kind
of equations are the Goodwin equations [5] in dimension n = 3. This
3-dimensional model describes (with a different type of “hump” nonli-
nearity, namelyf (s) = 1/(1 + s”)) the dynamics of end-product inhibition
of gene activity: messenger RNA codes for an enzyme, one of whose
metabolic products inhibits further synthesis of mRNA. See [10] for the
derivation and the interpretation of (4.1)-(4.2) in a biological framework.
The same systems occurs in some economic models: see [7], where a
detailed study of multiple distributed lags is presented. In the same paper
[7] it is proved that, for any n, (4.1)-(4.2) possesses a maximal bounded,
compact and connected, attracting set which attracts the bounded subsets
of the open positive orthant, and its Lyapunov dimension is determined
forn = 50 by means of numerical estimates of the Lyapunov characteristic
exponents. Previously, in 1980, Sparrow [12] studied (4.1)-(4.2), and he
found a complex or chaotic behavior of orbits in this high dimension for v
= 22, together with a first Hopf bifurcation for v = 8.197 and further
bifurcations and other interesting facts which are still not completely
understood (see the pertinent remarks in [9]).

The technique used in [12] for the analysis of the first Hopf bifurca-
tion was developed by Allwright in 1977 [1] (see also [2]). It is based on
the method of harmonic balance, and its results are correct to the first
order in the bifurcation parameter.
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In alternative, we use here the HKW procedure as modified in Sect.
2. This modification allows us to avoid any numerical help, except for a
single algebraic linear system and some elementary complex arithmetic.
The system (4.1)-(4.2) has a non-zero equilibrium

x* =x* (v) = (log (), log (¥), ..., log ())
as soon as v > 1, which is asymptotically stable if 1 < v < v, where

v = exp {1 + [cos (w/n)] "}. (4.3)

In fact, given a (momc) polynomiala (s) = ay + a;5 +... + an_ls"'1

+ 5", and its companion matrix C,, we have det (C, - uI) = (-1)"a (u).
The Jacoblan matrix (with respect to the variable x) of the vector field

J@v) =n(f () -x1, xp -2 X - X35 o0y X1 - Xp)
atx* =x* (v)isA (v) =n ('Ca - 1), with ay = - (df/ds) (x,), aj = 0forj

> 1.
Therefore the characteristic polynomial of ‘Ca -Iis

det (C,-(A + D)D) = (-1D'a@ + 1) = (-1)" {} + 1)"- (dfids) (x,)}

= (-D"{@ + 1)"- (1-log ())},
and the eigenvalues of 4 (v) forv > e (remark that v, > e) are
A @) = n {(log (v) - )I/" - Daim 4y (4.4)

(k = 1, ..., n). Since (log (v,) - 1) = 1/cos (7c/n), we have

@y (¥) = Red; (v) = n {(log (v) - ) cos (w/n) - 1},

ag =a; (v,) =0,

a'y = (day/dv) (v,) = v;1[cos (z/m)]" = 0, (4.5)
while, fork = 2, ., n- 1,

Rely (v.) = n {[cos (2k - 1) /n)]/[cos (7/n)] - 1} < O.
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Moreover,
w, @) = Imi; (v) = n {(log (#) - 1)" sin (z/n)},

wy = wq (v.) = ntan (n/n), (4.6)
w'y = (dw,/dv) (v,) = v, L tan (7/n)] [cos (w/n)]". (4.7)

Observe that these eigenvalues are numbered in such a way that the
pair on the imaginary axis is A; and A, = 1, (v > e). Thus a Hopf
bifurcation occurs atv = v_.

For example for n = 50, v, = 8.197, in agreement with the data in
[12], &'y = 0.110, w, = 3.145, and the period at the bifurcation is

Ty = 2n/wy = 1.997 ([12] reports exactly 2).
Let us reduce now the jacobian matrix4 (v.) = Df (x* (v.); v.) to its
real Jordan form, computing the transition matrix P.

LEMMA 4.1. Any eigenvalue A = n (p + io) of A (v.) has a correspond-
ing eigenvector

u=(»1, z'l,z'z, vees z'"+1)
wherez = 1 + p + io (p,0 €ER).

Proof. Remark first than -n is not an eigenvalue of 4 (v,), so that z #
0. The system to be solved is

-nu, + n {-[cos (m/in)"Yu, =n(p + io) uq,
n (uj_l - “j) =n( +io)u;, j=2.,n

Now u; = 0 is not allowed for an eigenvector, because this would imply
by a recursive argument thatu = 0. Therefore we can choose u; = 1, and
we find recursively thatu; = u; /(1 + p + io).

Letting A, (v.) = n (o + ioy), we get from (4.4)
2y =1 +p, +io, =[cos (e/n)] ™ [cos ((2k - 1) w/n) + i sin ((2k - )7/n)].

Let us define for any integer p = 0 the real constant numbers

C, = cos (pn/n), S, = sin (pz/n).
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Then(k = 1,..,n;j =1,..,n-1)

z) = ¢/ [Cak-y) - ¥ S 2k 1yl

and the entries of the transition matrix P are

Pym = C" M Clppypry  ifm + 1 = 2k, ie. if m is odd,
= Clh_l Sk Hm +1 =2+ 1,ie.ifmis even (4.8)
(h,m =1, .., n).

To wrlte the linear systems (2.2) and (2.3) we observe that D*f x* ()
[resp.D 3 (x* (v.))] has just only one coordinate different from 0, namely

Ondnf1 (6" ()} = C1" - 1[resp. 8,0,0,f; (x* (v)) = 2-C["].
We obtain
Df *) [P [P}] = Zpgsds0,frm (* () Py Py e
= (C1"-1) P, Py e,
Df (&) [P [P] [Pel = Zpmors 09,0, fr (6 (v,)) Py Pj Py €
= (2-C1") Py Py Pyp eg.

It is therefore sufficient to solve only once the linear system P{ = e,
for the n- dlmensmnal vector § = (3, €5, ..., §,,) (Which is nothing but the
first column of P ) and we have our 2 nd and 3-rd order derivatives:

gijm = 9;0; F,, (0) = (c"-1) P, Ppi S, (4.9)

Mijkem = 0;9j0 Fp (0) = (2 - C1") Py Py Py & (4.10)

From now on we fix n = 50. The straightforward routine LSARG of
the IMSL, Inc. MATH/LIBRARY, carried out on a CDC CYBER 170/730,
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computes the vector X = Pl e; (P from (4.8)), and then we follow the
HKW procedure using (4.9), (4.10) for the partial derivatives of F.

At last we get that the computed value of the coefficient 4, whose sign
determines the direction of the bifurcation is 0.0107, so that the bifurcat-
ing periodic solutions exist for v > v,. Moreover, their period and the
exponent determining their stability are respectively

T = 1.997 (1 + 0.775 8 + 0 (8%),
B =-02218% + 0 (8%,

with 8% = w-v.) + O (v- vc]z), v, = 8.197. Thus, being 8 < 0 for v near
v., these solutions are asymptotically orbitally stable (with asymptotic
phase).
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NOTE ADDED IN PROOFS

The use of a numerical routine solving PX = ¢, is unnccessary. Infact, using the ideas in [8],
one can formally prove that X; = 2/50 for i odd, white X; = 0 for i even.



