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SOMMARIO.- Facendo uso di una recente teoria dell’integrazione rispetto ad una
misura finitamente additiva a valori in uno spazio di Banach (massa vetto-
riale) si ottiene un teorema di Radon-Nikodym per una coppia di masse
vettoriali.

SUMMARY.- Using a recent integration theory with respect to a Banach- valued
finitely additive measure, a Radon-Nikodym theorem is derived for a pair of
Banach-valued measures.

1. Introduction

One of the most interesting problems arising when dealing with
finitely additive measures (f.a.m.’s) concerns the existence of a Radon-Ni-
kodym derivative for a pair of f.a.m.’s 4, m, with4 < < m. It is known that
the classical Radon-Nikodym Theorem fails to be true in the finitely
additive case unless some further assumption is fulfilled. The first result
in this direction dates back to Maynard [10], where the case of two scalar
f.a.m.’s defined on an algebra of sets is investigated. The scalar case has
also been faced in Greco [7] for subadditive set functions using a De
Giorgi-Letta integration theory ([4]), and more recently by Candeloro-
Martellotti ([2]) for non-atomic f.a.m.’s

Besides the scalar case, the vector case has been recently studied: in
[8] Hagood generalized Maynard’s result to the case of a Banach-valued
f.a.m. using the Dunford-Schwartz integration theory ([5]-chapter III),
while in [3] the existence of a “weak” density has been established. Since
an integration theory for a pair of Banach-valued f.a.m.’s has been most
recently developed by Brooks-Martellotti [1] extending that of Dunford-
Schwartz, it seemed natural to extend Maynard’s result to this case.
Actually in the theory of Stochastic Processes the existence of a scalar

(*) Pervenuto in Redazione il 25 agosto 1989.
Lavoro svolto nell’ambito del G.N.A.F.A. del CN.R.

(**) Indirizzi degli Autori: A. Martellotti, Dipartimento di Matematica, Facolta di Ingegneria,
via Brecce Bianche, 60100 Ancona (Italy); A. R. Sambucini, Dipartimento di Matematica,
Universita degli Studi, via Alessandro Pascoli, 06100 Perugia (Italy).



332 ANNA MARTELLOTTI and ANNA RITA SAMBUCINI

density for a pair of f.a.m.’s defined on an algebra and without non-ato-
micity assumptions could be particularly useful. »

In this paper we extend the Maynard’s result for a pair of Banach-va-
lued f.a.m.’s: to do this we make use of a condition which is equivalent to
that assumed in Maynard [10] and in Hagood [8], but that turns out to be
strictly stronger in the case here considered, as shown by means of an
example. '

2. Preliminaires

Let Q be an abstract set, Z be an algebra on Q. Throughout this paper
X will denote a separable Banach space, with dual X*,m : £ - X will denote
a finitely additive strongly bounded measure. The following result holds

THEOREM 2.1. (Kats [9]) The range R(m) is bounded.
From this theorem, we can define the semivariation of m, as the
positive subadditive set function on Z defined by

|m|(E) = sup{m(4)|,4 S E, A € Z}
and we will denote by |m | " the extended semivariation according to [5].

DEFINITION 2.2. A finitely additive measure A is m- continuous, written
A << m, if for each € > 0 there exists 0 > 0 such that E € X and |m|(E)
< ¢ implies |A|(E) < o.

We will say that a positive finitely additive measure v : Z —» Rg is a
control for m if v and |m| are equivalent. If v is a control for m, then v is
said to be a Rybakov control ifv = .|x m| for somex € X .

The following theorem is known:

THEOREM 2.3. (Rybakov [11]) If m : £ = X is strongly bounded, then
it admits a Rybakov control.

m-null sets, m-null functions and m-simple functions will be defined
as in [5].

DEFINITION 2.4. A function f : Q - R will be said to be “totally
measurable” provided f is the limit in m-measure of a sequence of m-simple
functions.
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In [1] a theory of integration is developed for the below defined
integral :

DEFINITION 2.5. (Brooks-Martellotti [1]) 4 measurable function
f: Q- R: o Will be said to be “m-integrable” if there exists a sequence (f,),,

of simple functions such that (f,), converges in v-measure to f, and the
sequence (f g f,dm), converges in X uniformly with respect to F in . In this
case the m-integral of f is defined by

f fdm—hmf f,,dm.

n-»oo

In ([1]) the above defined integral is compared with the vector exten-
sion of the following integral with respect to a non negative subadditive
monotone set function.

DEFINITION 2.6. (De Giorgi-Letta[4]) Leto: X > R 3' be a set function
such that

i) o(9) =0
ii) ifA, B €Z, and A C B then o(A) < o(B);
iii) ifA,BE€EZand ANB = @Gthen o(4A U B) < o(4) + a(B).

For a Z-measurable function f : Q - Rg we set
+ 00
(2.6.1) fgfda = fo o(f > t)dt;

while if f : Q - R, we set:

Jofdo = fgf+da-fgf'da.

Let =7 be the subset of X consisting of the sets with positive semi-
variation and let =2 be the subset of = consisting of the sets E such that
|m|(E) < 2]lm(E)|.

DEFINITION 2.7. We say that a countable (or finite) disjoint collection
€inZtis “m- -exhausting” in Q (or, equivalently, that € exhausts m) if given
any € > QO there exists a finite subset I of N such that |m|(Q - U;c;E;) < e
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If € is m-exhausting, and if every element of € satisfies a property P
fixed, then the collection £ is a P-exhaustion (or, equivalently, we say that
P exhausts m).

DEFINITION 2.8. A set property P is “null difference” if whenever
E,F€ =" and |m|(E A F) = O then cither E, F satisfy P or neither.

From this definition it follows that if (Q, £, m) is a complete measure
space and P is a null difference m- exhaustive property then it is possible
to obtain a P-exhaustion {E;};c;such that Q = U,E;.

ForanyE € Qand & C Z let E€ = {4 € € : A C E}. For fixed
E € 2% ande > 0, we denote by A(E€) the average range of A with respect
to m on E defined by:

1AB]

4B =i

FCE, Fet, ||m@F)]| = o},

and by A(E, € ) the e -approximate average range defined by:
A(E,e) = {x ER:||A(F) -xm(F)|| < ¢ |m|(F),VFCE,F € X}.

In addition we will use the notation d(E) to denote the diameter of a
set E C Q.

We state now two lemmata which will be used in the following.

LEMMA 29. If m : £ » X is a strongly bounded finitely additive
Banach-valued measure and E € X7, then either E € 32 or there exists
F CE such that F € 22,

Proof. Suppose not. Then for every F C E, F € Z we have
|m |(F) = 2||m(F) ||; but by definition |m|(E) = sup || m(H) || where the

supremum is taken over all the Z-measurable subsets of E. Therefore it
follows that

|m|(E) = suplm(E)I < 5|m|(H) < 3m|(E).

Contradiction.

LEMMA 2.10. Let f be a bounded measurable function, then:
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IS fdmll < f_ |f|d\m| foreveryE € =
where the right hand side is defined as in Definition 2.6.

Proof. The m-integrability is a consequence of [1] (Theorem 5). By
means of the same result we have for non-negative f

IS fdml =1l £ "m( 1g > Odt]) < [ |7 15 > D)t <

+
<J, Iml(1g > 0dt = [ fd|m]
whence, for arbitrary f, by making use of the decomposition
| S famll =1 G ~famll <1\ S f *dmil + 1 _f = dm |

the assertion follows.

3. The Radon-Nikodym theorem

We begin with some preliminary result.

LEMMA 3.1. Let m and A be two finitely additive Banach-valued
measures, with m strongly bounded, satisfying:

i) A<<m

i) A(QE?)is bounded,;

iii) foreache > 0,the set property A(E,¢) # @ exhausts m on each element
of =%,

Then there exists an m-integrable function f such that A(E) = [g f dm
forallE € X, :

Proof. We may assume that (2, Z, m) is complete since a function
integrable with respect to the completion is integrable with respect to the
initial space and has the same integral values.

As the property A(E, €) # @ is null difference, for everye > 0 and
E € X7 there exists an exhaustion (E;); of m on E such that E = U,E; and
A(E; €) # O for every i.
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Let (E}),- be an exhaustion of m such that Q = U,~E} andA(E}, 2'1) =0
for all i. We may decompose each E,1 in an exhausting way and by induc-
tivity we may construct a sequence of exhaustions satisfying:

(3.1.1.) A(E?, 2") # @ for alln and @ € N*;

- (B12)E; = U,-E;',’ and (E"'H) exhausts m on E,, for everyn € N
and a € N*;

(3.13.) Q = U,E] and (E), exhausts m for n fixed and a ranging on
N".

Let now f, : Q = R be defined by: f, = Z, 7} 1% where
~eAE:, 27, |

Thenthef unctions f,, fullfill the following properties:
(3.1.4.) (f,,),, is uniformly bounded.

Proof. For any n and a by Lemma 2.9. there emsts aset F € 52,
F C E. Then, denoted by M the supremum of 4 (Qx?),

L 1ABN_ AE) |

il = |n LB 1AB]|
* O m@E)| lm )|

¢ Ilm(F)III IIm(F)ll
L 1A@|

Il (F) Il || m(F) ||
but 1m|(F) < 2 and hence
|m(F)
|"¢;‘ < 2 h |m|(F) 'M(F)” 1-n "A(F)” <1+ M

Im@F) |l Ilm(l") ll imF)|l
(3.1.5.) The f,;’s are totally measurable and m- integrable._

Since (E),, is exhausting in Q, the finite sums (2, . @ p)r"; 152) with

p € N converge in m-measure to f,, for p - « and hence f, is totally
measurable and m- integrable.
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(3.1.6.) The sequence (f,,),, is uniformly Cauchy.

Fix k and @ € N"; for each fixedn > kand 8 € N"'k, (E'aﬂ) is a
decomposition of EJ; Then

) -1l = 13 A1k - a8 el

a

P Zﬁﬂlﬁﬁﬂ‘ =

Zrip s,

and since 7, 7 B EA(E,g, 2°%), it follows that | fi(s) - ()| =< 2'* holds
for every s € Q. Hence f,, is uniformly Cauchy.

By (3.1.4.), (3.1.5.) and (3.1.6.) the function f = lim,,_, ..f, is bounded
and m-integrable. Indeed the uniform convergence implies the |m |-con-
vergence and, a fortiori, the convergence in v-measure where v is any
control measure. Moreover { ) fndm < < v(-) uniformly with respect to

n. In fact for n € N fixed one has:
1S yfndmll =Sy G = fddmll =S fy dm = [ 7 dm| <

< o dmll +1S g dm].

)
By Lemma 2.10.
1y dmll< S, i dim);
by (3.1.4.) one has
1S fodml = M|m|(-),

and so|| f (')fndmu < oM |m|(-) uniformly with respect to n. Then by the
Vitali Convergence Theorem [1] f is m-integrable and

lim [_f,dm = Jofdm  foreveryE € 3.

n-»oo

By means of ([1] Theorem 5) one has:
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fEfndm=fon 1Edm=fn (;’zlEnEg) dm

limfg( 2./;1,5%2) dm=lim| T Algagn| =
p*® a<(p,...p) : P la<(p,..p)

=§/’am(E ﬂEZ)=§fEnEandm.

This shows that for € > 0 fixed one can choose p € N such that

€
I 3 AmENE - fdml<s .
a<(p,...p)
Moreover, since (E,), exhausts E, p can be chosen in such a way that
€
Iml[E- U (ENER] < a(3)
a<(p,..p)

with o as in Definition 2.2. Therefore we find:

IAE) - [ fndm || < |AE) - A[ (;J )(ENEZ,)] I +
a<(p,...p

+A[ U ENEY- 3 AmENEY+
a<(p,...p) a<(p,...p)

+I Y AmENE ~f, fdm| <
a<(p,...p)

<IME- U ENEPI+I I RENEY-AmENED]+7 =
a<(p,...p) a<(p,...p)

<=+ Y 2‘"|m|(EnEg)+§5e+2‘"|m|(E).
2 a<(p,...p)

By the arbitrariness of € > 0, we have proven that
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JAGE) - ffrudml] < 27 |m | (E)

whence A(E) = lim,, o, [_f,dm = [_fdm for everyE € X.

LEMMA 3.2. (EXHAUSTION PRINCIPLE) Let m : = - X be a finitely
additive measure. Then the following statements are equivalent:

(3.2.1.) for every € > O the set property A(E, €) # @ exhausts m on each
element of =¥

(3.2.2.) for every 0 > 0 there exists C € Z and a € (0, 1) such that:

i) [m|(Q-C) <

iil) VE € CZ7 there exists F € EX* such that |m|(F) > a|m|(E) and
A(F,e) = @.

The proof is exactly the same as that of Proposition 3.2. of [8] if one
specifies property P as in (3.2.1.). Indeed it is

mI(E) < Th_, Im|(E NE) <3y _ >-lm|(E) =2|m|(E) < |m|(E).)

THEOREM 3.3. (RADON-NIKODYM THEOREM) Let m and A be
two finitely additive Banach-valued measures, with m strongly bounded.
Then the following statements are equivalent:

(3.3.1.) there exists an m-integrable function f such that A(E) = | pfdm
foreveryE € Z;

(33.2)

a) A << m;

b) for every ¢, & > 0, there exists C € Z+ anda € (0,1) satzsfymg

i) |m|(Q C) < ¢;

ii) A(CZ ) is bounded,

i) VE € c=* g F € EZ* such that |m|(F) > a|m|(E) and
A(F,¢) = Q.
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Proof.
“If” part. Suppose A(E) = [ ¢ f dm. Then a) is known ([1]). Let
¢ 0 > 0; then there exists a sequence (f,,),, which v-converges to f. Since v

is equivalent to [m|, f, |m|- converges to f.
Let g = Z,x,Xf , where {E,}, is a finite decomposmon of Q such

that, for everyn, |m| {s €R: |£(s) - g(s)I > -} < Jd,andletA €Xbea
set such that |m|(4) < dand4 D {sER: |f(s) -g®)]| > —}, the set

- C = Q - A satisfies i).
We shall prove now ii): take M = sup |x,| + = then foralls € C,

If(s)| < M. For every fixed E € CZ% we have:
WEN =W fpf*dm- [ fdm|<|f f*dml + | [ 1" dm]
and since f* < 2M,f~ < 2M by Lemma 2.10

IS fodml =11 ;" m({o € Q:f*(w) > £} N E)df| <
< f;°°||m({w €EQ :f*(ﬁ») >t} NE)|dt <
< f;“ Im|({o € Q:f*() >t} NE)dt =

= [ fd|m| < 2M|m|(E).

From this it follows that

IAE) _ aMim|(E) _
Im@EN "~ Im@i

which proves the boundedness of A(CEZ).

To prove iii) let ¢ = % and E € C=* be given. Then |m|(E) =<

2, |m|(E N E,) and there existsj € N such that |m | (E NE;) > a|m|(E)
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(otherwise |m[(E) = Zf_; |m|(E N E) = »ZZ=1%|m|(E) =

SImIE) < |m| @)

Take F = E N Ej; we shall prove that F satisfies iii). In fact for every
B € FX we have:

1AB) - xmB)| = IA(B) - [, g drmll = || f,, (- g)dm] =

1S5 (-8 dm - [ (F-gydml| <|| [, (F-)*dmi + | f, - g)dm]

and since || fB (F-g)*dm| < %Im | (B) we have

K(B) - x;m(B)|| < €|m|(B)
and hence xj € A(F, ¢).

“Only if” part. By Lemma 3.2. conditions i) and ii) are equivalent to
condition iii) of Lemma 3.1. and hence all the assumption of Lemma 3.1.
are verified. This concludes the proof.

In Maynard ([10] Lemma 3.7.) and in Hagood ([8] Lemma 3.4)) the
assumption 3.3.2. b iii) is equivalent to the following one:

(*) foreveryE € X7 there exists F € EX* such that |m|(F) > a|m|(E)
and 8(4(F=2)) < ¢

This equivalence fails to be true in the case here examined, and we
shall show that Theorem 3.3. cannot be proved under this weaker condi-
tion. Indeed we shall exhibit two finitely additive measures, A, m satisfying
(*) and the other assumptions of Theorem 3.3., but not 3.32. b ii1);
obviously, since Theorem 3.3. is a necessary and sufficient condition, it
will turn out that a Radon-Nikodym derivative cannot exist, i.e. 3.3.1. is
not fulfilled. ’

EXAMPLE 3.4.

Let Q be an abstract set and let £ = P(Q). Letu : = - [0, 1] be a
strongly bounded finitely additive probability measure. Let A and m be the
finitely additive measures defined by: m = (4, u) and A = (-u, p).

Then, 4 is absolutely continuous with respect to m and, for every
€ 0 > O setting C = Q, we find:

o Iml(Q-0C) <3
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IA@) |

2y _ + _
A(Qz)—{"m(n", €z’ |mF)| = 0p = {1}

ie. assumptmns 3.3.2. b i)-ii) are fulfilled.
Now, since | m(*)|| =v2 u(-), we have |m|(-) = ||m(-)||, whence .

e foreveryE € % there exist F € EX* and a € (O 1) such that

Im|(F) > asuppcg | m(F)| = a|m|(E) and S(A(FZ?) < c ie. (*)
holds.

We now want to prove that for every E € 2+ and F € EX? there
exists € > 0 such that 6(A(F2 )) < € but A(F, ¢ =

To prove this it suffices to show that for everyx E R and for every
H € F=7 one has:

imE) || ImED)]

Indeed, since 32 =3* and 32 # @, we have:

“ AH) _ xm(H)

|AGH) —xm@E)|| _ |AE) —xmE)|| _ 1
|m | (H) 2||m(H) | 2

Im@E)| Im@E|

A(H)  xm(H) "

Now, fore = ;, it is:

Im@E)||  ImEH)|| Vou’(H)

MH) _ xm(H) “ n (u(H) — xu(H); ﬂ(H)—xﬂ(H))"

R O e T L VI
2u%(H)

from which the conclusion follows.
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