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SOMMARIO.- Si prova un risultato di esistenza per una classe di equazioni
integrodifferenziali del tipo

[u'(t) + Au(®)] N j‘ok(t-s)F(s,u(s))ds g 0<t<T

U(O) = U

dove A ¢ un operatore m-accretivo su uno spazio di Banach reale X con
risolvente (I + A4)™! compatto perognil > 0,k :[0,T] > L(X) éun nucleo
operatoriale ed F : [0,T] X D(A) » 2X ¢ una applicazione multivoca
soddisfacente ed una certa condizione di continuita.
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where A is an m-accretive operator acting in a real Banach  space X with (I
+ }LA) compact for each }, > 0,k : [0,T] = L(X) is a C* operator kernel

and F : [0,T] X D(A) » - 2% is a multivalued mapping satisfying a certain
continuity condition. :
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1. Introduction.

In the present paper we prove an existence result for a class of
integrodifferential equations of the form

[w'(©) + Au(®)] O [ k(t-5)F(su(s))ds = 9,0 <t < T

(1.1)
4 U(O) = uO:

where A is an m-accretive operator acting in a real Banach space X with
(I +AA)"1 compact for eachd > 0,k:[0,7] > L(X)isa C! operator kernel
and F : [0,T] X D(A) » 2% is a multivalued mapping satisfying a certain
continuity condition. We note that (1.1) represents the abreviated writing
for the problem

u'(f) + Au(t) 3 f:) k(t-s)f,(s)ds, O0<t=<T

(1.2) u(0) = u,

fu € LY([0,T1; X), £,(s) € F(s,u(5)) a.e. for s € (0,7).

Problems of this kind have been intensively studied by many authors
and we refer the reader to [1, 2, 3, 5, 8, 9, 10, 11, 12, 13] and to the
references therein. The case when both A and —F(s, ) are the subdifferen-
tials of some proper L.s.c. convex functions acting from a real Hilbert space
H into R has been considered in [1, 3, 6]. In [8] both 4 and -F(s, *) are
allowed to be multivalued but maximal monotone in H. The monotonicity
assumption on — F(s, -) has been discarded in [12] but there
F :[0,T]x X - X is single-valued and continuous - a condition which does
not allow F to be a partial differential operator. In [9, 10] no monotonicity
condition on — F(s, -) is assumed, but the equation there considered are
slightly different from (1.1) and F is single-valued.

Our aim here is to analyse (1.1) in the case when —F(s, -) is neither
monotone nor single-valued.

It should be pointed out that many problems of great practical im-
portance may be written in an abstract form (1.1). Here we discuss only
an equation - which may be interpreted as a possible model describing the
heat flow in a material with memory - in order to emphasize how the
multivalued case could occur in a very natural fashion in some concrete
situations. For other examples with F single-valued or not see [9, 10, 13].
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The paper is divided into seven sections. In sections 2 and 3 we recall
for easy reference some basic facts on m-accretive operators and on
multivalued mappings respectively. The statement of our main result is
contained in section 4, while in section 5 we focus our attention on its
complete proof. Some results concerning the continuation of the solutions
are included in section 6. Finally, in the last section 7 we analyse an
example in order to illustrate how the abstract theory applies to some
classes of nonlinear integro-partial differential equations.

2. Preliminairies on m-accretive operators.

Let X be areal Banach space letx, y € X, and let us denote by [x,y] ;.
the right directional derivative of the norm||-||: X - R _ calculated atx in
the direction y, i.e.

L1
[oyly @ = lim ;(le+tyll = fIx1i).
t{o

An operator A : D(A) C X -» 2% is called accretive if

[x_ﬁvy_§]+ 20

for each x,¥ € D(4),y € Ax and j € AX. An accretive operator is called

m-accretive if I+AA4 is surjective for each 4 > 0, where I is the identity
on X.

Let us consider the Cauchy problem

u'(t) + Au(t) 210, 0<t=<T
(2.1)
u(O) = an

where A:D(A) C X » 2% is m-accretive .f € LY([0,T]; X) and ug € D(A).
By a strong solution of (2.1) we mean a function u € W' *([0,T7; X)
with u(0) = ug, u(f) € D(A) a.e. fort € (0,T) and such that

) - u'(£) € Au(t) a.e. for t € (0,T).

By an integral solution of (2.1) we mean a continuous function

u : [0,T] » D(A4) with u(0) = u, and satisfying
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lu@)-x| = flu(s)-x|| + f;[u(f) -% f(r) -yl dr

foreachx € D(4),y€ Axand0<s<t=<T.

It readily follows that each strong solution of (2.1) is an integral
solution of the same problem, but the converse statement is not true.

We recall for easy references several results we need later.

THEOREM 2.1 (Kato). Let X be reflexive and let A : D(A J)CX~> 2% be
m-accretive. Then for each uy, € D(A) and each f € wh ([O T]; X) there
exists a unique strong solution u : [0,T] = D(A) of (2.1) satisfying

@2) W@l = |u@) +f©)] < |4ug + fO)] + [ 1) llds

a.e. fort € (0,T), where |Az+z| : = inf{|ly +z||;y € Ax},foreachx € D(A)
andz € X.
For the proof of Theorem 2.1 see [4, Theorem 2.2, p. 131].

THEOREM 2 __L_pmlan) LetA:D(A)CX ~» 2% be m-accretive. Then
foreach (uyf) € D(A) XL ([O T); X) there exists a unique integral solution
u =97 (uo,f) of (2.1). In addition, for each (vyg) belonging to
D(A) XL ([0 T]; X), the integral solution v = J(v,g) satisfies together
with u

(23) lu(@® -v®Ol < lluls)-v(s)Il + f:llf(f) -g(@)lldr

foreach0 <s <t <T.
See [4, Theorem 2.1, p. 124].

THEOREM 2.3 (Mitidieri-Vrabie). Let X be a real Banach space whose
dual i. lS uniformly convex, let A : D(A) C X -» 2% be m-accretive with I+
AA4)7! compact for each A > 0 and let uq be a fixed element in D(A). Then
the mapping f = Hu,f) - the unique integral solution of (2.1) corresponqu
to (ugf) - is sequentially continuous from each bounded subset in W'
([0,T]; X) endowed with the weak topology of L1([0,T]; X) into C([0,T]; X)
endowed with its strong toeology In particular, the mapping above is sequen-
tially continuous from W ¥([0,T]; X) endowed with its own weak topology
into C([0,T]; X) endowed with its strong topology, foreach1 < p < .

For the proof of Theorem 2.3 see [9] or [13, Corollary 2.4.2, p. 75].
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LEMMA 2.1 (Mitidieri-Vrabie). Let X be a real Banach space whose
dual is uniformly convex, let A : D(A) C X -» 2X be m-accretive and let
ug € D(A). Then for eachr > 0 and each T, € (0,T] there exists a constant
C(Ty,r) > 0 such that, for each f € wh ([0 Tol; X) verifying

L, 012 + 1F ©1DanY2 <,

the unique strong solution us of (2.1) corresponding to (i4yf) satisfies
|[Audt)| = C(Tyr) a.e. fort € (0,T).
In addition, we have
C(Tyr) = C(Tyy)

foreachr > 0and0 < Ty <T, <T.
See [9], or [13, Lemma 5.2.1, p. 273].

3. Preliminairies on multivalued mappings.

A mapping F : [0,T] » 2% is called weakly measurable if F~ 1(C) D=
{t € [0,T]; F(t) N C # ¢} is Lebesgue measurable whenever C is closed
in X.

The next result is a specific form of a general selection theorem due
to Kuratowski and Ryll-Nardzewski.

THEOREM 3.1. Let X be a separable real Banach space and let
F:[0,T] » 2X be a nonempty and closed valued mapping which is weakly
measurable. Then F has at least one strongly measurable selection, i.e. there
exists at least one strongly measurable function f : [0,T] » X such that
f(t) € F(t) a.e. fort € (0,T).

See [13, Theorem 3.1.1, p. 117].

Let X, Y be two real Banach spaces and let U be a nonempty subset
in Y. A nonempty and closed valued mapping P : U » 2% is called weakly
upper semicontinuous (weakly u.s.c.) at ug € U if for each weakly open
subset D in X with P(uy) C D there exists a neighbourhood ¥ of u in the
weak topology of Y such that P(u) C D for each u € V. A mapping
P:U - 2%is called weakly u.s.c. on U if it is weakly u.s.c. at eachu € U.
A mapping P : U » 2% is called bounded if its range is bounded in X.
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THEOREM 3.2. Let X, Y be two reflexive real Banach spaces, let U be a
nonempty, bounded, closed and convex subsetin Yand let P:U - 2" be a
nonempty, closed and convex valued mapping which is bounded. Then P is
weakly u.s.c. on U if and only if its graph is weaklyxXweakly sequentially
closed in UXX.

See [13, Theorem 3.1.3, p. 121].

Then next result is a variant of the well-known Kakutani-Ky Fan S
fixed point theorem.

THEOREM 3.3. Let K be a nonempty, weakly compact convex subset in
a reflexive real Banach space Y and let P : K —» X be a nonempty, closed
and convex valued mapping whose graph is weaklyXweakly sequentially
closed in KXK. Then P has at least one fixed point in K, i.e. there exists at
least one element u € K such thatu € P(u).

Theorem 3.3 is a direct consequence of Theorem 3.2 combmed with
[5, Corollary to Theorem 6.3, p. 75].

4. The main result.

We introduce first some concepts we need in the statement of our
main result.

Let X be a reflexive and separable real Banach space and let
A:D(A)C X -» 2X be an m-accretive operator We denote by
W1 2([O T); X) the space of all functions u € wh ([0 T); X) such that

u(t) € D(A) a.e. for t €(0,T) and for which there exists v € L*([0,T]; X)
with v(t) € Au(t) a.e. fort € (0,7).

DEFINITION 4.1. A mapping F : [0,T] X D(A) - 2% is called A-demi-
closed if

(i) for each (t x) € [0,T] X D(A), the set F(t,x) is nonempty, closed
and convex;

(ii) for eachu € H{14’2 ([0,T]; X) the mapping t - F(t,u(f)) is weakly
measurable from [0,7] into X; .

(iii) if (u,,) is a sequence in W1 2 ([0,7]; X) and (v,) is a sequence in
L*([0,T]; X) such that v,(t) € Au,,(t) for eachn € N and a.e. for t € (0, T)
and

lim u,, = u strongly in C([0,T]; X),u € W},’Z ([0,T}; X),

lim v, = v weakly star in L*([0,T]; X),
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and if (f,,) is a sequence of measurable selections of (F(-,u,(-))) such that

limf, = f weakly in L2([0,T]; X),
then f(t) € F(t,u(t)) a.e. for t € (0,T).

DEFINITION 4.2. A mapping F : [0,T] X D(4) -» 2% is called A-domi-
nated if there exists a nondecreasing functionm : R, -» R, such that

|F(tx) |5 < m(|4x])

for eachx € D(A) and a.c. fort € (0,7), where |F(tx)|g : =
sup {||fll:f € F(tx)} and |Ax| : = inf {||y]|;y € Ax}.

BY a strong solution of (1.1) on [0,T,] C [0,T] we mean a function
u EW-%([0,T,]; X) - with u(t) € D(A) a.e. for t € (0,T) - for which there
exists f, € L%([0,T,]; X) with £, (f) € F(t,u(r)) a.e. for t € (0,T) and such
that u is a strong solution of (2.1) on [0,T;] corresponding to
f € WH([0,T,]; X) defined by

ft) s = [ k(t-s)f, (s)ds

for each ¢t € [0,T].
The hypotheses we need in the sequel are listed below.
(H;) Xisaseparable real Banach space whose dual is uniformly convex.
(H,) A:D(A)CX~> 2% is an m-accretive operator with (I +44)™!
compact for each4d > 0.
(H3) F:[0,T] x D(4) » 2% is an A-demiclosed and A-dominated
mapping.
(Hy) k:[0,T] = L(X) - the space of all linear continuous operators from
X into itself endowed with the operator norm - is of class C.
Now we may proceed to the statement of our main result.

THEOREM 4.1. If (H,), (H,), (H;) and (H,) are satisfied then for each
uy € D(A) there exists Ty = T(uy) € (0,T] such that the problem (1.1) has
at least one strong solution defined on [0,T,).

S. The proof of the main result.

The idea of the proof consists in showing that a suitably defined
operator has at least one fixed point.
Let Ty € (0,7] and r > 0 and let us define
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T, 1,2 . Y-
KTO: _= {fe W ([O:TO]s X)’ "f" 1,2 = r,f(O) = O}

where |||}, , is the usual norm on Wl’z([O,TO]; X), i.e.

Ifll2: = U A0 12 + 170 1 B’

for eachf € Wl’z([O,TO];X).
Clearly K, 0 is nonempty, closed, convex and bounded. In addition,

since the dual of X is uniformly convex, X is reflexive - see [13, Corollary
1.4.1, p. 18] - and thus Wl’z([O,To]; X) is reflexive too. Hence K, ¢is weakly

compact in Wl’z([O,TO]; X) - see [13, Corollary 1.2.4, p. 7].
Let uy € D(A) be arbitrary, but fixed. For each f € K,T 0let us denote

by uy the unique strong solution of the Cauchy problem

u's(t) + Audt) 3f(1),0 <t < T,

(5.1)
ud0) = uy,

whose existence is ensured by Theorem 2.1. Now, let us define the mapping
P:D(P) C KFo 2" (OTX) py

Pf: = {k*hs; ke € L*([0,Ty); X), hdt) € F(Lud(r)) a.e.t € (0,Tp)}

for each f € D(P), where

(k*hf)(t) 1= j‘ok(t—s)h,(s)ds, for t € [0,T],

and D(P) = {f € K]o; @)h; € LA(0,Tgl; X), h(t) € F(Ludp)) ace. for
t €(0,Ty)}.

From (2.2) in Theorem 2.1 it follows that for each f € K,T ° we have
us € W},’z ([0,T,]; X) and therefore, by (ii) in Definition 4.1, the mapping
t = F(t,u(¢)) is weakly measurable from [0,T] into X. Next (i) in Definition
4.1 and the remark above show that the set of all strongly measurable
selections of ¢ = F(tu(f)) is nonempty. See Theorem 3.1. Finally, from

(2.2) and (H;) - see Definition 4.2 - we conclude that each measurable
selection of t > F(tugt)) belongs to L*([0,To]; X), and thus to
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L2([0 T,); X). Consequently D(P) = K,o and P is nonempty, closed and

convex valued. See (i) and (iii) in Definition 4.1.

At this point it is quite obvious that (1.1) has at least one strong
solutlon u defined on [0,T,] if and only if P has at least one fixed point
fe K, 0. Indeedf € K ois a fixed point of P if and only if the strong solution

us of (5.1) is actually a strong solution of (1.1).

Thus, our aim in that follows is to show that, for some suitably chosen
r > 0and T € (0,T], the mapplngP has at least one fixed point. The proof
of this fact - based mainly on Theorem 3.3 - consists ia two steps.

First step. We show that for some r > 0 and T, € (0,7}, P maps KT

into itself.

Second step. Withr > 0 and T, € (0,7] as above, we provc that the

graph of P is weaklyxweakly sequentially closed in Krf 0 X K, 0,

First step. Since k € Cl([O,T]; L(X)), there exists ky > 0 such that

(5.2) k@)L = ko 1K' ()l Lx) < ko for each t € [0,T].

Letf € K and let us denote by Sel(F(- #f(+))) the set of all strongly

measurable selections of ¢t » F (t uf(t)) As we already have seen, this set
is nonempty and included in L ([0 T,}; X). By Definition 4.2 and (5.2) we
easily conclude that

| @11 = (kN Loy * DO S ko o m(|Aug(s)|)ds
for each hf € Sel(F(- #u[+))) andt € [0,T;]. From Lemma 2.1 we then have

(5.3) I *r) O | < koTyn(C(Toyr))

for each hf € Sel(F(- uf( ))) and ¢ € [0,T].
Similarly, we get

1 G*R) O Il = k@)L + K *RYO || < 1K) [l Lz 1BAD || +
+ (Kl 11O < kgn(1Aude)|) + ko i m(|Auds)|)ds

= kgn(C(Ty,r)) + koTem(C(Ty,r)),
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for each ke € Sel(F(-, uq-))) and t € [0,T]. A simple computational
argument involving (5.3) and the last inequality yields

(5.4) lk*hell 1 2 < kgn(C(Tor))2TE + 2Ty + DV T2,
for each hy € Sel(F(-,ud-))).

Now, let us fix7 > 0. From Lemma 2.1 combined with the fact that m
is nondecreasing it follows that

lim kgn(C(Ty, 7)) (2TE + 2Ty + )21/ = 0

040

Consequently, for a sufficiently small T, € (0,7] we have
kgn (C(Tor))(2TE + 2Ty + DV2 T2 < 1.
But this inequality along with (5.4) shows that
| k*hell 1 =<1

foreachf € K,T oand k¢ € Sel(F(- ,ud -))). Since (k*h f)(O) = (0, we conclude
that for r > 0 and T, € (0,7] as above, P maps K,T o into itself thereby
completing the first part of the proof.

Second step. Next we prove that forr > 0 and T, € (0,77] as above the
graph of P is weaklyX weakly sequentially closed in K,T 0 X K, . To this aim,

let ((f,,, k*h,)) be a sequence in graph (P) such that
(5.5) limf, = f and lim k*h,, = h weakly in Wl’z([O,TO];X).

Let (u,) be the sequence of strong solutions of (5.1) corresponding
to (f,,)- By Theorem 2.3 it follows that

lim u,, = u strongly in C([0,T}]; X),

where u is the unique strong solution of (5.1) corresponding to f.
Now, let (v,,) be the sequence defined by

V() : = —u', () + f,,(t) a.e. for t € (0,T),
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for eachn € N. Since v (1) € Au,(t) for eachn € N and a.e. fort € (0, T,)
and (f,,) is bounded in W™ ([0 T,); X), from Lemma 2.1 it follows that (v,))
is bounded in L*([0,T,}; X). Recalling that X is reflexive - being the
predual of a uniformly convex space - and X* is separable - being the
predual of a separable Banach space X* - we may assume with no loss of
generality that

lim v, = v weakly star in L*([0,T,]; X).

At this point, let us define the operator A : D(.A4) C Lz([O,TO];X) -
LT3 py

Au:={ve LZ([O,TO;X); v(t) € Au(t) a.e. fort € (0,7)}

for eachu € D(.A4), where

D(A = {u € L¥([0,T,); X); u(t) € D(A) a.e. for t € (0,T;) and there
exists v € Lz([O,TO];X) with v(f) € Au(t) a.e. for t € (0,7,)}.

We may eas1l¥ verify that A4 i is m- -accretive in Lz([O T,]; X). Recalling
that the dual of L*([0,T]; X) is L ([0 Tol; X*) - see [7, Theorem 8.20.5, p.
607] - and X" is umformly convex, by [14, Theorem 4.2 and Remark 4.7, p.
365] it follows that L? ([0,T,}; X) has a uniformly convex dual. Consequent-
ly, by [4, Proposition 3.5, p. 75], A is demlcloscd i e its graph is strong-
lyxweakly sequentially closed in L ([0 Tol; X)xL? ([0,Ty]; X). Hence
v € Au,ie.v(t) € Au(t) a.e. for t € (0,T). Now Lemma 2.1 comes into
play and shows - via (H3) and Definition 4.2 - that (h,) is bounded in
L%([0,T,); X). Thus we may assume with no loss of generality - by extrac-
ting a subsequence if necessary - that

limh, = h weakly star in L*([0,T,]; X).

Since h, () € F(tu,(t)) for eachn € N and a.e. for t € (0,T) - see
the definition on P - condition (iii) in Definition 4.1 implies that
h(t) € F(t,u(t)) a.e. for t € (0,T;). Finall by, inasmuch as the operator g
->k*g is weakly-weakly continuous from L*([0,T,]; X) into wh ([0 T,l; X)
- being strongly-strongly continuous and linear - we have

lim k*h, = k*h  weakly in WH2([0,T,]; X).
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But this remark along' with (5. } shows that the graph of P is weak-
lyxweakly sequentially closed in K, 0 x K,0 Hence Theorem 3.3 applies

and consequently P has at least one fixed point f € K,TO. Since Uy - unique

strong solution of (5.1) corresponding to f - is actually a strong solution of
(1.1) on [0,T], the proof is complete.

6. Continuation of the strong solutions.

Concerning the continuation of the strong solutions of (1.1) we have
the following results

THEOREM 6.1. If (H;), (H,), (H;) and (H,) are satisfied, then a strong

solution u : [0,Ty) = D(A) of (1.1) is noncontinuable (as a strong solution)
zf and only if the mapping t - |Au(t)| is unbounded on [0,Ty] in the
L>([0,T,]; R)-norm.

The proof of Theorem 6.1 is quite similar to that of [13, Theorem 5.2.2,
p. 278] and therefore we do not give details.

THEOREM 6.2. If (H,), (H,), (H;) and (H,) are satisfied and there exist
¢; €L L[0,T);R,),i = 1,2, such that

|F(tu)|s < cq(6) |[Au| + cy(6)

foreach u € D(A) and a.e. fort € (0,T), then each noncontinuable strong
solution of (1.1) is defined either on [0,T) or on [0,T].

Since the proof of Theorem 6.2 follows exactly the same lines as those
in the proof of [13, Corollary 5.2.1, p. 279], we omit it.

7. An application to heat conduction in materials with memory.

Our aim here is to illustrate the degree of applicability of Theorem
4.1 by an example of a nonlinear integro-partial differential equation
which may be interpreted as a possible model describing the heat flow in
a material with memory.

First we recall for easy references some basic facts about the gener-
alized gradient in the sense of Clarke.

Let g : R = R be a given function which is Lipschitz on bounded
subsets in R. The generalized gradient of g calculated at u € R is defined

by

Vg(u) : = conv{v € R; (3)(u,) CR, lim u, = u,limg'(u,) = v}
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where conv B is the closed convex hull of the subset B C R.

Since g is Lipschitz on bounded subsets in R, g is almost everywhere
differentiable on R and g’ is bounded on bounded subsets in R. Therefore,
for each u € R, Vg(u) is nonempty, closed, convex and bounded. In
addition, we may easily verify that Vg : R -» 2R is upper semicontinuous
and maps bounded subsets in R into bounded subsets in R.

Now, we may proceed to the statement of the problem to be studied
in this section. Namely, let us consider the nonlinear integro-partial dif-
ferential equation

Up— Uy = f:)a(t—s)(f(u))nds a.e. for (t,x) € (0,7) x (0,1)

(7.1)  w,(t,0) € Bu(t,0)), — u,(t,1) € B(u(t,1)) a.e. for t € (0,T)
u(0x) = uy(x) a.e. forx € (0,1),

wherea :[0,7] > Risa c! kernel,f:R->Risa C! function with f Lipschitz
on bounded subsetsinR and8: D(f) CR » 2R is an m-accretive operator
with 0 € D(f) and 0 € S(0). '

Since f is not a C? function, we define the solution of (7.1) as the
solution of the relaxed problem below.

Up— Uy = j:)a(t—s)[vvf’(u)ui + f'(w)u,,lds a.e. for
(tx) € (0,7) x (0,1)

(7.2)  u,(t,0) € B(u(t,0)), — u,(t,1) € B(u(t,1)) a.e. fort € (0,7)
u(0,x) = uy(x) a.e. forx € (0,1),

where Vf' is the generalized gradient of f’.
Using Theorem 4.1 we may prove

THEOREM 7.1. Let a : [0,T7] » Rand f: R - R be C! functions with
Lipschitz on bounded subsets in R and let B : D(B) C R - 2R be an
m- accrettve operator with 0 € D(f) and 0 € B(0). Then, for each u, in
H? ([0,1]) with u’ (0) € B(u(0)) and —u'(1) € B(u(1)) there exists To € (0,1)
such that the problem (77.2) has at least one solution u : [0,Ty] - L ([O 1]
satisfying
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(73) () € HA((0,1]), u,(60) € B@(,0)), - ux(t,1) € Bu(t,D)) ae.
tE (07 TO);

(7.4) t = u, belongs to Lz([O,TO]; Lz([O,l])), and

(7.5) t- % i) (1) uﬁdx + j(u(t,1)) - j(u(t,0)) belongs to AC([0,T]; R ).

where j : R = R is a proper, l.s.c. convex function whose subdifferential dj
coincides with .

Proof. First, we rewrite (7.2) as an abstract integrodifferential equa-
tion of the form (1.1). Thus, let X = L2([0,1]) and let us define the
operator A : D(A) C X » 2be

Au: = {-u"}

foreachu € D(A) = {u € Hz([O,l]); u'(0) € B(u(0)), -u, (1) € B(u(1))}.
Next, let us define k : [0,7] - L(X) by

k(t): = a()]
for each t € [0,T], where I is the identity on X, and F: D(4) - 2be

F(u): = {pu'® + f'(uwu";p € L*([0,1]), p(x) € Vf' 1)) a.c.
forx € (0,1)}

for eachu € D(A).

Clearly (7.2) may be rewritten in the form (1.1) with X, 4, k and F
defined as above. We note that where F does not depend on ¢ € [0,7].

Since X is a separable real Hilbert space, (H,) is satisfied. In addition,
it is well-known that A4 is m-accretive and, for each A > 0, the resolvent
operator (I+A4)7! is compact. Thus (H,) holds. Inasmuch as (H ) is
obviously verified, in that follows we focus our attention in order to check
(H;). To this aim, let us observe that, by a well-known regularity result for
elliptic equations, we have

(7.6) el 10,17y <C Il Au |l L2017

~ foreachu € D(4 ), where C > 0 does not depend on u.
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We recall that Vf' is a nonempty, closed and convex valued upper
semicontinuous mapping which maps bounded subsets in R into bounded
subsets in R. Then, it readily follows that for each u € D(4) - which
obviously is included in C([0,1]) - the set of all measurable selections of
x » Vf'(u(x)) is nonempty, closed, convex and bounded in L*([0,1]).

Thus F satisfies (i) in Definition 4.1. Next, letu € 147}4’2([0,7']; X). For

(7.6) we deduce that u € L*([0,T]; L*([0,1])) and therefore, the same
argument as above shows that F satisfies (ii) in Definition 4.1.
Now, let (u,,) be a sequence in WIA’Z([O,T]; X) such that

limu, = u strongly in C([0,T]; X),u € W,l,’z([O,T];X), and

lim Au, = Au weakly star in L([0,T]; X).

Also by (7.6) it follows that (u,) is bounded in L*([0,7]%[0,1]), as
thus, we may assume with no loss of generality - by extracting a sub-
sequence if necessary - that

(1.7) limu, = u a.e. for (tx) € (0,7)%(0,1).
Let (f,,) be a sequence of selections of (F(u,)) such that
limf, = f weakly in L2([O,T]; X).
Let (p,) be such that
Pn(tx) € Vf' (u,(t,%))
for eachn € N and a.e. for (t,x) € (0,7)x%(0,1) and
(7.8) 1(62) = P60 l6) + f (4 (6) )t pe(6%)

for each n € N and a.e. for (t,x) € (0,7)x(0,1). Since (u,) is bounded in
L®([0,T]x[0,1]) and Vf’' maps bounded subsets in R into bounded subsets
in R, we casily deduce that (p,)) is bounded in L*([0,7]%[0,1]). Then, we
may assume with no loss of generality that

(7.9) lim p,, = p weakly star in L*([0,7]%[0,1]).
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Inasmuch as Vf’ is upper semicontinuous and has convex and closed
values, by [13, Theorem 3.1.2, p. 120] and (7.7) it follows that

(7.10) p(tx) € Vf' (u(tx)) a.e. for (tx) € (0,T)%(0,1).

Observing that
T 1 T 1
fo fo |ty — 1, | % dx-dit < —fo fo (Uprr — U) (U, — u)dx - dt
for eachn € N, we deduce that

lim u,, = u, strongly in Lz([O,T]; Lz([O,l])).

From (7.7), (7.8), (7.9), (7.10) and the last remark we conclude that
f(t) € Ftu()) a.e. for t € (0,T), and thus (iii) in Defintion 4.1 is also
satisfied.

- Finally, we show that F is A-dominated. To this aim, let 7 > 0 and let
M,: = {u € D(A); || Au|| Lo < r}. Since Hz([O,l]) is continuously
embedded in Hl([O,l]) and the letter is continuously embedded in
C([0,1]), from (7.6) it follows that

1l cqo,1y) = CllAul 130,17y < C-7, and

Iwleqoay < Clldull 2o < C-r

for eachr > 0 and u €M,, where C > 0 does not depend onr > 0.
Now, let us definem : R, - R by

m(r) : = sup{|Vf (u)|sC** + |f'(u)|r;u € [- C-r, C-1]}

where |Vf'(u)|g = sup{|v|;v € Vf'(u)} for each u € R.

Obviously m is nondecreasing and satisfies the condition in Definition
4.2. Then F is A-dominated. From Theorem 4.1 we conclude that for each
ug € D(A) there exists T, € (0,T] such that the problem (7.2) has at least
one strong solution defined on [0,7]. Since (7.3), (7.4) and (7.5) follows
from [13, Theorem 1.9.3, p. 42] the proof is complete.



[1]
(2]
3]
(4]
(5]
(6]

(7]
8]

%]

(10]
(11]
(12]

(13]

(14]

NONLINEAR INTEGRODIFFERENTIAL EQUATIONS ... 299

REFERENCES

S. A1ZICOVICI, On a class of functional-differential equations, Rend. Mat., 8 (1975),
685-706.

S. Aizicovicl, Time-dependent Volterra integrodifferential equations, J. Integral
Equations, 10 (198S), Suppl.., p. 45-60.

V. BARBU, Integro-differential equations in Hilbert spaces, An. St. Univ. Al.I. Cuza,
XIX (1973), p. 365-383.

V. BARBU, Nonlinear semigroups and differential equations in Banach spaces,
Noordhoff, 1976.

F.E. BROWDER, Nonlinear operators and nonlinear equations of evolution, Amer.
Math. Soc. Proc. of Symposia in Pure Math., Vol. XVIII, Part. 2, 1976.

M.G. CRANDALL, S.O. LONDEN and J.A. NOHEL, An abstract nonlinear Volterra
integrodifferential equation, J. Math. Anal. Appl., 64 (1978), p. 701-735.

R.E. EDWARDS, Functional analysis, Holt, Rinehart and Winston, 1965.

G. GRIPENBERG, On some integral and integro-differential equations in a Hilbert
space, An. Mat. pura appl., 118 (1978), p. 181-198.

E. MITIDIERI, 1.I. VRABIE, Existence for nonlinear functional differential equations,
Hiroshima Math. J., 17 (1987), p. 627-649.

E. MITIDIERI, L.I. VRABIE, A4 class of strongly nonlinear functional differential
equations, Annali di Mat. Pura e Appl. (IV). Vol. CLI, (1988), p. 125-147.

L1. VRABIE, The nonlinear version of Pazy’s local existence theorem, Israel J. Math.,
32 (1979), p. 221-235.

LI1. VRABIE, Compactness methods for an abstract Volterra integrodifferential equa-
tion, Nonlin. Anal. TMA, 5 (1981), p. 355- 371.

L1 VRABIE, Compactness methods for nonlinear evolutions, Pitman Monographs
and Surveys in Pure and Applied Mathematics, Vol. 32, Longman Scientific &
Technical, 1987.

C. ZALINESCU, On uniformly convex functions, J. Math. Anal. Appl., 95 (1983), p.
344-374.



