A-LOCALLY COMPACT SPACES(*)

by ALESSANDRO FEDELI (in L’Aquila)(**)

SOMMARIO.- In un precedente lavoro si é usato un operatore di chiusura intro-
dotto da Salbany, chiamato A-chiusura, per introdurre il concetto di com-
pattezza rispetto ad una classe A di spazi topologici (in breve
A-compattezza), e sié mostrato il ruolo dominante che gli spazi A-compatti
hanno nella classe A. In questo lavoro si studiano gli spazi A-localmente
compatti, cioé gli spazi (X, 1) € A tali che la topologia t 4in X generata
dalla A-chiusura é una topologia localmente compatta e di Hausdorff. Tale
approccio ci permette di provare, per molte classi A di spazi topologici, un
analogo di un ben noto teorema di Whitehead sulle applicazioni quoziente.

SUMMARY .- In this paper we use a closure operator introduced by Salbany, called
A-closure, to introduce the A-locally compact spaces, i.e. the spaces (X, t)
€ A such that the topology T 4in X generated by the A- closure is a locally
compact Hausdorff topology. This approach allow us to prove, for many
classes A of topology spaces, an analogous of a well known Whitehead
theorem about quotient mappings.

0. Introduction.

For each class .4 of topological spaces we have a closure operator |
l4: P(X) = P(X), called A-closure, where X is a topological space and
P(X) is the power set of X, [15]. In the last years Dikranjan and Giuli ([2],
[3]) characterized the closure operator [ ] ,for many classes .4 of topo-
logical spaces.

If A is the class of Hausdorff spaces TOP, and X € TOP, then [ ],
: P(X) - P(X) coincides with the ordinary closure operator, [2].

In a previous paper we studied the .4-compact spaces, i.e. the spaces
(X, 7) € A such that the topology 7 ,in X generated by the A4-closure is
a compact topology [8], in this one we study (section 1) the .A4-locally
compact spaces, i.e. the spaces (X, ) € .4 such that the topology 7 ,is a
locally compact Hausdorff topology. In this section some relations
between .4-locally compact, A-compact and locally compact spaces are
given. In section 2 we introduce the k(.4)-spaces using the concept of
q(4) mapping defined in section 1, we establish some properties of

(*) Pervenuto in Redazione il 20 gennaio 1988.
(**) Indirizzo dell’Autore: Via Assergi 4, 67100 L’Aquila (Italy).



176 ALESSANDRO FEDELI

k(A4)-spaces and prove that in general the class of A-locally compact
spaces is strictly smaller than the class of k(.4)-spaces. We prove also an
analogous of the following Michael theorem: if the cartesian product X x
Y, where X is a T3-space, is a k-space for every k-space Y, then the space
X is locally compact.

NOTATION 0.1. The following categories are denoted as follows:
TOP the category of topological spaces and continuous functions
TOP; the category of topological spaces satisfying the T; axiom i = 0,
1, 2.

URY the category of Urysohn spaces (points are separated by disjoint
closed neighborhoods)

TOP3 the category of regular Hausdorff spaces

Tych  the category of completely regular Hausdorff spaces

0-dim the category of zero-dimensional spaces (i.e. Hausdorff spaces
with a base of clopen sets).

Unless explicitly stated the topological terminology is that of [18].

A full and isomorphism-closed subcategory .4 of TOP is said to be
epireflective if for each topological space X there exist 7ZX € .4 and an
epimorphismr 4: X - rX in TOP such that for each continuous function f
:X = Y, Y € A, there exists a (unique) continuous functionf’ : rX » Y
suchthatf or, = f.

A is epireflective in TOP iff it is closed under the formation of
products and subspaces [10]. Each class .B of topological spaces has an
epireflective hull E(B) (i.e. there exists a smallest epireflective subca-
tegory containing .B).

All subcategories listed in 0.1 are epireflective subcategories of TOP.

We define, now, a closure operator introduced by Salbany [15], and
studied by Dikranjan and Giuli in [2], [3].

DEFINITION 0.2. Let .4 be a (non empty) class of topological spaces,
let X be a topological space and F a subset of X. _ :

A point x of X is said to be a point of A-closure of F in X if for each
[,8:X » A € A,suchthatf|F = g|F (where f|F denotes the restriction
of f to F), f(x) = g(x).

The set of all points of A-closure of F in X is said to be the .A-closure
of F in X and it is denoted by [F 1.
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For every X € TOP and M C X and every A C TOP [M ]ﬁ =
M ]}‘5’( A) holds (prop. 1.4, [2]) hence in the sequel we consider exclusively
epireflective subcategories of TOP.

DEFINITION 0.3. Let 4 C TOP,X € TOP and F C X:
(a) Fissaid to be A-closed in X if [F X, = F

(b) Fis said to be A-dense in X if [F 15, = X

(c) Fis said to be .A-open in X if X-F is A-closed in X 7

(d) Afunctionf: X » Y, X, Y € A, is said to be .4-continuous if
fUFYy) C I(F)y FCX.
Every continuous function f : X - Y, X, Y € .4, is .A-continuous

(prop. 1.2 (x), [3]).

(e) Afunctionf:X =Y, X,Y € A, is said to be A4-closed if for every
A-closed set F C X the image f(X) is A-closed in Y.

(f) The coarsest topology in X which contains all .#4-closed subsets as
closed sets is said to be the .4-closure topology of X and, if 7 is the
topology of X, it is denoted by 7 _,

F ,: TOP -»TOP will denote the functor which assigns to (X, 7) €
TOP the space (X, 7 ). For each continuous mapf: (X, 1) - (Y, 0) in TOP
the continuity of f = F_[(f) : (X, 7 g = (Y, 0y follows from 1.2 (x) of [2].

The functor F ,is said to be finitely multiplicative if it preserves finite
products,ie. ([[7) 2= [[ ()1 =1, ... k.

1 I

The A-closure is not in general a Kuratowski operator (remark 1.3
(a) [2]). If the A-closure is a Kuratowski operator then is easy to see that
a functionf: (X, 7) = (Y, 0) is A-continuous (A- closed) iff f = F(f) : (X,
7o > (Y, 0y is continuous (closed). In this paper we consider only the
J2-closure that are Kuratowski operators.

The A-closure is said to be hereditary [6], if for M C Y C X we have
M ]z; = [M ]X% N Y for all M, Y and X. For all categories .4 listed in 0.1,

except A = Ury, and for every (X, 7) € A the A-closure is hereditary in
X, 7). |

In that casei = F (i) : (Y, 0 ) = (X, 7 ,) is an embedding, where 7 is
the topology of X, o the relative topology of Y, and i is the embedding map
of the subspace (Y, o) in the space (X, 7).

The following results can be found in [2], [3].
1) t,=<rtforall(X,7) € Aiff A C TOP,.
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2) For A = TOP,, TOP,, Tych, 0- dim,t 4 = 7 for each (X, 1) € A.

3) The TOP -closure is the front-closure defined in [14]: FrCL(4) = {x
€ X: for each open nhood 2L of x, {x} N U N A4 = 0}.

4) The TOP,-closure is the identity for all T;-spaces.

5) For A = UryletX € A and M C X, we define cly(M) = {x € X: for
each nhood V of x, V N M = 0}, this is the -closure introduced by
Velichko [16]. For X € Ury and M C X we have c/gM C [M ]XU,y and M

= clg(M) iff M = [M ]{,,y, thus the Ury- closure is the idempotent hull

of Clg.
I am much indebted to Professors D. Dikranjan and E. Giuli for many
useful suggestions.

1. A4 - Locally Compact spaces.

DEFINITION 1.1. Let £ be an epireflective subcategory of TOP.
(X, ) € A issaid to be 4-locally compact iff (X, T_p) is a locally compact
Hausdorff space.

DEFINITION 1.2. [8]. Let 4 be an epireflective subcategory of TOP.
(X, 7) € A is said to be A-compact iff (X, T _y) is compact.

The following classes are denoted as follows:

AComp the class of compact spaces X such that X € .4
ALocComp the class of locally compact spaces X such that X € A
K, the ¢lass of 4£-compact spaces

LK , the class of .4-locally compact spaces.

Let LM-T, be the category of Lawson-Madison spaces (a topological
space X is LM-T, iff every compact subspace of X is T, [11], [12]). If (X, 7)
is /4- compact and (X, 7 ) € LM- T, then (X, 7) is A-locally compact.

EXAMPLES 1.3.

(a) For each (X, 1) € TOP,, (X, TTOI(;)) is a T,-space [3] hence
Krop, “LK70p,:
If (X, 7) is a Tp-space (every point is the intersection of a closed and
an open set) then (X, TTOPO) is a discrete space [3], hence (X, 7) is a

TOP-locally compact space.
If X is an infinite Tp-space then it is not TOP,-compact.
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(b) For each (X,7) € TOP,, (X, 1:,-01,1) is discrete hence LKTOP1 = TOP,

(c) Let X] denote a T;-space with cofinite topology and infinite cardi-
nalityj. If A = Haus ({X;}) = {X € TOP such that every continuous
mapf:X; - Xis constant} [11], then 74 is discrete for every (X, 7) €
A ([5], prop 1.11), hence LK}y, (x) = Haus ({X;}).

(d) Let A = LM-T,, if (X, 7) € K 4 then (X, 7 ) € LM-T,Comp =
TOP,Comp hence (X, t) € LK , Now let (X, 7) be an uncountable
space with the cocountable topology (i.e. a proper subset is closed if
and only if it is countable), (X, 1) is a LM-T, space (since every
compact subset is finite [11]). By 1.11 in [5] it follows that (X, T_y) is
an uncountable discrete space, hence (X, ) € LK , but it is not
JA-compact, therefore K , C LK ,

(e) LK , = ALocComp for .)4 TOP,, TOP,, Tych, 0-dim.

We will denote by FT, the class of functionally Hausdorff spaces
(points are separated by continuous real valued maps).

PROPOSITION 1.4.If (X, 7) € LK 4,and 7 4 < 7, then whenever F is an
A-closed set in (X, 7) and x & F there is a continuous function g : (X, 7)
- [0,1] such that g(x) = 0 and g(F) C {1}.

In particular A4 C TOP, yields LK ,C FT,.

Conversely if FT, C A C TOP, then K ,and FT), yield LK ,

Proof. Let F an A-closed set in (X, 7) and x & F, then F is a closed
set in (X, 7_g) € TOP,LocComp C Tych, hence there exists a continuous
functionf: (X, 79 - [0, 1] such that f(x) = 0 and f(F) C {1}. Ifi : (X, 7)
- (X, 7_g) is the identity then g = foi is a continuous function from (X, 7)
in [0, 1] such that g(x) = 0 and g(F) C {1}. Converselyif (X, 7_j) is compact
and (X,7) EFT,thent 27,2 2 5y, by virtue of FT, C A C TOP,, now

(X, rn—z) € TOP, (cf. [4]), so (X, 7 ) is compact Hausdorff, therefore
(X,7) ELK ,

We recall that a tdpological space (X, 7) € A is called .4-minimal if
" <7and (X,7') € Aimply7t’ = 1.

THEOREM 1.5. If Tych C A C TOP, then for every .4£-minimal space
(X, 7) the following conditions are equivalent:
a) (X, 1) is alocally compact Hausdorff space
b) (X, 1) is A-locally compact
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c¢) (X, 1) isacompact Hausdorff space
d) (X, 7)is A-compact.

Proof. By the above proposition b) (and obviously all the other con-
ditions) imply (X, 7) € FT,. Hence (X, Then) € Tich C A andr 27 42
Tg5cx Yield the coincidence of all three topologies.

Thus a) < b) < c) < d). Finally the compactness of (X, 7) follows by
the well known fact that every Tych-minimal space is compact (cf. [1]).

THEOREM 1.6. Let .4 be such that for every (X, 1) € .4 the A-closure
is hereditary in (X, 7) then:

1) Inan.4-locally compact space (X, 7) the intersection of an .4-closed
with an 4-open set is .4£-locally compact.

2) An A-locally compact subset B of a space (X, 7) € A such that
(X, 7_p) € TOP, is the intersection of an .4-open set and an A-closed
set.

Moreover the following conditions are equivalent:

a) An .%-dense subset D of an A-compact space (X, 7) such that (X, 7 2
€ LM-T, is A-locally compact.

b) X-Dis A-closed in (X, 7).

Proof. 1) Let (X, 7) € LK , if F is A-closed in (X, 7) and E is A-open
in (X, 7) then F is closed in (X, 7 ) and E is open in (X, 7_y). Since (X, 7 2
is a locally compact Hausdorff space then F N E is locally compact in
(X, 7 _4), hence F N E is an A-locally compact subset of (X, 7).

2) If B is an A-locally compact subset of (X, 7) then it is a locally
compact subset of the Hausdorff space (X, 7 ) then B = F N E where F
is closed in (X, 7 ) (hence A-closed in (X, 7)) and E is open in (X, T 2
(hence A-open in (X, 7)).

a) = b) Let D be an A-locally compact subset of (X, 7) € K asuch
that (X, 7 p) € LM- T, then (X, 7 ) € LM- T, Comp = TOP,Comp C
TOP, from 2) above it follows that D = F N E, where F is .A-closed in
(X, 7) and E is .A-open in (X, 7).

Since D is .4-dense in (X, 7) we have that X = [D]f;= [FnE]XA Cc
[F]‘JY4 n[E]ﬁ = Fn[E]X‘A hence F = [E]f; = X, therefore D = Eie. D is
~%-open hence X-D is A-closed in (X, 7).

b) = a) Let X-D be .4-closed in (X, 7) then D is £-open, hence it is
the intersection of an .4-closed set with an .4-open set, i.e. D = D N
[D]‘JYQ, but (X, 7) is »4-locally compact hence from 1) above it follows that

D is an A4-locally compact subsét of (X, 7).
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REMARKS 1.7. (a) Let (X, 7) € LK , let (Y, 0) € A4 such that (Y, 0 )
€ TOP,. If f: (X, T) = (Y, 0) is A-continuous, .4£-open and onto then
(Y,0) ELK , k

(b) Let A be such that F ,is finitely multiplicative, then [ (X, 7,)

a=1

€ LK ,if and only if (X, 7,) € LK ,for each a.

THE WHITEHEAD THEOREM. For every locally compact Hausdorff
space X and any quotient mapping g : Y - Z, the Cartesian product f =
idy X g: X XY > X X Zis a quotient mapping.

DEFINITION 1.8. Let (X] ), (Y, 0) € 4, amapping f: (X, 1) - (Y, 0)
is said to be g(A) if f = F [f) : (X, 7 9 - (Y, 0,) is a quotient mapping.

REMARKS 1.9. (a) Letf: (X, 7) - (Y, 0) be an .4£-continuous and onto
mapping, then the following conditions are equivalent:
(1) fis aq(A4) mapping |
(2) fY(F)is A-closed in (X, 7) iff F is A-closed in (Y, o).
(b) Iff: X » Y is A-continuous, 4-closed and onto then it is a g(A4)
mapping.

THEOREM 1.10. Let .4 be such that F ,is finitely multiplicative.

For every A4-locally compact space (X, 7) and any q(.4) mapping g :
(Y, o) - (Z, p), the cartesian product f = idy X g: (X, 7) X (Y, 0) >
(X, 7) X (Z, p) is q(A).

Proof. If (X, 7) is an A-locally compact space then (X, 7_p) is a locally
compact Hausdorff space. Since g: (Y, 0) = (Z,p) is g(.4) theng = F_(g)
:(Y,09 = (Z,p_) is a quotient mapping.

Since F ,is finitely multiplicative we have that F_J(X, 1) x (Y, 0)] =
X, 79 X (Y,09 and F (X, 1) X (Z,p)] = (X, 7 X (Z,p_y, then the
mappingf = F (f) = F [idy X g) = F fidy) X F {g): (X, 7 p) %X (Y,0 )
= (X, 19 X (Z, p_y is a quotient mapping (by Whitehead theorem),
therefore f: (X, ) X (Y, 0) » (X, 1) X (Z, p) is a q(.4) mapping.

2. k(.A4)-space.

We recall that a Hausdorff space is a k-space if it is an image of a
locally compact Hausdorff space under a quotient mapping.
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DEFINITION 2.1. Let £ be an epireflective subcategory of TOP.

X, 7) € Aissaidtobe ak(.A4)-space if (X, 7) is an image of an .4-locally
compact space under a g(.4) mapping.

We will denote by k(.4) the class of k(.A4)-spaces.

EXAMPLES 2.2.

(a) LKrop = k(TOP;) = TOP;.

(b) For A = Haus ({X;}) we have LK 4 = k(A4) = A.

(c) k(TOP,) = k-spaces.

(d) For A = TOP;, Tych, 0-dim every k(.42)-space is a k-space.

(e) For A = LM-T, if (X, 7) is a k-space then 7 = 7_,(corollary 4.2.(b),

(f)

[9]) Let (X, ) be a non locally compact k-space, obviously (X, 7) is

not 2- locally compact, since (X, ) is a k-space there exist (Z, p) €

TOP,LocComp and a quotient mappingf: (Z, p) - (X, 7), but (Z, p)

is a k- space hence (Z, p) = (Z, p o), therefore f = F (f) : (Z,p) »

(X, 7) is a quotient mapping, hence f : (Z, p) = (X, 7) is g(A) and

(Z, p) € LK , therefore (X, 7) is a k(A)-space and LK , C k(4).
#

For A = Ury if (X, 7) is a T3-space then 1 = 7 _4[2].
If (X, 7) is a regular and not locally compact k- space then a similar
argument to (e) shows that (X, 7) is k(Ury) but it is not Ury-locally
compact hence LK , C k(A).

7

We don’t know if there exists a space (X, ) € k(TOP,) which is not

TOP-locally compact; if such a space exists then (X, Trop,) is a k-space

not locally compact.

PROPOSITION 2.3. Suppose (X, 7) € A and (X, 7 ) € TOP,.

If (X, 7) is a k(4)-space then (X, 7_y) is a k-space. Conversely if
(X, 79 is a quotient space of a locally compact Hausdorff space Y
and there is Z € A with F (Z) = Y then (X, 7) is a k(.#4)-space.

If, in addition, for each (X, 7) € .4 the A-closure is hereditary in
(X, 1), we have

If (X, 7) is a k(A4)-space then for F C (X, 1) the set F is A-closed in
(X, 7) provided that the intersection of F with any .4-compact sub-
space Z of the space (X, 7) is .A4-closed in Z.

If (X, 7y is a space such that for each quotient mapping f : Y -
(X, 19, Y € TOP,LocComp, there exists Z € A such that F AZ) =
Y then the converse of 2. holds.
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Proof. 1. Let (X, 7) be ak(4)-space then there exists a g(.4£) mapping
f: (¥, 0) » (X, 7) such that (Y, o) is an A- locally compact space, hence f
= F {f) : (Y,0, = (X, 7y is a quotient mapping, (X, 7 ) € TOP, and
(Y, 0,9 is a locally compact Hausdorff space, therefore (X, 7 ) is a
k-space.

If (X, Ty is a k-space such that there exists a quotient mapping f =
F {f): Y- (X,7 g with Ylocally compact Hausdorff space and Y = F_(Z)
where Z € A thenf: Z - (X, 7) is a ¢(.A4) mapping and Z is an A-locally
compact space, therefore (X, 7) is a k(.A4)-space.

2. Let (X, 7) be a k(.4)-space then by 1. it follows that (X, 7  is a
k-space.Let F C (X, 7) suchthat F N Zis .A-closed in Z C (X, 7) fcr each
~A-compact Z, then F N Z is closed in Z C (X, 7_y) for each compact Z,
but (X, 7_y) is a k-space hence F is closed in (X, 7_p) (th. 3.3.18, [7]), i.e. F
is A-closed in (X, 7).

3. Now let us prove that (X, 7_y) is a k- space, let F C (X, 7_y) such that
F N Zisclosed in Z for each compact Z C (X, 7y, then F N Z is A-closed
in Z C (X, 7) for each .A-compact Z, hence by hypothesis F is .4-closed
in (X, 7) therefore it is closed in (X, 7 ), hence (X, 7)) is a k-space (th.
3.3.18, [7]), and by 1. it follows that (X, 7) is a k(.4)-space.

Theorem 1.10 implies

PROPOSITION 2.4. Let .4 be such that F ,is finitely multiplicative.
The Cartesian product X X Y of an .4- locally compact space X and
a k(A)-space Y is a k(.4)-space.

THEOREM (Michael [13]). Suppose X is a T;-space; if the Cartesian
product X X Yis a k-space for every k-space Y, then the space X is locally
compact.

THEOREM 2.5. Let 4 be such that F s finitely multiplicative and let
us suppose that for each k-space Z there exists (Y, o) € A4 such that
F Y, 0) = Z.

If the Cartesian product (X, 7) X (Y, 0), where (X,7) € A and (X, 7))
is a T3-space, is a k(4)-space for every k(.4)-space (Y, o), then the space
(X, 7) is A-locally compact.

Proof. If (X, 7) is not an .4-locally compact space then (X, 7_p) is not
locally compact hence from the Michael theorem follows that there exists
a k- space Z such that (X, 7 g X Z is not a k-space.
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By hypothesis there exists a space (Y, 0) € A such that (Y,0 ) = Z
then (Y, o) is a k(4)-space and by F (X, 7) X (Y,0)] = (X, 7)) X Z it
follows that (X, 7) X (Y, o) is not a k(.4)-space.

PROPOSITION 2.6. Let .4 be such that for each (X, 7) € A4 the
A-closure is hereditary in (X, 7). An A-continuous mapf: (X, 7) = (Y, 0)
of a space (X, t) € A to a k(4)-space (Y, o) such that (Y, 0 p) € TOP,
is A- closed iff for every .A-compact subspace Z C (Y, o) the restriction
fz: f (Z) » Z is A-closed.

Proof 1ff : (X, 7) » (¥, 0) is A-closed then f = F (f) : X, 79 ~>
(Y,0, is contmuous, closed and (Y, 0 y) is a k-space therefore f, =
FAfD:f (Z) -Zi is closed for every compact subspace Z C (Y, 0, (th.
3.3.22,[7]),i.e.fZ f' (Z) » Z is A-closed for every .4£-compact subspace
Z C (Y,o).

If for every ,4-compact subspace ZC (Y,o)fz: f (2) » Z is
A-closed then f; = F_(f7) : f (Z) » Z is closed for every compact
subspace Z C (Y, 0 9 hence f = F [ff) : (X, 7 = (Y, 0y is closed (th.
3.3.22,[TD, 1e.f: (X, T) = (Y, 0) is A-closed.
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