A-LOCALLY COMPACT SPACES(*)

by ALESSANDRO FEDELI (in L'Aquila)(**)

SOMMARIO.- In un precedente lavoro si è usato un operatore di chiusura introdotto da Salbany, chiamato \mathcal{A} -chiusura, per introdurre il concetto di compattezza rispetto ad una classe \mathcal{A} di spazi topologici (in breve \mathcal{A} -compattezza), e si è mostrato il ruolo dominante che gli spazi \mathcal{A} -compatti hanno nella classe \mathcal{A} . In questo lavoro si studiano gli spazi \mathcal{A} -localmente compatti, cioè gli spazi $(X, \tau) \in \mathcal{A}$ tali che la topologia $\tau_{\mathcal{A}}$ in X generata dalla \mathcal{A} -chiusura è una topologia localmente compatta e di Hausdorff. Tale approccio ci permette di provare, per molte classi \mathcal{A} di spazi topologici, un analogo di un ben noto teorema di Whitehead sulle applicazioni quoziente.

SUMMARY.- In this paper we use a closure operator introduced by Salbany, called \mathcal{A} -closure, to introduce the \mathcal{A} -locally compact spaces, i.e. the spaces $(X, \tau) \in \mathcal{A}$ such that the topology $\tau_{\mathcal{A}}$ in X generated by the \mathcal{A} - closure is a locally compact Hausdorff topology. This approach allow us to prove, for many classes \mathcal{A} of topology spaces, an analogous of a well known Whitehead theorem about quotient mappings.

0. Introduction.

For each class \mathcal{A} of topological spaces we have a closure operator $[]_{\mathcal{A}}: P(X) \to P(X)$, called \mathcal{A} -closure, where X is a topological space and P(X) is the power set of X, [15]. In the last years Dikranjan and Giuli ([2], [3]) characterized the closure operator $[]_{\mathcal{A}}$ for many classes \mathcal{A} of topological spaces.

If \mathcal{A} is the class of Hausdorff spaces TOP_2 and $X \in TOP_2$ then $[\]_{\mathcal{A}}$: $P(X) \to P(X)$ coincides with the ordinary closure operator, [2].

In a previous paper we studied the \mathcal{A} -compact spaces, i.e. the spaces $(X, \tau) \in \mathcal{A}$ such that the topology $\tau_{\mathcal{A}}$ in X generated by the \mathcal{A} -closure is a compact topology [8], in this one we study (section 1) the \mathcal{A} -locally compact spaces, i.e. the spaces $(X, \tau) \in \mathcal{A}$ such that the topology $\tau_{\mathcal{A}}$ is a locally compact Hausdorff topology. In this section some relations between \mathcal{A} -locally compact, \mathcal{A} -compact and locally compact spaces are given. In section 2 we introduce the $k(\mathcal{A})$ -spaces using the concept of $q(\mathcal{A})$ mapping defined in section 1, we establish some properties of

^(*) Pervenuto in Redazione il 20 gennaio 1988.

^(**) Indirizzo dell'Autore: Via Assergi 4, 67100 L'Aquila (Italy).

 $k(\mathcal{A})$ -spaces and prove that in general the class of \mathcal{A} -locally compact spaces is strictly smaller than the class of $k(\mathcal{A})$ -spaces. We prove also an analogous of the following Michael theorem: if the cartesian product $X \times Y$, where X is a T_3 -space, is a k-space for every κ -space Y, then the space X is locally compact.

NOTATION 0.1. The following categories are denoted as follows:

TOP the category of topological spaces and continuous functions

 TOP_i the category of topological spaces satisfying the T_i axiom i = 0, 1, 2.

URY the category of Urysohn spaces (points are separated by disjoint closed neighborhoods)

TOP₃ the category of regular Hausdorff spaces

Tych the category of completely regular Hausdorff spaces

0-dim the category of zero-dimensional spaces (i.e. Hausdorff spaces with a base of clopen sets).

Unless explicitly stated the topological terminology is that of [18].

A full and isomorphism-closed subcategory \mathcal{A} of TOP is said to be epireflective if for each topological space X there exist $rX \in \mathcal{A}$ and an epimorphism $r_{\mathcal{A}}: X \to rX$ in TOP such that for each continuous function $f: X \to Y, Y \in \mathcal{A}$, there exists a (unique) continuous function $f': rX \to Y$ such that f' o $r_{\mathcal{A}} = f$.

 \mathcal{A} is epireflective in TOP iff it is closed under the formation of products and subspaces [10]. Each class \mathcal{B} of topological spaces has an epireflective hull $E(\mathcal{B})$ (i.e. there exists a smallest epireflective subcategory containing \mathcal{B}).

All subcategories listed in 0.1 are epireflective subcategories of *TOP*. We define, now, a closure operator introduced by Salbany [15], and studied by Dikranjan and Giuli in [2], [3].

DEFINITION 0.2. Let \mathcal{A} be a (non empty) class of topological spaces, let X be a topological space and F a subset of X.

A point x of X is said to be a point of \mathcal{A} -closure of F in X if for each $f, g: X \to A \in \mathcal{A}$, such that f|F = g|F (where f|F denotes the restriction of f to F), f(x) = g(x).

The set of all points of \mathcal{A} -closure of F in X is said to be the \mathcal{A} -closure of F in X and it is denoted by $[F]_{\mathcal{A}}^{X}$.

For every $X \in TOP$ and $M \subset X$ and every $\mathcal{A} \subset TOP$ $[M]_{\mathcal{A}}^X = [M]_{E(\mathcal{A})}^X$ holds (prop. 1.4, [2]) hence in the sequel we consider exclusively epireflective subcategories of TOP.

DEFINITION 0.3. Let $\mathcal{A} \subset TOP$, $X \in TOP$ and $F \subset X$:

- (a) F is said to be \mathcal{A} -closed in X if $[F]_{\mathcal{A}}^X = F$
- (b) F is said to be \mathcal{A} -dense in X if $[F]_{\mathcal{A}}^X = X$
- (c) F is said to be \mathcal{A} -open in X if X-F is \mathcal{A} -closed in X
- (d) A function $f: X \to Y, X, Y \in \mathcal{A}$, is said to be \mathcal{A} -continuous if $f([F]_{\mathcal{A}}^X) \subset [f(F)]_{\mathcal{A}}^Y, F \subset X$.

Every continuous function $f: X \to Y, X, Y \in \mathcal{A}$, is \mathcal{A} -continuous (prop. 1.2 (x), [3]).

- (e) A function $f: X \to Y, X, Y \in \mathcal{A}$, is said to be \mathcal{A} -closed if for every \mathcal{A} -closed set $F \subset X$ the image f(X) is \mathcal{A} -closed in Y.
- (f) The coarsest topology in X which contains all \mathcal{A} -closed subsets as closed sets is said to be the \mathcal{A} -closure topology of X and, if τ is the topology of X, it is denoted by $\tau_{\mathcal{A}}$

 $F_{\mathcal{A}}: TOP \to TOP$ will denote the functor which assigns to $(X, \tau) \in TOP$ the space $(X, \tau_{\mathcal{A}})$. For each continuous map $f: (X, \tau) \to (Y, \sigma)$ in TOP the continuity of $f = F_{\mathcal{A}}(f): (X, \tau_{\mathcal{A}}) \to (Y, \sigma_{\mathcal{A}})$ follows from 1.2 (x) of [2].

The functor $F_{\mathcal{A}}$ is said to be finitely multiplicative if it preserves finite products, i.e. $(\prod_{I} \tau_{i})_{\mathcal{A}} = \prod_{I} (\tau_{i})_{\mathcal{A}} I = 1, ..., k$.

The \mathcal{A} -closure is not in general a Kuratowski operator (remark 1.3 (a) [2]). If the \mathcal{A} -closure is a Kuratowski operator then is easy to see that a function $f: (X, \tau) \to (Y, \sigma)$ is \mathcal{A} -continuous (\mathcal{A} -closed) iff $f = F(f): (X, \tau_{\mathcal{A}}) \to (Y, \sigma_{\mathcal{A}})$ is continuous (closed). In this paper we consider only the \mathcal{A} -closure that are Kuratowski operators.

The \mathcal{A} -closure is said to be hereditary [6], if for $M \subset Y \subset X$ we have $[M]_{\mathcal{A}}^{Y} = [M]_{\mathcal{A}}^{X} \cap Y$ for all M, Y and X. For all categories \mathcal{A} listed in 0.1, except $\mathcal{A} = Ury$, and for every $(X, \tau) \in \mathcal{A}$ the \mathcal{A} -closure is hereditary in (X, τ) .

In that case $i = F_{\mathcal{A}}(i) : (Y, \sigma_{\mathcal{A}}) \to (X, \tau_{\mathcal{A}})$ is an embedding, where τ is the topology of X, σ the relative topology of Y, and i is the embedding map of the subspace (Y, σ) in the space (X, τ) .

The following results can be found in [2], [3].

1) $\tau_{\mathcal{A}} \leq \tau$ for all $(X, \tau) \in \mathcal{A}$ iff $\mathcal{A} \subset TOP_2$.

- 2) For $\mathcal{A} = TOP_2$, TOP_3 , Tych, 0- dim, $\tau_{\mathcal{A}} = \tau$ for each $(X, \tau) \in \mathcal{A}$.
- 3) The TOP_0 -closure is the front-closure defined in [14]: $FrCL(A) = \{x \in X: \text{ for each open } n \text{ hood } \mathcal{U} \text{ of } x, \{x\} \cap \mathcal{U} \cap A \neq 0\}.$
- 4) The TOP_1 -closure is the identity for all T_1 -spaces.
- 5) For $\mathcal{A} = Ury \operatorname{let} X \subseteq \mathcal{A}$ and $M \subset X$, we define $cl_{\theta}(M) = \{x \in X : \text{ for each } n \operatorname{hood} V \operatorname{ of } x, \overline{V} \cap M \neq 0\}$, this is the θ -closure introduced by Velichko [16]. For $X \in Ury$ and $M \subset X$ we have $cl_{\theta}M \subset [M]_{Ury}^X$ and $M = cl_{\theta}(M)$ iff $M = [M]_{Ury}^X$, thus the Ury- closure is the idempotent hull of cl_{θ} .

I am much indebted to Professors D. Dikranjan and E. Giuli for many useful suggestions.

1. \mathcal{A} - Locally Compact spaces.

DEFINITION 1.1. Let \mathcal{A} be an epireflective subcategory of TOP. $(X, \tau) \in \mathcal{A}$ is said to be \mathcal{A} -locally compact iff $(X, \tau_{\mathcal{A}})$ is a locally compact Hausdorff space.

DEFINITION 1.2. [8]. Let \mathcal{A} be an epireflective subcategory of TOP. $(X, \tau) \in \mathcal{A}$ is said to be \mathcal{A} -compact iff $(X, \tau_{\mathcal{A}})$ is compact.

The following classes are denoted as follows:

Let LM- T_2 be the category of Lawson-Madison spaces (a topological space X is LM- T_2 iff every compact subspace of X is T_2 , [11], [12]). If (X, τ) is \mathcal{A} - compact and $(X, \tau_{\mathcal{A}}) \in LM$ - T_2 then (X, τ) is \mathcal{A} -locally compact.

EXAMPLES 1.3.

(a) For each $(X, \tau) \in TOP_0$, (X, τ_{TOP_0}) is a T_2 -space [3] hence $K_{TOP_0} \subset LK_{TOP_0}$.

If (X, τ) is a T_D -space (every point is the intersection of a closed and an open set) then (X, τ_{TOP_0}) is a discrete space [3], hence (X, τ) is a TOP_0 -locally compact space.

If X is an infinite T_D -space then it is not TOP_0 -compact.

- (b) For each $(X, \tau) \in TOP_1$, (X, τ_{TOP_1}) is discrete hence $LK_{TOP_1} = TOP_1$
- (c) Let X_j denote a T_1 -space with cofinite topology and infinite cardinality j. If $A = Haus(\{X_j\}) = \{X \in TOP \text{ such that every continuous map } f: X_j \to X \text{ is constant } [11], then <math>\tau_A$ is discrete for every $(X, \tau) \in \mathcal{A}([5], \text{ prop. 1.11})$, hence $LK_{Haus(\{X_j\})} = Haus(\{X_j\})$.
- (d) Let $\mathcal{A} = LM-T_2$, if $(X, \tau) \in K_{\mathcal{A}}$ then $(X, \tau_{\mathcal{A}}) \in LM-T_2Comp = TOP_2Comp$ hence $(X, \tau) \in LK_{\mathcal{A}}$. Now let (X, τ) be an uncountable space with the cocountable topology (i.e. a proper subset is closed if and only if it is countable), (X, τ) is a $LM-T_2$ space (since every compact subset is finite [11]). By 1.11 in [5] it follows that $(X, \tau_{\mathcal{A}})$ is an uncountable discrete space, hence $(X, \tau) \in LK_{\mathcal{A}}$ but it is not \mathcal{A} -compact, therefore $K_{\mathcal{A}} \subset LK_{\mathcal{A}}$
- (e) $LK_{\mathcal{A}} = \mathcal{A}LocComp$ for $\mathcal{A} = TOP_2$, TOP_3 , Tych, 0-dim.

We will denote by FT_2 the class of functionally Hausdorff spaces (points are separated by continuous real valued maps).

PROPOSITION 1.4. If $(X, \tau) \in LK_{\mathcal{A}}$ and $\tau_{\mathcal{A}} \leq \tau$, then whenever F is an \mathcal{A} -closed set in (X, τ) and $x \notin F$ there is a continuous function $g: (X, \tau) \rightarrow [0,1]$ such that g(x) = 0 and $g(F) \subset \{1\}$.

In particular $\mathcal{A} \subset TOP_2$ yields $LK_{\mathcal{A}} \subset FT_2$. Conversely if $FT_2 \subset \mathcal{A} \subset TOP_2$ then $K_{\mathcal{A}}$ and FT_2 yield $LK_{\mathcal{A}}$.

Proof. Let F an \mathcal{A} -closed set in (X, τ) and $x \notin F$, then F is a closed set in $(X, \tau_{\mathcal{A}}) \in TOP_2LocComp \subset Tych$, hence there exists a continuous function $f: (X, \tau_{\mathcal{A}}) \to [0, 1]$ such that f(x) = 0 and $f(F) \subset \{1\}$. If $i: (X, \tau) \to (X, \tau_{\mathcal{A}})$ is the identity then g = foi is a continuous function from (X, τ) in [0, 1] such that g(x) = 0 and $g(F) \subset \{1\}$. Conversely if $(X, \tau_{\mathcal{A}})$ is compact and $(X, \tau) \in FT_2$ then $\tau \geq \tau_{\mathcal{A}} \geq \tau_{FT_2}$ by virtue of $FT_2 \subset \mathcal{A} \subset TOP_2$, now $(X, \tau_{FT_2}) \in TOP_2$ (cf. [4]), so $(X, \tau_{\mathcal{A}})$ is compact Hausdorff, therefore $(X, \tau) \in LK_{\mathcal{A}}$

We recall that a topological space $(X, \tau) \in \mathcal{A}$ is called \mathcal{A} -minimal if $\tau' \leq \tau$ and $(X, \tau') \in \mathcal{A}$ imply $\tau' = \tau$.

THEOREM 1.5. If $Tych \subset \mathcal{A} \subset TOP_2$ then for every \mathcal{A} -minimal space (X, τ) the following conditions are equivalent:

- a) (X, τ) is a locally compact Hausdorff space
- b) (X, τ) is \mathcal{A} -locally compact

- c) (X, τ) is a compact Hausdorff space
- d) (X, τ) is \mathcal{A} -compact.

Proof. By the above proposition b) (and obviously all the other conditions) imply $(X, \tau) \in FT_2$. Hence $(X, \tau_{Tych}) \in Tych \subset \mathcal{A}$ and $\tau \geq \tau_{\mathcal{A}} \geq \tau_{Tych}$ yield the coincidence of all three topologies.

Thus a) \Leftrightarrow b) \Leftarrow c) \Leftrightarrow d). Finally the compactness of (X, τ) follows by the well known fact that every *Tych*-minimal space is compact (cf. [1]).

THEOREM 1.6. Let \mathcal{A} be such that for every $(X, \tau) \in \mathcal{A}$ the \mathcal{A} -closure is hereditary in (X, τ) then:

- 1) In an \mathcal{A} -locally compact space (X, τ) the intersection of an \mathcal{A} -closed with an \mathcal{A} -open set is \mathcal{A} -locally compact.
- 2) An \mathcal{A} -locally compact subset B of a space $(X, \tau) \in \mathcal{A}$ such that $(X, \tau_{\mathcal{A}}) \in TOP_2$ is the intersection of an \mathcal{A} -open set and an \mathcal{A} -closed set.

Moreover the following conditions are equivalent:

- a) An \mathcal{A} -dense subset D of an \mathcal{A} -compact space (X, τ) such that $(X, \tau_{\mathcal{A}})$ $\in LM$ - T_2 is \mathcal{A} -locally compact.
- b) X-D is \mathcal{A} -closed in (X, τ) .

Proof. 1) Let $(X, \tau) \in LK_{\mathcal{A}}$ if F is \mathcal{A} -closed in (X, τ) and E is \mathcal{A} -open in (X, τ) then F is closed in $(X, \tau_{\mathcal{A}})$ and E is open in $(X, \tau_{\mathcal{A}})$. Since $(X, \tau_{\mathcal{A}})$ is a locally compact Hausdorff space then $F \cap E$ is locally compact in $(X, \tau_{\mathcal{A}})$, hence $F \cap E$ is an \mathcal{A} -locally compact subset of (X, τ) .

- 2) If B is an \mathcal{A} -locally compact subset of (X, τ) then it is a locally compact subset of the Hausdorff space $(X, \tau_{\mathcal{A}})$ then $B = F \cap E$ where F is closed in $(X, \tau_{\mathcal{A}})$ (hence \mathcal{A} -closed in (X, τ)) and E is open in $(X, \tau_{\mathcal{A}})$ (hence \mathcal{A} -open in (X, τ)).
- a) \Rightarrow b) Let D be an \mathcal{A} -locally compact subset of $(X, \tau) \in K_{\mathcal{A}}$ such that $(X, \tau_{\mathcal{A}}) \in LM$ T_2 , then $(X, \tau_{\mathcal{A}}) \in LM$ T_2 Comp = TOP_2 Comp $\subset TOP_2$ from 2) above it follows that $D = F \cap E$, where F is \mathcal{A} -closed in (X, τ) and E is \mathcal{A} -open in (X, τ) .

Since D is \mathcal{A} -dense in (X, τ) we have that $X = [D]_{\mathcal{A}}^X = [F \cap E]_{\mathcal{A}}^X \subset [F]_{\mathcal{A}}^X \cap [E]_{\mathcal{A}}^X = F \cap [E]_{\mathcal{A}}^X$ hence $F = [E]_{\mathcal{A}}^X = X$, therefore D = E i.e. D is \mathcal{A} -open hence X-D is \mathcal{A} -closed in (X, τ) .

b) \Rightarrow a) Let X-D be \mathcal{A} -closed in (X, τ) then D is \mathcal{A} -open, hence it is the intersection of an \mathcal{A} -closed set with an \mathcal{A} -open set, i.e. $D = D \cap [D]_{\mathcal{A}}^X$, but (X, τ) is \mathcal{A} -locally compact hence from 1) above it follows that D is an \mathcal{A} -locally compact subset of (X, τ) .

REMARKS 1.7. (a) Let $(X, \tau) \in LK_{\mathcal{A}}$ let $(Y, \sigma) \in \mathcal{A}$ such that $(Y, \sigma_{\mathcal{A}}) \in TOP_2$. If $f: (X, \tau) \to (Y, \sigma)$ is \mathcal{A} -continuous, \mathcal{A} -open and onto then $(Y, \sigma) \in LK_{\mathcal{A}}$

(b) Let \mathcal{A} be such that $F_{\mathcal{A}}$ is finitely multiplicative, then $\prod_{\alpha=1}^{n} (X_{\alpha}, \tau_{\alpha})$

 $\in LK_{\mathcal{A}}$ if and only if $(X_{\alpha}, \tau_{\alpha}) \in LK_{\mathcal{A}}$ for each α .

THE WHITEHEAD THEOREM. For every locally compact Hausdorff space X and any quotient mapping $g: Y \rightarrow Z$, the Cartesian product $f = \mathrm{id}_X \times g: X \times Y \rightarrow X \times Z$ is a quotient mapping.

DEFINITION 1.8. Let (X, τ) , $(Y, \sigma) \in \mathcal{A}$, a mapping $f: (X, \tau) \to (Y, \sigma)$ is said to be $q(\mathcal{A})$ if $f = f(f) : (X, \tau_{\mathcal{A}}) \to (Y, \sigma_{\mathcal{A}})$ is a quotient mapping.

REMARKS 1.9. (a) Let $f:(X,\tau) \to (Y,\sigma)$ be an \mathcal{A} -continuous and onto mapping, then the following conditions are equivalent:

- (1) f is a q(A) mapping
- (2) $f^{1}(F)$ is \mathcal{A} -closed in (X, τ) iff F is \mathcal{A} -closed in (Y, σ) .
- (b) If $f: X \to Y$ is \mathcal{A} -continuous, \mathcal{A} -closed and onto then it is a $q(\mathcal{A})$ mapping.

THEOREM 1.10. Let \mathcal{A} be such that $F_{\mathcal{A}}$ is finitely multiplicative. For every \mathcal{A} -locally compact space (X, τ) and any $q(\mathcal{A})$ mapping $g: (Y, \sigma) \rightarrow (Z, \rho)$, the cartesian product $f = \mathrm{id}_X \times g: (X, \tau) \times (Y, \sigma) \rightarrow (X, \tau) \times (Z, \rho)$ is $q(\mathcal{A})$.

Proof. If (X, τ) is an \mathcal{A} -locally compact space then $(X, \tau_{\mathcal{A}})$ is a locally compact Hausdorff space. Since $g: (Y, \sigma) \to (Z, \rho)$ is $q(\mathcal{A})$ then $g = F_{\mathcal{A}}(g)$: $(Y, \sigma_{\mathcal{A}}) \to (Z, \rho_{\mathcal{A}})$ is a quotient mapping.

Since $F_{\mathcal{A}}$ is finitely multiplicative we have that $F_{\mathcal{A}}(X,\tau) \times (Y,\sigma) = (X,\tau_{\mathcal{A}}) \times (Y,\sigma_{\mathcal{A}})$ and $F_{\mathcal{A}}(X,\tau) \times (Z,\rho) = (X,\tau_{\mathcal{A}}) \times (Z,\rho_{\mathcal{A}})$, then the mapping $f = F_{\mathcal{A}}(f) = F_{\mathcal{A}}(\mathrm{id}_X \times g) = F_{\mathcal{A}}(\mathrm{id}_X) \times F_{\mathcal{A}}(g) : (X,\tau_{\mathcal{A}}) \times (Y,\sigma_{\mathcal{A}}) \to (X,\tau_{\mathcal{A}}) \times (Z,\rho_{\mathcal{A}})$ is a quotient mapping (by Whitehead theorem), therefore $f:(X,\tau) \times (Y,\sigma) \to (X,\tau) \times (Z,\rho)$ is a $q(\mathcal{A})$ mapping.

2. $k(\mathcal{A})$ -space.

We recall that a Hausdorff space is a k-space if it is an image of a locally compact Hausdorff space under a quotient mapping.

DEFINITION 2.1. Let \mathcal{A} be an epireflective subcategory of TOP. $(X, \tau) \in \mathcal{A}$ is said to be a $k(\mathcal{A})$ -space if (X, τ) is an image of an \mathcal{A} -locally compact space under a $q(\mathcal{A})$ mapping.

We will denote by $k(\mathcal{A})$ the class of $k(\mathcal{A})$ -spaces.

EXAMPLES 2.2.

- (a) $LK_{TOP_1} = k(TOP_1) = TOP_1$.
- (b) For $\mathcal{A} = Haus(\{X_i\})$ we have $LK_{\mathcal{A}} = k(\mathcal{A}) = \mathcal{A}$.
- (c) $k(TOP_2) = k$ -spaces.
- (d) For $\mathcal{A} = TOP_3$, Tych, 0-dim every $k(\mathcal{A})$ -space is a k-space.
- (e) For $\mathcal{A} = LM-T_2$ if (X, τ) is a k-space then $\tau = \tau_{\mathcal{A}}$ (corollary 4.2.(b), [9]) Let (X, τ) be a non locally compact k-space, obviously (X, τ) is not \mathcal{A} locally compact, since (X, τ) is a k-space there exist $(Z, \rho) \in TOP_2LocComp$ and a quotient mapping $f: (Z, \rho) \to (X, \tau)$, but (Z, ρ) is a k- space hence $(Z, \rho) = (Z, \rho_{\mathcal{A}})$, therefore $f = F_{\mathcal{A}}(f): (Z, \rho) \to (X, \tau)$ is a quotient mapping, hence $f: (Z, \rho) \to (X, \tau)$ is $q(\mathcal{A})$ and $(Z, \rho) \in LK_{\mathcal{A}}$ therefore (X, τ) is a $k(\mathcal{A})$ -space and k
- (f) For $\mathcal{A} = Ury$ if (X, τ) is a T_3 -space then $\tau = \tau_{\mathcal{A}}[2]$. If (X, τ) is a regular and not locally compact k- space then a similar argument to (e) shows that (X, τ) is k(Ury) but it is not Ury-locally compact hence $LK_{\mathcal{A}} \subseteq k(\mathcal{A})$.

We don't know if there exists a space $(X, \tau) \in k(TOP_0)$ which is not TOP_0 -locally compact; if such a space exists then (X, τ_{TOP_0}) is a k-space not locally compact.

PROPOSITION 2.3. Suppose $(X, \tau) \in \mathcal{A}$ and $(X, \tau_{\mathcal{A}}) \in TOP_2$.

- 1. If (X, τ) is a $k(\mathcal{A})$ -space then $(X, \tau_{\mathcal{A}})$ is a k-space. Conversely if $(X, \tau_{\mathcal{A}})$ is a quotient space of a locally compact Hausdorff space Y and there is $Z \in \mathcal{A}$ with $F_{\mathcal{A}}(Z) = Y$ then (X, τ) is a $k(\mathcal{A})$ -space. If, in addition, for each $(X, \tau) \in \mathcal{A}$ the \mathcal{A} -closure is hereditary in (X, τ) , we have
- 2. If (X, τ) is a $k(\mathcal{A})$ -space then for $F \subset (X, \tau)$ the set F is \mathcal{A} -closed in (X, τ) provided that the intersection of F with any \mathcal{A} -compact subspace Z of the space (X, τ) is \mathcal{A} -closed in Z.
- 3. If $(X, \tau_{\mathcal{A}})$ is a space such that for each quotient mapping $f: Y \rightarrow (X, \tau_{\mathcal{A}}), Y \in TOP_2LocComp$, there exists $Z \in \mathcal{A}$ such that $F_{\mathcal{A}}(Z) = Y$ then the converse of 2. holds.

Proof. 1. Let (X, τ) be a $k(\mathcal{A})$ -space then there exists a $q(\mathcal{A})$ mapping $f: (Y, \sigma) \to (X, \tau)$ such that (Y, σ) is an \mathcal{A} - locally compact space, hence $f = F_{\mathcal{A}}(f): (Y, \sigma_{\mathcal{A}}) \to (X, \tau_{\mathcal{A}})$ is a quotient mapping, $(X, \tau_{\mathcal{A}}) \in TOP_2$ and $(Y, \sigma_{\mathcal{A}})$ is a locally compact Hausdorff space, therefore $(X, \tau_{\mathcal{A}})$ is a k-space.

If $(X, \tau_{\mathcal{A}})$ is a k-space such that there exists a quotient mapping $f = F_{\mathcal{A}}(f): Y \to (X, \tau_{\mathcal{A}})$ with Y locally compact Hausdorff space and $Y = F_{\mathcal{A}}(Z)$ where $Z \in \mathcal{A}$ then $f: Z \to (X, \tau)$ is a $q(\mathcal{A})$ mapping and Z is an \mathcal{A} -locally compact space, therefore (X, τ) is a $k(\mathcal{A})$ -space.

- 2. Let (X, τ) be a $k(\mathcal{A})$ -space then by 1. it follows that (X, τ) is a k-space. Let $F \subset (X, \tau)$ such that $F \cap Z$ is \mathcal{A} -closed in $Z \subset (X, \tau)$ for each \mathcal{A} -compact Z, then $F \cap Z$ is closed in $Z \subset (X, \tau)$ for each compact Z, but (X, τ) is a k-space hence F is closed in (X, τ) (th. 3.3.18, [7]), i.e. F is \mathcal{A} -closed in (X, τ) .
- 3. Now let us prove that $(X, \tau_{\mathcal{A}})$ is a k- space, let $F \subset (X, \tau_{\mathcal{A}})$ such that $F \cap Z$ is closed in Z for each compact $Z \subset (X, \tau_{\mathcal{A}})$, then $F \cap Z$ is \mathcal{A} -closed in $Z \subset (X, \tau)$ for each \mathcal{A} -compact Z, hence by hypothesis F is \mathcal{A} -closed in (X, τ) therefore it is closed in $(X, \tau_{\mathcal{A}})$, hence $(X, \tau_{\mathcal{A}})$ is a k-space (th. 3.3.18, [7]), and by 1. it follows that (X, τ) is a $k(\mathcal{A})$ -space.

Theorem 1.10 implies

PROPOSITION 2.4. Let \mathcal{A} be such that $F_{\mathcal{A}}$ is finitely multiplicative. The Cartesian product $X \times Y$ of an \mathcal{A} - locally compact space X and a $k(\mathcal{A})$ -space Y is a $k(\mathcal{A})$ -space.

THEOREM (Michael [13]). Suppose X is a T_3 -space; if the Cartesian product $X \times Y$ is a k-space for every k-space Y, then the space X is locally compact.

THEOREM 2.5. Let \mathcal{A} be such that $F_{\mathcal{A}}$ is finitely multiplicative and let us suppose that for each k-space Z there exists $(Y, \sigma) \in \mathcal{A}$ such that $F_{\mathcal{A}}(Y, \sigma) = Z$.

If the Cartesian product $(X, \tau) \times (Y, \sigma)$, where $(X, \tau) \in \mathcal{A}$ and $(X, \tau_{\mathcal{A}})$ is a T_3 -space, is a $k(\mathcal{A})$ -space for every $k(\mathcal{A})$ -space (Y, σ) , then the space (X, τ) is \mathcal{A} -locally compact.

Proof. If (X, τ) is not an \mathcal{A} -locally compact space then $(X, \tau_{\mathcal{A}})$ is not locally compact hence from the Michael theorem follows that there exists a k- space Z such that $(X, \tau_{\mathcal{A}}) \times Z$ is not a k-space.

By hypothesis there exists a space $(Y, \sigma) \in \mathcal{A}$ such that $(Y, \sigma_{\mathcal{A}}) = Z$ then (Y, σ) is a $k(\mathcal{A})$ -space and by $F_{\mathcal{A}}(X, \tau) \times (Y, \sigma) = (X, \tau_{\mathcal{A}}) \times Z$ it follows that $(X, \tau) \times (Y, \sigma)$ is not a $k(\mathcal{A})$ -space.

PROPOSITION 2.6. Let \mathcal{A} be such that for each $(X, \tau) \in \mathcal{A}$ the \mathcal{A} -closure is hereditary in (X, τ) . An \mathcal{A} -continuous map $f: (X, \tau) \to (Y, \sigma)$ of a space $(X, \tau) \in \mathcal{A}$ to a $k(\mathcal{A})$ -space (Y, σ) such that $(Y, \sigma_{\mathcal{A}}) \in TOP_2$ is \mathcal{A} -closed iff for every \mathcal{A} -compact subspace $Z \subset (Y, \sigma)$ the restriction $f_Z: f^1(Z) \to Z$ is \mathcal{A} -closed.

Proof. If $f:(X,\tau) \to (Y,\sigma)$ is \mathcal{A} -closed then $f = F_{\mathcal{A}}(f):(X,\tau_{\mathcal{A}}) \to (Y,\sigma_{\mathcal{A}})$ is continuous, closed and $(Y,\sigma_{\mathcal{A}})$ is a k-space therefore $f_Z = F_{\mathcal{A}}(f_Z):f^{-1}(Z) \to Z$ is closed for every compact subspace $Z \subset (Y,\sigma_{\mathcal{A}})$ (th. 3.3.22, [7]), i.e. $f_Z:f^{-1}(Z) \to Z$ is \mathcal{A} -closed for every \mathcal{A} -compact subspace $Z \subset (Y,\sigma)$.

If for every \mathcal{A} -compact subspace $Z \subset (Y, \sigma)$ $f_Z : f^1(Z) \to Z$ is \mathcal{A} -closed then $f_Z = F_{\mathcal{A}}(f_Z) : f^1(Z) \to Z$ is closed for every compact subspace $Z \subset (Y, \sigma_{\mathcal{A}})$ hence $f = F_{\mathcal{A}}(f) : (X, \tau_{\mathcal{A}}) \to (Y, \sigma_{\mathcal{A}})$ is closed (th. 3.3.22, [7]), i.e. $f : (X, \tau) \to (Y, \sigma)$ is \mathcal{A} -closed.

REFERENCES

- [1] M. P. BERRI, J. R. PORTER and R. M. STEPHENSON, A survey of minimal topological spaces, in: General Topology ad its Relations to Modern Analysis and Algebra (Proc. Kampur Top. Conf., Acad. Press, 1970), 93-114.
- [2] D. DIKRANJAN and E. GIULI, Closure operators induced by topological epireflections, Coll. Math. Soc. J. Bolyai, 41 (1983), 233-246.
- [3] D. DIKRANJAN and E. GIULI, Epimorphisms and cowell poweredness of epireflective subcategories of TOP, Rend. Circolo Mat. Palermo, Suppl. 6 (1984), 121-136.
- [4] D. DIKRANJAN and E. GIULI, Urysohn-closed spaces-old and new, preprint.
- [5] D. DIKRANJAN and E. GIULI, Ordinal invariants and epimorphisms in some categories of weak Hausdorff spaces, Comment. Math. Univ. Carolinae 27, 2 (1986), 395-417.
- [6] D. DIKRANJAN and E. GIULI, Closure operator I, Topology Appl. 27 (1987), 129-143.
- [7] R. ENGELKING, General Topology, Polish Scientific Publishers, Warszawa (1977).
- [8] A. FEDELI, A-compact spaces, Serdica, Bulg. Acad. Sci., to appear.
- [9] E. GIULI and M. HUSEK, A diagonal theorem for epireflective subcategories of TOP and cowellpoweredness, Ann. Mat. Pura Appl. IV, CXLV (1986), 337-346.
- [10] H. HERRLICH, Categorical Topology, Gen. Topology Appl. 1 (1971), 1-15.
- [11] R.-E. HOFFMANN, On weak Hausdorff spaces, Arch. Math. 32 (1979), 487-504.
- [12] J. LAWSON and B. MADISON, Comparisons of notions of weak Hausdorffness, Topology Proc. Memphis State Univ., Conference 1975, Ed. by S. P. Franklin and B. V. Smith Thomas (New York-Basel, 1976), 207-215.
- [13] E. MICHAEL, Local compactness and Cartesian products of quotient maps and k-spaces, Ann. Inst. Fourier 18 (1968), 281-286.
- [14] L. NEL and R. G. WILSON, Epireflections in the category of To-spaces, Fund. Math. 75 (1972), 69-74.
- [15] S. SALBANY, Reflective subcategories and closure operators, in: Categorical Topology, Lecture Notes in Math. n. 540 (Springer, Berlin, 1976), 548-565.
- [16] H. V. VELICHKO, *H-closed topological spaces*, Mat. Sb. (N. S.), 70 (112) (1966), 98-112; Amer. Math. Soc. Transl. 78 (series 2) (1969), 103-118.
- [17] J. H. C. WHITEHEAD, A note on a theorem due to Borsuk, Bull. Amer. Math. Soc., 54 (1948), 1125-1132.
- [18] S. WILLARD, General Topology, (Addison Wesley, Reading, 1970).