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SOMMARIO. - Siano A e B matrici rettangolari tali che esistano AB e BA. Si
dimostra che nelle forme canoniche di Jordan di AB e BA ad ogni blocco di
Jordan invertibile di AB corrisponde un identico blocco di BA, e viceversa.
Si dimostra anche che i blocchi di Jordan nilpotenti di AB e BA si possono
accoppiare in modo che gli indici di nilpotenza dei blocchi in ogni coppia
differiscano al piit per 1, e che ogni altro eventuale blocco nilpotente ha
indice 1.

SUMMARY. - Let A and B be rectangular matrices such that AB and BA exist. It
is shown that in the Jordan canonical forms of AB and BA to every invertible
Jordan block of AB there corresponds an identical block of BA and vice versa.
Also it is shown that the nilpotent Jordan blocks of AB and BA can be paired
off in such a way that the nilpotency indices of the blocks in each pair differ
at most by 1, and a nilpotent block which is left unpaired (if any) is of index 1.

In what follows matrices are over an algebraically closed field, say,
the field of complex numbers.

It is well known that the Jordan canonical form of a square matrix is
determined by its diagonal Jordan blocks, uniquely up to the order in
which these blocks occur [2, p. 151].

Also it can be readily verified that in the Jordan canonical form of a
square matrix M it is the case that:

(1) The number of Jordan blocks of M is equal to the number of the
linearly independent eigenvectors of M. Thus, there exists a one-to-one

correspondence between the set of all Jordan blocks and any maximal set
of linearly independent eigenvectors of M.
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(2) The Jordan block of M corresponding to any eigenvector v of M which
belongs to the eingenvalue e of M is an m by m matrixJ such thate appears
on every diagonal entry of J and if m > 2 then 1 appears on every entry
of J which is immediately above an e, otherwise, 0 appears on every
remaining entry of J. Moreover, m is equal to the maximum number of
linearly independent vectors wy, ...., w,,, which are obtained by starting
with the eingevector w; = v and proceeding cyclicly as follows:

B)M-el)w1 =0, (M-el)wy =wi1, .., (M -el) wim = w1
and where
(4) (M - eI) x = wy, has no solution

as shown by the Lemma below.

LEMMA 1. Let H be an m by m matrix and uy a nonzero m by 1 vector.
Then the set {uy, ..., ur} of vectors u; given by

(5) Hu1 =0, Huy =uy, ..., Hur = ukq

is @ maximal set of linearly independent vectors obtained by the above cyclic
process iff

(6) Hx = uy has no solution.

Proof. Since uy is a nonzero vector, from (5) it follows that u; is a
nonzero vector for everyi =1, ..., k. Also from (5) it follows that H'u; =
0 for every i. Next, we show that the vectors uy, ..., ux are linearly
independent. Indeed, let for some complex numbers c; it be the case that
Tcui =0withi =1,..., k. But then Z¢;H*'u; = 0 which implies cxu = 0
and therefore cx = 0. Consequently, Zc,-H"'zui = 0 which implies ck.quq
= (0 and therefore cx.1 = 0.

In a similar manner we obtain ¢; =0 for everyi = 1, ..., k. Thus, u;’s
are linearly independent.

Now, let {uj, ..., ux} be a maximal set of linearly independent vectors
obtained by the cyclic process indicated in (5). We show that (6) holds.
Indeed, if Hx = uy had a solution x = ug 41, then our proof above would
imply that {uj, ..., uk, uk+1} is a linearly independent set of vectors,
contradicting the maximality of {uj, ..., ux}. Conversely, if (6) holds then
the cyclic process in (5) cannot produce more then k vectors.

The following lemmas are needed.
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LEMMA 2. Let A and B be rectangular matrices such that AB and BA
exist. Then e # 0 is an eigenvalue of AB iff e # 0 is an eigenvalue of BA.

Proof. Let e # 0 be an eigenvalue of AB and v a corresponding
cigenvector. Thus,

(7) (AB) v =e¢v where Bv # Qsince (AB)v = 0.

But then (7) implies BA (Bv) = e (Bv) and since Bv # 0 it follows that e
is an eingenvalue of BA. The converse is proved in a similar way.

LEMMA 3. Let A, B, e be as in Lemma 1. Then n is the maximum
number of linearly independent eigenvectors of AB belonging to e iff n is the
maximum number of linearly independent eigenvectors of BA belonging to e.

Proof. Let vy, ..., vy be the n eigenvectors of AB referred to in the
above. Thus, for complex numbers c; it is the case that

(8) Zcivi =0 implies ¢i =0 for i =1,..,n.

From the proof of Lemma 1 it follows that Bvy, ..., By, are eigenvec-
tors of BA belonging to the eingenvalue e of B4. We show that these Bv;’s
are linearly independent. Indeed, let for some complex numbers ¢;” it be
the case that Z¢;’(Bv;) =0withi =1,...,n. But then Z¢;’(AB) vi = 0 which
by (4) implies Zc’ev; = 0 and therefore eXc;'vi = 0, and, since ¢ # 0 it
follows that Z¢;’v; = 0. But the latter in view of (8) implies ¢;’ = 0 for i
=1, ..., n. Thus, BA has at least n linearly independent eigenvectors
belonging to e. Clearly, the proof of the converse establishes the Lemma.

Let us call a Jordan block J, mentioned in (2), invertible iff the
corresponding eigenvalue ¢ is nonzero. But then from (1), in view of
Lemmas 2 and 3, we have immediately:

COROLLARY 1. Let A and B be rectangular matrices such that AB and
BA exist. Then AB and BA have the same number of invertible Jordan blocks
in their Jordan canonical forms.

LEMMA 4. Let A, B, e be as in Lemma 1. Then J is a Jordan block of
AB corresponding to an eigenvector v of AB belonging to e iff J is a Jordan
block of BA corresponding to the eigenvector Bv of BA belonging to e.

Proof. Let J be an m by m Jordan block of AB corresponding to an
eigenvector v of AB belonging to e. Thus, (3) and (4) hold when in them
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M is replaced by AB.
Hence, w1 = v and {wy, ..., wy} is the maximal set of linearly
independent vectors obtained by the cyclic process

(9) (4B -el)wy; =0, (AB-el) wp = wy, ..., (AB - el) wm = winq
and where
(10) (AB - eI) x = wyy, has no solution.

Next, the left multiplication by B of both sides of each equality in
(9) yields

(11) (BA -el) Bw1 =0, (BA -el) Bw = Bwy, ..., (BA =el) Bw;;, =Bwy.1.
We show that
(12) (BA - el) x = Bwy, has no solution.

Let us assume to the contrary thatx = s is a solution of (12). Hence,
(BA - el) s = Bwy. Multiplying both sides of the latter equality on the left
by 4 we obtain (4B - el) As = ABw,. However, from the last equality in
(9) we have ABwy,, = ew,, + wm-1. Consequently, (4B - el) As - wyq =
ew,, which again in view of the last equality in (9) implies
(AB - el) As - (AB - el) wy, = ewp,. Therefore, (AB -el) (As - wi) - ewp,
and since e # 0, we have (4B - el) (4s - wy,) el =wn contradicting (10).
Thus, our assumption is false and (12) is established. But then, from (11),
(12) and (2), it follows that J is a Jordan block of B4 corresponding to
the eigenvector Bw; = Bv of BA belonging to the eigenvalue e of BA.

Hence, we have proved that if J is a Jordan block of 4B as describe
in Lemma 4 then J is a Jordan block of B4 as described in Lemma 4. The
converse is proved in a similar way with 4B replaced by BA.

Based on the above lemmas, we prove:

THEOREM 1. Let A and B be rectangular matrices such that AB and BA
exist. Then to every invertible Jordan block in the Jordan canonical form of
AB there corresponds an identical Jordan block in the Jordan canonical form
of BA and vice versa.

Proof. By Corollary 1, 4B and BA4 have the same number of invertible
Jordan blocks in their Jordan canonical forms. On the other hand, by (1)
and Lemma 4 we see that J is an invertible Jordan block of AB iffJ is an
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invertible Jordan block of BA.

Thus, Theorem 1 is proved.

Next, we consider the relationship of the Jordan nilpotent blocks in
the Jordan canonical forms of matrices AB and B4, i.e., the case of e =0
in (2).

As usual, an m by m nilpotent Jordan block is referred to as a
nilpotent Jordan block of index (or ofindex of nilpotency) m. Thus, by (2),
a Jordan nilpotent block of a square matrix M, which corresponds to an
eigenvector v of M which belongs to the eigenvalue 0 of M, is of index m
iff m is equal to the maximum number of linearly independent vectors
w1, ..., wm Which are obtained by starting with the eigenvector wi =v and
proceeding cyclicly as follows:

(13) MWl = 0, MWZ = W1y eeey MWm = Wm-1
and where
(14) Mx = wy, has no solution.

Moreover, we call the eigenvector v = wj described above, a nilpotent
eigenvector of M of index m and we denote this by:

(15) N (v) =m.
Based on the above, we prove the following lemmas.

LEMMA 5. Let A and B be rectangular matrices such that AB and BA
exist. Moreover, let v1 be a nilpotent eigenvector of AB of index m = 2.

(16) If Bvq # Q then Bvy is a nilpotent eigenvector of BA of index = m.

(17) If Bvy = 0 then Bvy is a nilpotent eigenvector of BA of index = m-1,
where (AB) vy = v1.

Proof. By the hypothesis of the Lemma, in view of (13) and (14), we
have:

(18) (AB)v1 =0, (AB) v2 =v1, ..., (AB)vip =V with no solution for
(AB)x =vm.

If BV; = 0 then multiplying both sides of each equality in (18) on
the left be B we obtain
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(19) (BA) Bvi =0, (BA) Bvy =Bv,, ..., (BA) Bvm = Bvp.1

which, by (13) and (14), implies (16).
If Bvy = 0 then, since from (18) it follows that Bv, # 0 we sce that
(19) implies

(BA)Bvy =0, ..., (BA) Bvy, = Bvm.1

which, in turn, by (13) and (14), implies (17).

LEMMA 6. Let A and B be rectangular matrices such that AB and BA
exist. Moreover, let {u1, v1, ..., w1} be a linearly independent set of nilpotent
eigenvectors of AB of index m = 2 such that

(20) Buy =Bvy =... = Bw; = 0.
Let
(21) (AB) u3 =uy, (AB) vz =v1, ..., (AB) wy = w1.

Then {Buj, Bvy, ..., Bwa} is a linearly independent set of nilpotent
eigenvectors of BA of index = m-1.

Proof. From (20), by Lemma 5, {Buy, Bv, ..., Bw,} is a set of nilpotent
eigenvectors of B4 of index = m-1. To show that it is a linearly inde-
pendent set, let a(buz) + b(Bvz) + ... + t(Bwz) = 0 for some complex
numbers a, b, ..., t. But then multiplying the above equality on the left by
A, in view of (21) we obtain au; + bvy + ... + tw; = 0 which by the
hypothesis of the Lemma impliesa =b =... =¢ =0. Consequently, {Bus>,
Bv, ..., Bw;} is linearly independent, as desired.

Based on Lemmas 5 and 6 and the notation (15), we prove:

THEOREM 2. Let A and B be rectangular matrices such that AB and BA
exist. Let the number of the nilpotent Jordan blocks in the Jordan canonical
form of, say, AB be greater than or equal to the number of the nilpotent
Jordan blocks in the Jordan canonical form of BA. Then the nilpotent blocks
of AB and BA can be paired off (exhausting the nilpotent blocks of BA) in
such a way that every nilpotent block of AB of index m is paired with a
nilpotent block of BA of index m orm - 1 or m + 1 and a nilpotent block of
AB which is left unpaired (if any) is of index 1.



JORDAN CANONICAL FORMS OF MATRICIES AB AND BA 107

Proof. In view of (1), instead of considering the sets of nilpotent
Jordan blocks of 4B and BA, we may consider a maximal set D = {d1, d2,
.., dx} of linearly independent nilpotent eigenvectors of AB and a maxi-
malset G = {g1,£2, ---»gn} Of linearly independent nilpotent eigenvectors
of BA. Moreover, we assume that D as well as G is well ordered according
to the nonincreasing indices of nilpotency of its elements.

We pair off dq with g;. Clearly, one and only one of the three cases
N (1) =N (g1)or N (d1) > N(g1) or N (d)) <N (g1) must occur. If
N(d1) > N (g1) then because of the maximality of G, Lemma 6, in view
of the well ordering of G implies N (g1) = N (d1) - 1. If N (d1) < N (Gy)
then because of the maximality of D, Lemma 6 (where AB is interchanged
with BA), in view of the well ordering of D implies N (g1) =N (d1) + 1.
Thus, we see that di and g; are paired off as described in the Theorem.

Next, we pair off d, with g (of course if they exist) precisely as we
proceeded for dj and g1 and obtain the desired result.

Finally, since by the hypothesis k = n, let d; be the first (in the well
ordering of D) element (if any) of D which is left unpaired. Then N (d))
= 1. This is because otherwise N (dj) = 2 which, by the maximality of G,
in view of Lemma 6 and the well ordering of G, would imply the existence
of an element g, +1 of G, such that N (gn+1) = 1, contradicting the fact
that the last element of G is gn. Thus, indeed N (dj) =1, as desired.

From Theorems 1 and 2 it follows that we have established:

THEOREM 3. The Jordan canonical forms of matrices AB and BA have
identical invertible blocks. On the other hand, the nilpotent blocks of AB and
BA can be paired off in such a way that the nilpotency indices of the blocks
in each pair differ at most by 1, and, a nilpotent block which is left unpaired
(if any) is of index 1.

REMARK. It is well known [2, p.193] that the elementary divisors of a
square matrix M are uniquely determined by the Jordan blocks in the
Jordan canonical form of M, and, conversely. Thus, if B is an m by m
Jordan block of M belonging to an eigenvalue e of M then (x - €)™ is the
elementary divisor of M corresponding to B, and, conversely. We also
recall [2, p.76] the definitions of the minimal polynomial and the char-
acteristic polynomial, i.e. det (M - xI) of M. But then from theorems 1
and 2 we readily obtain:

COROLLARY 2. Let A be an m by n and B be an n by m matrix with
m z n. Then the minimal polynomials of AB and BA differ at most with a
factor of x. Moreover, the characteristic polynomial of AB is X" times the

characteristic polynomial of BA.
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It was recently brought to our attention that the subject matter of
this paper is treated in [1] using a different method of proof.
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