SEQUENTIALLY P - CLOSED SPACES (*)

by IVAN GOTCHEV (in Sofia)(**)

SOMMARIO. - Un 9 - spazio é sequenzialmente > - chiuso se e s0lo se esso é
sequenzialmente chiuso in ogni 9 - spazio in cui esso sia immerso. Se 9 é
una classe di spazi, rispettivamente, completamente regolari, normali, perfet-
tamente normali, localmente compatti, paracompatti, metrici, gli spazi se-
quenzialmente 5> - chiusi sono esattamente i 5> - spazi numerabilmente
compatti. Per varie categorie > consistenti di spazi di Hausdorff si danno
caratterizzazioni interne degli spazi sequenzialmente 92 - chiusi che permet-
tono di stabilime molte altre proprieta.

SUMMARY. - 4 9? - space is sequentially 57 - closed if it is sequentially closed in
every 5? - space in which it is embedded. For 5 - completely regular, normal,
perfectly normal, locally compact, paracompact and metric the sequentially
9 - closed spaces are precisely the countably compact 5° - spaces. Internal
characterization of sequentially > - closed spaces are given for various
categories 9 consisting of Hausdorff spaces which permits to establish a lot
of other properties of the sequentially 5 - closed spaces.

0. Introduction.

A space Y is called séquentially determined extension of its subspace

X iff for every point y € Y there exists a sequence {x,} ® in X such that
ty point y q -

lim x,=y [Go]. Let 92 be a class of topological spaces. A space X € 52

n->oo

is said to be 9 - closed (sequentially 9 - closed) iff X is closed (sequen-
tially closed) in every 2 space in which it is embedded. In other words X
is sequentially g» - closed iff X has no sequentially determined extension

Y € % and Y # X (this holds under very mild restrictions on > which
are verified in all cases considered here).

Obviously, every 2 - closed space is sequentially 22 - closed. The

(*) Pervenuto in Redazione il 23 marzo 1987.

(**) Indirizzo dell’Autore: Institute of Mathematics - Bulgarian Academy of Sciences - 1090 Sofia
(Bulgaria).
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2”2 - closed spaces were extensively studied for categories g2 consisting
of Hausdorff spaces (see [BPS]). For such 5 every compact (countably
compact) g2 - space is 2 - closed (sequentially $2 - closed). The sequen-
tially Hausdorff - closed spaces were introduced by P. Alexandroff and P.
Urysohn [AU]. They were proved that the regular sequentially Hausdorff
- closed spaces coincide with the regular countably compact spaces. In
[DGo] sequentially &» - closed spaces for some classes g2 of topological
spaces between T7 and T3 are studied. It is proved in particular that for
the category SUS of topological spaces in which every convergent se-
quence has a unique accumulation point the sequentially SUS - closed
spaces are precisely the countably compact SUS - spaces. On the other
hand it follows by results of A. Tozzi [To] that the sequentially SUS -
closed spaces coincide with the absolutely SUS - closed spaces, intro-
duced by D. Dikranjan and E. Giuli [DG3] in a more general situation.
This was in fact the starting point of our study of sequentially s - closed
spaces.

The aim of this paper is to study the sequentially > - closed spaces
for > = § (n), regular, completely Hausdorff, completely regular, nor-
mal, perfectly normal, locally compact, paracompact and metric.

In section 1 we introduce open elementary filters which serve as the
main tool in the study of sequentially $> - closed spaces. We introduce
also 6" convergence and S” - convergence (generalizations of the 6 -
convergence introduced by Velicko [Ve] and the usual convergence) and
characterize the S (n) - spaces by means of these convergences following
Velicko [Ve], Dikranjan and Giuli [Di], [DG1], [DG3].

In section 2 we give internal characterization of the sequentially 52
- closed spaces in terms of special filters and covers for 2 = § (n),
regular, completely Hausdorff and completely regular. For 52 = S (n)
this characterization involves the 6” - convergence and S” - convergence.
An example of a sequentially Hausdorff - closed completely Hausdorff
space (and hence S (n) - space forn =1, 2, ...) is given which is neither
Hausdorff - closed nor countably compact. We give also an example of a
sequentially regular - closed space which is neither regular - closed nor
countably compact. We discuss also the relations between sequentially
&° - closed spaces and 22 (1) - closed spaces (see [BPS]).

In section 3 various properties of the sequentially 52 - closed spaces
are established. We show in particular that for o - completely regular,
normal, perfectly normal, locally compact, paracompact and metric the
sequentially 9 - closed spaces are precisely the countably compact 5o -
spaces. Since for paracompact spaces countable compactness coincides
with compactness in the last two cases we get the compact 52 - spaces.

The author is indebted to D. Dikranjan for many helpful suggestions
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and for the permanent encouragement.
1. Preliminaries.

Troughout the paper the properties of regularity, completely regu-
larity, etc. include the T; separation property, U denotes the closure of
the set U in a given topological space, N denotes the set of positive
integers and R denotes the real line with the usual topology. In general
the terminology and notation follow [En].

Let X be a topological space and let 4 be a countable subset of X. A
maximal open elementary filter generated by A is the open filter on X with
base B = {F |FCX, F is open in X and A\F is finite}. An open filter F
on X is a maximal open elementary filter, iff there exists a countable subset
A of X, such that & is the maximal open elementary filter on X generated
by A. If X is a US - space (every convergent sequence in X has a unique
limit point [MN]) then A is uniquely determined by F up to a finite
subset (see [DGo]). An open filter will be called open elementary filter,
iff it is contained in some maximal open elementary filter. A filter & is
freeiff "{F | FE F} = ¢.

Let # = {Fa}ae 4 be a free open elementary filter on X. On the set
X7 =X U {F} we introduce the following topology: The set X is open,
the relative topology of X coincides with the original topology of X and
for open base at the point {F} we take the family {{#} UF, | Fo € &,
a € A}. It is easy to verify that the topological space obtained in this
way is a T1 sequentially determined extension of X whenever X is 7. In
the sequel X7 will be called standard sequentially determined extension of
Xby &.

Let X be a topological space, M CX and n € N. The point x € X is
S (n) - separated from M iff there exist open sets U;,i =1, 2,..., n such that
x €UiC ...C UnU; CU;i + 1and U, N M = ¢; x is S (0) - separated from
Miffx ¢ M. The space X isan $ (n) - space, iff every two different points
in X are S (n) separated [Vi]. It is obvious that S (1) = T3, § (2) = Tys
(distinct points can be separated by disjoint closed neighbourhoods).

An open cover {2a} o e 4 of the space X is an S (n) - cover, iff
every pointx € X is S (n) - separated from some X \ U,,. Clearly the S (0)
- covers are exactly the open covers. A filter F on X is an S (n) - filter, iff
every point x € X, which is not adherent point for & is S (n) - separated
from some U € & [PV].

Let X be a topological space and n € N. The pointx € X will be called

S" - limit (8" - limit) of a sequence {x"}n:1 in X, iff for every chain U;

CUz C... CUy, of open neighbourhoods of x such that U,- CU; 4+ 1 for
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i=12,..,n-1,Up (ﬁ,,) contains all but a finite number of the members
of the sequence. Every sequence which has an S™ - limit (8" - limit) will
be called S™ - convergent (68" - convergent). If for every chain U CU> C ...
C Uy of open neighbourhoods of x such that Ui CU4+1fori =1,2,..,
n - 1, Un (Up) contains infinitely many members of the sequence then x
will be called S - adherent point (6" - adherent point) of the sequence
{x,,}n°° . Clearly, the s1 - convergence is the usual topological conver-

gence and the 6! - convergence is the 8 - convergence defined by Velicko
[Ve]. Also every S™ - convergent sequence is 6" - convergent and every 6"
- convergent sequence is S” +1_convergent. So every convergent, in the
usual sense, sequence is S” - convergent and 6" - convergent for every n
€ N. If X is regular then the S” - convergence and the 6" - convergence
coincides with the usual convergence. Similar facts are valid for S" and
g" - adherent points of a sequence. In the same way S” (6") convergence
and S (6") adherent points can be defined for nets. (For 6" - adherent
points see [DG3] and for n = 1 see also [DG2]).

The S (n) - spaces can be characterized by means of the " - conver-
gence, S" - convergence and the usual convergence.

PROPOSITION 1.1. Let X be a topological space and n € N. The following
conditions are equivalent:

(@)X isan S (n) - space

(b) every convergent sequence in X has a unique 6" - adherent point
(c) every convergent sequence in X has a unique 6" - limit

(d) every convergent sequence in X has a unique S " +1_ adherent point
(e) every convergent sequence in X has a unique s"* 1 limir.

Proof. Follows directly from the definition.

2. Characterization of the sequentially 52 - closed spaces.
The next theorem characterizes sequentially S (n) - closed spaces.

Analogous results for S (n) - clased spaces were obtained in [PV] and for
S (n) - 8 - closed spaces were obtained in [DG3]. ~

THEOREM 2.1. Let X be a Ty space and n € N. The following conditions
are equivalent.

(a) every sequence in X has a 6" - adherent point
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(b) every sequence in X has an S" * 1 - adherent point

(c) every countable S (n) - cover of X has a finite subcover

(d) every S (n) - filter with a countable base of closed sets has an ad-
herent point

(€) every open elementary S (n) - filter has an adherent point

(f) every maximal open elementary S (n) - filter has an adherent
point.
IfX is an S (n) - space then the above conditions are equivalent to:

(g) Xis sequentially S (n) - closed.

Proof. Obviously (a) implies (b) and (e) implies (f). To see that (b)
implies (c) assume that {Un} ® is acountable S (n) - cover which has no

k
finite subcover. For every k = 1, 2,... we choose xx €U U; . Let x € X.
. i=1
Since {Ui}_“’l is an S (n) - cover then there exists an element U; of the
l=

cover and chain V; CV3... CVn of open neighbourhoods of x such that
Vi CVj4+1forj = 1,2,..,n-1and V, C U; This means that x is not
an S” * 1 - adherent point for {xk} ® since for everyi E Nandk =iwe

have xx & Ui. Therefore {xk}

= has no 5" +1_ adherent points in X : a

contradiction. Let now & be an S (n) - filter on X with countable closed
base {F,-} °°1. Assume that & has no adherent points. Then 2( = {Ui| U;

i=

= X\F;, i € N} is an S (n) - cover of X. Let Uj, Ui, ...,Uj, be a finite

k k
subcover of 2{. Since & is a filter we have N (X \Uij) =N F,'J. # ¢, hence
j=1 j=1
Ui, Ui, .., Uj, is not a cover of X. This contradiction proves that (c)
implies (d). Now we will prove that (d) implies (e). Let & be an open
elementary S (n) - filter without adherent points. There exists a maximal
open elementary filter &’ such that ¥ C &’. Then &’ has no adherent

points and if {xk}kfl determines &’ then {xk}kfi is a closed set for every

i € N. Thus the filter F” generated by {Fi |Fi = {xk}kfi JiEN } contains

F’.So F”is an S (n) - filter with a countably base of closed sets without
adherent points. To see that (f) implies (a) assume that {xk}k” is a

sequence in X which has no 6" - adherent points. Let & be the maximal
_open elementary filter generated by {xk} = and x be an arbitrary point
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of X. There exists a chain Uy C Uz C... C U, of open neighbourhoods
ofx such thatU; CU; +1,i =1, 2,..,n-1and X\ U, contains all but

a finite members of the sequence. Therefore X \U, € &. On the other

hand x and X \ Uy, are S (n) - separated. This means that & is a maximal
open elementary S (n) - filter with no adherent points. Contradiction.
Now let we assume that X is not sequentially S (n) - closed. Thus there

exists an S (n) - space Y DX, a pointy € Y\X and a sequence {xk}kf_’l in

X such that lim x¢ =y. Clearly y is a 8" - adherent point of {xk}kfl. From

k- o

Proposition 1. 1 it follows that {xk}k"jl has no other 6" - adherent points

in Y. Thus {xk}k°_°1 has no 6" - adherent points in X. This contradiction

proves that (a) implies (g). To prove that (g) implies (f) assume that &
is a maximal open elementary S (n) - filter with no adherent points. Let

X7 be the standard sequentially determined extension of X by &. It is

easy to verify that X # is an S (n) - space. Thus X is not sequentially S (n)
- closed. Contradiction.

The idea to characterize closed spaces with 6 - convergence and
elementary filters (but in a somewhat different sense, see [Bo], chap. 1.
§ 6) comes from Velicko [Ve].

Now we show that the class of sequentially S (n) - closed spaces is

- not exhausted by the S (n) - closed spaces and by the countably compact
S (n) - spaces.

" EXAMPLE2.2. Let Nbe the space of positive integers with the discrete
topology and let SN be the Cech-Stone compactification of N. Let also
X =(BNW) U {Xij}i jfl U {y,-}ifl. We provide X with a topology as

follows: The points {x;j} * are isolated fori € N and j € N. For a
i j=1 |

neig}hbourhood base of y; (i € N) we take the family y; U
j

{{x,- j:k-,k EN } Let {#} € BN\Nand let {U,, a € A} be a neighbour-

hood base of {1} in BN. For a neighbourhood base of {} in X we take
) _ 1 e )
the famlly{Va |Va= (U,,\N) U {ﬁ“f}i,m Li€UL N N} ,a € .;4} s
easy to verify that X is a Hausdorff-closed S (n) - space for everyn € N
and X is not countably compact. Let now F € SN\W and Y = X \{F}.

Clearly Yis S (n) - closed for non and Y'is not countably compact. By (a)
of the above theorem Y is sequentially S (n) - closed.

‘Let X be a topological space. An open filter F on X is a regular filter
iff for each U € F there exists V € F such that V' C U [Ba]. Let 2 and
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1% be open covers of a space X. ¥ is a shrinkable refinement of 1L iff for
each V € 1%, there is U € 2/ such that ¥ C U. An open cover 2/ is regular
iff there exists an open cover 1% which refines 2/ and 7% is a shrinkable
refinement of itself [BPS].

THEOREM 23. Let X be a Ty space. The following conditions are
equivalent:

(a) every open elementary regular filter on X has adherent points
(b) every countable regular cover of X has a finite subcover.

If X is a regular space then the above conditions are equivalent to:
(¢) X is sequentially regular-closed.

Proof. To see that (a) implies (b) assume that 2{ = {U,}“ is a

countable regular cover without finite subcovers. Foreachk =1, 2, ... we
k
choose a point xx € X such that xx &€ U U; . Then clearly xx & U;

i=1
whenever k = i. Let 7% = {V,} « € A be a cover of X which refines 2{
and ¥ is a shrinkable refinement of itself. Clearly the cover 7% has no

finite subcovers. It is easy to verify that the filter & generated by the filter

k
base {X \U Vg ,ai € A kEN } is an open elementary regular filter on
i=1
X without adherent points. Contradiction. Let now & be an open
elementary regular filter on X without adherent points. There exists a

maximal open elementary filter such that ¥ C &’. Let {xk}k"jl deter-

mines %’. But &’ has no adherent points. Then {xk}k”1 is a closed set for

everyi € N. Let U/ = {U, | Ui =X\{xk}k:i,i EN} and 1% = {V|there

exists anopenset W € &F such thatV =X \‘W}. It is easy to verify that
¥ is an open cover of X which refines 2{ and 7% is a shrinkable refine-
ment of itself. Thus 2{ is a countable regular cover of X without finite
subcovers and this proves that (b) implies (a). Now we prove that (a)

implies (c). Assume that X is not sequentially regular - closed. Thus there

exists a regular space Y D X, a pointy € Y\X and a sequence {x,,} °°1 in
n=

X such that limx, =y. Let 1%y be the filter of neighbourhoods ofy on Y.

n—>o

Since Yis a regular space it follows that 1%y is an opcn elementary regular
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filter on Y with no adherent points in X. Then 1% = {V |there exists W -

€ U9y such that V = X N W} is an open elementary regular filter on X
without adherent points. Contradiction. Assume that there exists an

open elementary regular filter & on X without adherent points. Then the

standard sequentially determined extension X of X by & will be a
regular space. This contradicts the sequentially regular - closedness of X,
so (c¢) implies (a). '

Now we show that the class of sequentially regular - closed spaces is
not exhausted by the regular - closed spaces and by the countably compact
regular spaces.

EXAMPLE 2.4. The space X in Example 4.18 in [BPS] is a minimal
regular space which is not countably compact [BS]. Letx = (w1, 1,1) =
(w1,1,2)and Y =X \{x}. Thenby Lemma 3.10 Y is asequentially regular
- closed space which is neither regular - closed nor countably compact.

Let X be a topological space. X is completely Hausdorff iff for each
pairx, y of distinct points, there exists a continuous real - valued function
f such that f(x) = f (y). An open filter F on X is completely Hausdor(f iff
for each x € X which is not an adherence point of & there exists an open
set U containing x, V € & and continuous real - valued function f on X
such that f (U) = {1} and f (V) = {0}. An openfilter F on X is completely
regular iff for each U € &, there exists V € & and a continuous real -
valued function f on X such that f(V) = {0} and f (X\U) = {1}. Let V¥
and 2{ be covers of a space X. 1% is a continuous refinement of 1{ iff for
each ¥V € ¥ there is U € 2{ and continuous real - valued function f on
X such that f (V) = {0} and f (X\U) = {1}. An open cover is completely
Hausdorff iff it has a continuous refinement [BPS]. An open cover 2/ is
completely regular iff there is an open cover 1% which refines 2/ and 7%
is a continuous refinement of itself.

THEOREM 2.5. Let X be a Ty space. The following conditions are
equivalent:

(a) every countable completely Hausdorff cover of X has a finite sub-
cover : :

(b) every open elementary completely Hausdorff filter on X has adher-
ent points

(c) every maximal open elementary completely Hausdorff filter on X
has adherent points.

ha If X is a completely Hausdorff space then the above conditions are

equivalent to:
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(d) X is sequentially completely Hausdorff - closed.

Proof. To see that (a) implies (b) let & be an open elementary
completely Hausdorff filter on X without adherent points. There exists a

maximal open elementary filter %’ on X such that FC F°. If {Xk} k°_°1 is

a sequence which generate &%’ then {Xk} ® is a closed set for every i €

N.LetU ={U; | Ui=X\[u},= i €N} and V= (7| Ve =f[0,13),

xeX,We Fand f:X - Rissuchthatf (x) =0and f (W) = {1}}. Then
U and ¥ are open covers of X and 1% is a continuous refinement of 2.
Thus 2/( is a completely Hausdorff cover of X without a finite subcover.
Obviously (b) implies (c). We prove that (c) implies (a). Let 2/
={Ui}i:1 be a countable completely Hausdorff cover of X without finite

subcovers. Let 1% = {V,} o € 4 be a cover of X which is a continuous

k
refinement of 2{. For every k € N we choose xx & U U; and let & be the
i=1
[o°]

maximal open elementary filter generated by {xk . If x is an arbitrary

k=1

point of X then there exists a € 4 such thatx € V, and there exists i €
N and f : X » R such that f (V) = {0} and f (X \U;) = {1}. Let

W =f1 (1/2 ,1] and g (x) =2.min (f (x),/2). Then W € F,g (Vo) = {0}

and g (W) = {1}. Thus & is a maximal open elementary filter which is
completely Hausdorff and it has no adherent points. To prove that (b)
implies (d) assume that X is not sequentially completely Hausdorff -
closed. Then there exists a completely Hausdorff space Y D X, a point y
€ Y \X and a sequence {xk} °=°1 of points of X such thatklimxk =y. The

filter 1%y of neighbourhoods of y is a completely Hausdorff filter on Y.

Let ¥ = {V |there exists W € 1%y such that V' =X N W}. Then 1% is an
open elementary completely Hausdorff filter on X without adherent
points. Contradiction. If there exists an open elementary completely

Hausdorff filter & on X without adherent points, then X7 will be a
completely Hausdorff, sequentially determined extension of X. This
proves that (d) implies (b).

The space Y in Example 2.2 is also completely Hausdorff, conse-
quently sequentially completely Hausdorff - closed. On the other hand
it is neither completely Hausdorff - closed nor countably compact.
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LEMMA 2.6. In a completely regular space X every open cover of X is a
completely regular cover.

Proof. Let U = {Uq} « € .4 be an open cover of X. For every a €

A and every x € Uy let fq x be a continuous real - valued func-

tion such that fy »(x) = 1 and fq x(X\Us) = {0}. If Vv =

g|V= f;& (Wml),a € AxE€EUg,n=2 } then 7% is an open cover of X,
refines 2/ and 1% is a continuous refinement of itself.

THEOREM 2.7. Let X be a Ty space. The following conditions are
equivalent:

(a) every countable completely regular cover of X has a finite subcover

(b) every open elementary completely regular filter on X has adherent
points.
If X is a completely regular space then the above conditions are
equivalent to:

(c) Xis sequentially completely regular - closed

(d) Xis countably compact.

Proof. Let & be an open elementary completely regular filter on X
without adherent points and let &’ be a maximal open elementary filter
such that ¥C &%’. If {x } ® is a sequence which generates &,

k=1
then {xk}f is a closed set for every i € N. Let U =

‘ {U, | Ui =X\{xk}k:i = N} and 1% = {V|there exists an openset W €

< such that V = X\W}. Then 2{ and ¥ are open covers of X, 1% refines

2 and 1% is continuous refinement of itself. Thus 2/ is a completely
regular cover of X without finite subcovers. This proves that (a) implies

(b). To see that (b) implies (a) let 2/ ={Ui}i:1 be a countable completely

regular cover of X without finite subcovers and let 1% = {Va} 4 € A4 be
an open cover of X which refines 2/ and 1% is a continuous refinement

k
of itself. For every k € N we choose xx € U U; and let B = {W |there
i=1
k ——
exist V, € 1* such that W = X\U Vg, k € N }. Let ¥’ be the maximal
i=1

open elementary filter on X determined by {xk}k‘fl. If & is the open filter
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with base B then ¥ C &%’ and hence & is an open elementary completely
regular filter without adherent points. Now we prove that (b) implies (c).
Assume that X is not sequentially completely regular - closed. Then there
exists a completely regular space Y D X, a pointy € Y\X and a sequence

{xk}k“l of points of X such that limxx = y. The filter 1%, of neighbour-
= k>

hoods of y is a completely regular filter on Y. Let 7% = {W/| there exists
an openset ¥V € 1%, such that W =X NV}, then V* is an open elementary
completely regular filter on X without adherent points. Contradiction. If
there exists an open elementary completely regular filter & on X without
adherent points, then X7 will be a completely regular, sequentially
determined extension of X. This proves that (c) implies (b). The equi-
valence of conditions (a) and (d) follows directly by Lemma 2.6.

For a class &2, the class of all first countable 2 - spaces will be
denoted by &2 (1) [BPS]. Evidently every sequentially £2 - closed 22 (1)
space is 92 (1) - closed. Hence the sequentially > (1) - closed spaces
coincide with the 2 (1) - closed spaces. For various classes o the 52 (1)
- closed spaces were studied in [Ste2].

A family of open sets 2{ in a space X is a proximate cover of X iff
U {U|U € U} =X [Ka].

THEOREM 2.8. Let X be a T1space andn € N. The following conditions
are equivalent:

(a) every countable S (n - 1) - cover of X contains a finite proximate
subcover

(b) every countable open S (n) - filter has adherent points.
IfX is an S (n) (1) - space then the above conditions are equivalent
to:

() Xis S (n) (1) - closed.

Proof. To see that (a) implies (b) suppose that # is a countable open

S (n) - filter on X without adherent points. Then 2{ = {U|U = X\ Ve

&Y} is acountable S (n - 1) - cover of X and 2{ has a proximate subcover.
k k . k

So thatif X = U U; then N (X\U;) =NV; =¢.ButV, € ¥ fori =1, 2,
i=1 i=1 i=1

...k. Contradiction. Now let us assume that 2{ = {U;}ifl is a countable

S (n - 1) - cover of X which has no finite proximate subcovers. For every
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. 1
i € N we consider V; =X \(U '(7,-). Obviously .B = {V,-}izl is a countable
j=1
open base of a filter &. One can easily verify that & is a countable open
S (n) - filter without adherent points. This contradiction proves that (b)
implies (a). If X is not S (n) (1) - closed then there exists an S (n) (1)
extension Y of X and a point y € Y \X. But the trace on X of the
neighbourhood filter of the point y is a countable open S (n) - filter on
X without adherent points in X and this proves that (b) implies (c). To

see that (c) implies (b) we suppose that & is a countable open S (n) -
filter without adherent points. Then the standard extension X7 of X by

F isan S (n) (1) space. Contradiction.
The above theorem for n = 1,2 is proved by R. Stephenson [Ste2].

3. Properties of the sequentially 5 - closed spaces.

It was proved by P. Alexandroff and P. Urysohn [AU] that the regular
Hausdorff - closed spaces (regular sequentially Hausdorff - closed
spaces) are precisely the compact (regular countably compact) spaces. In
fact every regular S (n) - closed space is compact as shown by Herlich
[He] for n =2 and by Porter and Votaw [PV] for n >2. On the other hand
every completely regular, regular - closed space is compact ([He], [BS]).
We show next that similar results are valid for sequentially g2 - closed
spaces.

COROLLARY 3.1. (a) Let X be a regular space and n € N. Then X is
sequentially S (n) - closed iff X is countably compact.
(b) Let X be a completely regular space. Then X is sequentially regu-
lar - closed iff X is countably compact.

Proof. (a). Follows by the fact that every open cover of aregular space
isan § (n) - cover and by Theorem 2.1. (b). Follows by Theorem 2.3. and
Theorem 2.7.

. COROLLARY 3.2. Let X be a Lindeldf, regular space and n € N. The
following conditions are equivalent:
(a) X is compact
(b) X is regular - closed
(c) X is sequentially regular - closed
(d) X is sequentially S (n) - closed.
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Proof. For the equivalence of (a) and (b) see [He]. The equivalence
of the other conditions follows by the fact that every Lindeldf, regular
space is normal [En] and by Corollary 3.1.

THEOREM 3.3. Let X be a normal space. Then X is sequentially normal
- closed iff X is countably compact.

Proof. The proof follows immediately from Corollary 3.1 and Lemma
3.4.

LEMMA 34. Let X be a regular space, x € X and let X\ {x} be a normal
space. Then X is a normal space.

THEOREM 3.5. Let X be a perfectly normal space. The following condi-
tions are equivalent:

(a) X is perfectly normal - closed
(b) X is sequentially perfectly normal - closed
(¢) X is countably compact.

Proof. For the equivalence of conditions (a) and (b) see [Ste2].
Obviously (c) implies (b). It is known that in a normal space the count-
able compactness coincides with the fecble compactencs (see [Stel] and
[Hew]) and that a regular space X is feebly compact iff every countable
open regular filter on X has adherent points [Stel]. Then the proof that
(b) implies (c) follows by Lemma 3.4 and by the fact that if X is a normal
space, x is a point in X and X \{x} is a perfectly normal space, then X is a
perfectly normal space whenever x is a Gg set in X.

THEOREM 3.6. Let X be a locally compact space. Then X is sequentially
locally compact - closed iff X is countably compact.

Proof. It is obvious that if X is countably compact then X is sequen-
tially locally compact - closed. Let X be a sequentially locally compact -
closed space and let we assume that X is not countably compact. Then
there exists a sequence {x,,}nzl of distinct points of X without adherent

points. Let wX be the Alexandroff compactification of X (see [En]) and
y = wX\X. It is easy to verify that limx, =y. Thus X is not sequentially

n—»o

locally compact - closed. Contradiction.
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THEOREM 3.7. For 9> = paracompact or metric if X is a 92 - space then
the following conditions are equivalent:

(a) X is 9 - closed

(b) X is compact

(c) X is sequentially 9 - closed
(d) X is countably compact.

Proof. For the equivalence of (a) and (b) see [SSe] and for the
equivalence of (b) and (d) see [En]. Obviously (d) implies (c). The proof
that (c) implies (d) for 5> = paracompact follows by Corollary 3.1 and
by the fact that if X is a regular space, x € X and X \{x} is a paracompact
space then X is a paracompact space. For & = metric it follows by
Corollary 3.1 and by the fact that if X is a regular first countable space,
x € X and X\ {x} is a metric space then X is a metric space.

The spaces satisfying the equivalent conditions (a) - (f) of Theorem
2.1 and the equivalent conditions (a), (b) of Theorem 2.3 and Theorem
2.7 and the equivalent conditions (a) - (¢) of Theorem 2.5 are in fact
natural generalizations of the countable compactness. Moreover for 2 =
US (SUS) the sequentially 2 - closed spaces are precisely the sequen-
tially compact (countably compact) spaces [DGo]. The next theorem
shows that some properties of the countably compact spaces are valid
also for the sequentially 22 - closed spaces.

THEOREM 38. Let n € N and 32 be one of the following classes of
topological spaces: US, SUS, S (n), regular, completely Hausdorff, complete-
ly regular, normal, perfectly normal, locally compact, paracompact or metric.
Then the following conditions are satisfies:

(a) Sequentially 9> - closedness is preserved by continuous functions
onto a 9° space.

(b) If a product of nonvoid spaces is sequentially 5> - closed then
each coordinate is sequentially 5 - closed.

(c) Every sequentially 9° - closed space is pseudocompact.

Proof. Obviously (a) implies (b). Clearly (a) and (c) are true when
sequentially g2 - closedness coinsides with countable compactness or
sequential compactness, i.e. for 2 = US, SUS, completely regular, nor-
mal, perfectly normal, locally compact, paracompact or metric. For the
others %> (a) follows from Theorem 2.1, Theorem 2.3 and Theorem 2.5.
To see that (c) is true let f : X - R be a continuous function. Then f (X)
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is a sequentially & - closed metric space by (a). Thus f (X) is a compact
space by Theorem 2.7 and Theorem 3.7. This shows that f is bounded.

THEOREM 3.9. Let n € N. The following conditions are valid:

(@) S (n) (1) - closedness is preserved by continuous functions onto
an S (n) - space.

(b) If a product of nonvoid spaces is an S (n) (1) - closed space then
each coordinate is S (n) (1) - closed.

(c) Every S (n) (1) - closed space is pseudocompact.

Proof. (a) follows by Theorem 2.8 and (a) implies (b). We shall proof
(c). Let f : X - R be a continuous function. Then 2/ = {1 (K, k) =1
is a countable regular cover of X. Since X is S (n) (1) - closed then by
Theorem 2.8 we can choose a finite proximate subcover of X. This implies
that f is bounded.

The above theorem for n = 1,2 is proved by R. Stephenson [Ste2].

Let 92 be a class of topological spaces. X € 2° is called 2 - minimal

iff X has no strictly coarser &2 topologies. (For 4 - minimal spaces see
[BPS])).

LEMMA 3.10. Let n € N, 92 = S (n), regular, completely Hausdorff or
completely regular and X be a 52 - minimal space. If x € X and x is not a
limit point for a non trivial sequence in X then Y = X\ {x} is a sequentially

- closed space.

Proof. Let us assume that Yis not sequentially 52 - closed space. Then
there exists an open elementary & - filter &1 on Y without adherent
points. Let &4 be the filter of neighbourhoods of the point x on X. We
consider the filter F = {U|U =V U W,V € &F1, W€ F,}. Obviously &
is an open elementary £ - filter on X and x is the unique adherent point
for . Let &’1be a maximal open elementary filter on Y containing 1.
Suppose that {xk} ® determines &’1. But limxg # x. Thus & C Fx But

k>
this contradicts to the 2 - minimality of X.

COROLLARY 3.11. Let X be a compact Hausdorff space and x € X. The
point x is not the limit of a some (non trivial) sequence of X iff X\ {x} is a
countably compact space.

Proof. Every compact Hausdorff space is a minimal completely regu-
lar space (see [Ba]). Now the corollary holds by Lemma 3.10 and Theo-
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rem 2.7.

Let C (X) be the set of all real - valued continuous functions on a
space (X, C). The weak-topology T ,, on X is the smallest topology on
X such that all functions in C (X) are continuous. Clearly C ,, is coarser
than ‘C and the space (X, T ) is completely regular iff (X, T) is
completely Hausdorff.

THEOREM 3.12. Let (X, C ) be a completely Hausdorff space. (X, C)

is sequentially completely Hausdorff - closed iff (X, Ty) is countably
compact.

Proof. It follows by Theorem 2.7 and by the fact that (X, T) is
sequentially completely Hausdorff - closed iff (X, T,,) is sequentially
completely regular - closed.
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