SEQUENTIALLY P-CLOSED SPACES (*)

by IVAN GOTCHEV (in Sofia)(**)

SOMMARIO. - Un \mathscr{P} - spazio è sequenzialmente \mathscr{P} - chiuso se e solo se esso è sequenzialmente chiuso in ogni \mathscr{P} - spazio in cui esso sia immerso. Se \mathscr{P} è una classe di spazi, rispettivamente, completamente regolari, normali, perfettamente normali, localmente compatti, paracompatti, metrici, gli spazi sequenzialmente \mathscr{P} - chiusi sono esattamente i \mathscr{P} - spazi numerabilmente compatti. Per varie categorie \mathscr{P} consistenti di spazi di Hausdorff si danno caratterizzazioni interne degli spazi sequenzialmente \mathscr{P} - chiusi che permettono di stabilirne molte altre proprietà.

SUMMARY. - $A \mathcal{D}$ - space is sequentially \mathcal{D} - closed if it is sequentially closed in every \mathcal{D} - space in which it is embedded. For \mathcal{D} - completely regular, normal, perfectly normal, locally compact, paracompact and metric the sequentially \mathcal{D} - closed spaces are precisely the countably compact \mathcal{D} - spaces. Internal characterization of sequentially \mathcal{D} - closed spaces are given for various categories \mathcal{D} consisting of Hausdorff spaces which permits to establish a lot of other properties of the sequentially \mathcal{D} - closed spaces.

0. Introduction.

A space Y is called sequentially determined extension of its subspace X iff for every point $y \in Y$ there exists a sequence $\{x_n\}_{n=1}^{\infty}$ in X such that $\lim_{n\to\infty} x_n = y$ [Go]. Let $\mathscr D$ be a class of topological spaces. A space $X \in \mathscr D$

is said to be \mathscr{D} - closed (sequentially \mathscr{D} - closed) iff X is closed (sequentially closed) in every \mathscr{D} space in which it is embedded. In other words X is sequentially \mathscr{D} - closed iff X has no sequentially determined extension $Y \in \mathscr{D}$ and $Y \neq X$ (this holds under very mild restrictions on \mathscr{D} which are verified in all cases considered here).

Obviously, every $\mathscr D$ - closed space is sequentially $\mathscr D$ - closed. The

^(*) Pervenuto in Redazione il 23 marzo 1987.

^(**) Indirizzo dell'Autore: Institute of Mathematics - Bulgarian Academy of Sciences - 1090 Sofia (Bulgaria).

P - closed spaces were extensively studied for categories P consisting of Hausdorff spaces (see [BPS]). For such \mathcal{P} every compact (countably compact) \mathcal{P} - space is \mathcal{P} - closed (sequentially \mathcal{P} - closed). The sequentially Hausdorff - closed spaces were introduced by P. Alexandroff and P. Urysohn [AU]. They were proved that the regular sequentially Hausdorff - closed spaces coincide with the regular countably compact spaces. In [DGo] sequentially \mathcal{D} - closed spaces for some classes \mathcal{D} of topological spaces between T_1 and T_2 are studied. It is proved in particular that for the category SUS of topological spaces in which every convergent sequence has a unique accumulation point the sequentially SUS - closed spaces are precisely the countably compact SUS - spaces. On the other hand it follows by results of A. Tozzi [To] that the sequentially SUS closed spaces coincide with the absolutely SUS - closed spaces, introduced by D. Dikranjan and E. Giuli [DG3] in a more general situation. This was in fact the starting point of our study of sequentially so - closed spaces.

The aim of this paper is to study the sequentially \mathcal{D} - closed spaces for $\mathcal{D} = S(n)$, regular, completely Hausdorff, completely regular, normal, perfectly normal, locally compact, paracompact and metric.

In section 1 we introduce open elementary filters which serve as the main tool in the study of sequentially \mathcal{D} - closed spaces. We introduce also θ^n convergence and S^n - convergence (generalizations of the θ - convergence introduced by Veličko [Ve] and the usual convergence) and characterize the S(n) - spaces by means of these convergences following Veličko [Ve], Dikranjan and Giuli [Di], [DG1], [DG3].

In section 2 we give internal characterization of the sequentially \mathcal{D} - closed spaces in terms of special filters and covers for $\mathcal{D} = S(n)$, regular, completely Hausdorff and completely regular. For $\mathcal{D} = S(n)$ this characterization involves the θ^n - convergence and S^n - convergence. An example of a sequentially Hausdorff - closed completely Hausdorff space (and hence S(n) - space for n = 1, 2, ...) is given which is neither Hausdorff - closed nor countably compact. We give also an example of a sequentially regular - closed space which is neither regular - closed nor countably compact. We discuss also the relations between sequentially \mathcal{D} - closed spaces and \mathcal{D} (1) - closed spaces (see [BPS]).

In section 3 various properties of the sequentially \mathscr{D} - closed spaces are established. We show in particular that for \mathscr{D} - completely regular, normal, perfectly normal, locally compact, paracompact and metric the sequentially \mathscr{D} - closed spaces are precisely the countably compact \mathscr{D} - spaces. Since for paracompact spaces countable compactness coincides with compactness in the last two cases we get the compact \mathscr{D} - spaces.

The author is indebted to D. Dikranjan for many helpful suggestions

and for the permanent encouragement.

1. Preliminaries.

Troughout the paper the properties of regularity, completely regularity, etc. include the T_1 separation property, \overline{U} denotes the closure of the set U in a given topological space, N denotes the set of positive integers and R denotes the real line with the usual topology. In general the terminology and notation follow [En].

Let X be a topological space and let A be a countable subset of X. A maximal open elementary filter generated by A is the open filter on X with base $\mathcal{B} = \{F \mid F \subset X, F \text{ is open in } X \text{ and } A \setminus F \text{ is finite} \}$. An open filter \mathcal{F} on X is a maximal open elementary filter, iff there exists a countable subset A of X, such that \mathcal{F} is the maximal open elementary filter on X generated by A. If X is a US - space (every convergent sequence in X has a unique limit point [MN]) then A is uniquely determined by \mathcal{F} up to a finite subset (see [DGo]). An open filter will be called open elementary filter, iff it is contained in some maximal open elementary filter. A filter \mathcal{F} is free iff $\cap \{F \mid F \in \mathcal{F}\} = \phi$.

Let $\mathcal{F} = \{F_{\alpha}\}_{{\alpha} \in \mathcal{A}}$ be a free open elementary filter on X. On the set $X\mathcal{F} = X \cup \{\mathcal{F}\}$ we introduce the following topology: The set X is open, the relative topology of X coincides with the original topology of X and for open base at the point $\{\mathcal{F}\}$ we take the family $\{\{\mathcal{F}\} \cup F_{\alpha} \mid F_{\alpha} \in \mathcal{F}, \alpha \in \mathcal{A}\}$. It is easy to verify that the topological space obtained in this way is a T_1 sequentially determined extension of X whenever X is T_1 . In the sequel $X\mathcal{F}$ will be called standard sequentially determined extension of X by \mathcal{F} .

Let X be a topological space, $M \subset X$ and $n \in N$. The point $x \in X$ is S(n)-separated from M iff there exist open sets U_i , i = 1, 2, ..., n such that $x \in U_1 \subset ... \subset U_n$, $\overline{U_i} \subset U_{i+1}$ and $\overline{U_n} \cap M = \phi$; x is S(0)-separated from M iff $x \notin \overline{M}$. The space X is an S(n)-space, iff every two different points in X are S(n) separated [Vi]. It is obvious that $S(1) = T_2$, $S(2) = T_{2,5}$ (distinct points can be separated by disjoint closed neighbourhoods).

An open cover $\{\mathcal{U}_{\alpha}\}_{\alpha} \in \mathcal{A}$ of the space X is an S(n) - cover, iff every point $x \in X$ is S(n) - separated from some $X \setminus U_{\alpha}$. Clearly the S(0) - covers are exactly the open covers. A filter \mathcal{F} on X is an S(n) - filter, iff every point $x \in X$, which is not adherent point for \mathcal{F} is S(n) - separated from some $U \in \mathcal{F}[PV]$.

Let X be a topological space and $n \in N$. The point $x \in X$ will be called S^n - limit (θ^n - limit) of a sequence $\{x_n\}_{n=1}^{\infty}$ in X, iff for every chain $U_1 \subset U_2 \subset \ldots \subset U_n$ of open neighbourhoods of x such that $\overline{U}_i \subset U_{i+1}$ for

i = 1, 2, ..., n - 1, U_n (\overline{U}_n) contains all but a finite number of the members of the sequence. Every sequence which has an S^n - limit (θ^n - limit) will be called S^n - convergent (θ^n - convergent). If for every chain $U_1 \subset U_2 \subset ... \subset U_n$ of open neighbourhoods of x such that $\overline{U}_i \subset U_{i+1}$ for i=1,2,...,n-1, U_n (\overline{U}_n) contains infinitely many members of the sequence then x will be called S^n - adherent point (θ^n - adherent point) of the sequence $\{x_n\}_{n=1}^{\infty}$. Clearly, the S^1 - convergence is the usual topological convergence and the θ^1 - convergence is the θ - convergent and every θ^n - convergent sequence is S^n - convergent. So every convergent, in the usual sense, sequence is S^n - convergent and θ^n - convergent for every $n \in N$. If X is regular then the S^n - convergence and the θ^n - convergence coincides with the usual convergence. Similar facts are valid for S^n and θ^n - adherent points of a sequence. In the same way S^n (θ^n) convergence and S^n (θ^n) adherent points can be defined for nets. (For θ^n - adherent points see [DG3] and for n=1 see also [DG2]).

The S(n) - spaces can be characterized by means of the θ^n - convergence, S^n - convergence and the usual convergence.

PROPOSITION 1.1. Let X be a topological space and $n \in \mathbb{N}$. The following conditions are equivalent:

- (a) X is an S (n) space
- (b) every convergent sequence in X has a unique θ^n adherent point
- (c) every convergent sequence in X has a unique θ^n limit
- (d) every convergent sequence in X has a unique S^{n+1} adherent point
- (e) every convergent sequence in X has a unique S^{n+1} limit.

Proof. Follows directly from the definition.

2. Characterization of the sequentially $\mathcal D$ - closed spaces.

The next theorem characterizes sequentially S(n) - closed spaces. Analogous results for S(n) - closed spaces were obtained in [PV] and for S(n) - θ - closed spaces were obtained in [DG3].

THEOREM 2.1. Let X be a T_1 space and $n \in \mathbb{N}$. The following conditions are equivalent:

(a) every sequence in X has a θ^n - adherent point

- (b) every sequence in X has an S^{n+1} adherent point
- (c) every countable S (n) cover of X has a finite subcover
- (d) every S (n) filter with a countable base of closed sets has an adherent point
- (e) every open elementary S (n) filter has an adherent point
- (f) every maximal open elementary S(n) filter has an adherent point.
 - If X is an S (n) space then the above conditions are equivalent to:
- (g) X is sequentially S(n) closed.

Proof. Obviously (a) implies (b) and (e) implies (f). To see that (b) implies (c) assume that $\{U_n\}_{n=1}^{\infty}$ is a countable S(n) - cover which has no finite subcover. For every k = 1, 2,... we choose $x_k \notin \bigcup_{i=1}^{n} U_i$. Let $x \in X$. Since $\{U_i\}_{i=1}^{\infty}$ is an S(n) - cover then there exists an element U_i of the cover and chain $V_1 \subset V_2 \dots \subset V_n$ of open neighbourhoods of x such that $\overline{V}_j \subset V_{j+1}$ for j=1,2,...,n-1 and $\overline{V}_n \subset U_i$. This means that x is not an S^{n+1} -adherent point for $\{x_k\}_{k=1}^{\infty}$ since for every $i \in N$ and $k \ge i$ we have $x_k \notin U_i$. Therefore $\{x_k\}_{k=1}^{\infty}$ has no S^{n+1} - adherent points in X: a contradiction. Let now \mathcal{F} be an S(n) - filter on X with countable closed base $\{F_i\}_{i=1}^{\infty}$. Assume that \mathcal{F} has no adherent points. Then $\mathcal{U} = \{U_i | U_i\}$ = $X \setminus F_i$, $i \in N$ } is an S(n) - cover of X. Let U_{i_1} , U_{i_2} , ..., U_{i_k} be a finite subcover of \mathcal{U} . Since \mathcal{F} is a filter we have $\bigcap_{j=1}^{\kappa} \left(X \setminus U_{i_j} \right) = \bigcap_{j=1}^{\kappa} F_{i_j} \neq \phi$, hence $U_{i_{l}}$ $U_{i_{l}}$..., $U_{i_{k}}$ is not a cover of X. This contradiction proves that (c) implies (d). Now we will prove that (d) implies (e). Let $\mathcal F$ be an open elementary S(n) - filter without adherent points. There exists a maximal open elementary filter \mathcal{F} ' such that $\mathcal{F} \subset \mathcal{F}$ '. Then \mathcal{F} ' has no adherent points and if $\{x_k\}_{k=1}^{\infty}$ determines \mathcal{F} then $\{x_k\}_{k=i}^{\infty}$ is a closed set for every $i \in N$. Thus the filter \mathcal{F} " generated by $\{F_i \mid F_i = \{x_k\}_{k=i}^{\infty}, i \in N\}$ contains \mathcal{F}' . So \mathcal{F}'' is an S(n) - filter with a countably base of closed sets without adherent points. To see that (f) implies (a) assume that $\{x_k\}_{k=1}^{\infty}$ is a sequence in X which has no θ^n - adherent points. Let ${\mathcal F}$ be the maximal open elementary filter generated by $\{x_k\}_{k=1}^{\infty}$ and x be an arbitrary point of X. There exists a chain $U_1 \subset U_2 \subset ... \subset U_n$ of open neighbourhoods of x such that $\overline{U_i} \subset U_{i+1}$, i=1,2,...,n-1 and $X \setminus \overline{U_n}$ contains all but a finite members of the sequence. Therefore $X \setminus \overline{U_n} \in \mathcal{F}$. On the other hand x and $X \setminus \overline{U_n}$ are S(n) - separated. This means that \mathcal{F} is a maximal open elementary S(n) - filter with no adherent points. Contradiction. Now let we assume that X is not sequentially S(n) - closed. Thus there exists an S(n) - space $Y \supset X$, a point $y \in Y \setminus X$ and a sequence $\{x_k\}_{k=1}^{\infty}$ in X such that $\lim_{k \to \infty} x_k = y$. Clearly y is a θ^n - adherent point of $\{x_k\}_{k=1}^{\infty}$. From Proposition 1. 1 it follows that $\{x_k\}_{k=1}^{\infty}$ has no other θ^n - adherent points in X. This contradiction proves that (a) implies (g). To prove that (g) implies (f) assume that \mathcal{F} is a maximal open elementary S(n) - filter with no adherent points. Let $X\mathcal{F}$ be the standard sequentially determined extension of X by \mathcal{F} . It is easy to verify that $X\mathcal{F}$ is an S(n) - space. Thus X is not sequentially S(n) - closed. Contradiction.

The idea to characterize closed spaces with θ - convergence and elementary filters (but in a somewhat different sense, see [Bo], chap. 1. § 6) comes from Veličko [Ve].

Now we show that the class of sequentially S(n) - closed spaces is not exhausted by the S(n) - closed spaces and by the countably compact S(n) - spaces.

EXAMPLE 2.2. Let N be the space of positive integers with the discrete topology and let βN be the Čech-Stone compactification of N. Let also $X = (\beta N \setminus N) \cup \left\{x_{ij}\right\}_{i,j=1}^{\infty} \cup \left\{y_i\right\}_{i=1}^{\infty}$. We provide X with a topology as follows: The points $\left\{x_{ij}\right\}_{i,j=1}^{\infty}$ are isolated for $i \in N$ and $j \in N$. For a neighbourhood base of y_i ($i \in N$) we take the family $y_i \cup \left\{x_{ij}\right\}_{j=k}^{\infty}$, $k \in N$. Let $\{\mathcal{F}\} \in \beta N \setminus N$ and let $\{U_\alpha, \alpha \in \mathcal{A}\}$ be a neighbourhood base of $\{\mathcal{F}\}$ in βN . For a neighbourhood base of $\{\mathcal{F}\}$ in X we take the family $\{V_\alpha \mid V_\alpha = (U_\alpha \setminus N) \cup \left\{x_{ij}\right\}_{i,j=1}^{\infty}$, $i \in U_\alpha \cap N$, $\alpha \in \mathcal{A}$. It is easy to verify that X is a Hausdorff-closed S(n) - space for every $n \in N$ and X is not countably compact. Let now $\mathcal{F} \in \beta N \setminus N$ and $Y = X \setminus \{\mathcal{F}\}$. Clearly Y is S(n) - closed for no n and Y is not countably compact. By (a) of the above theorem Y is sequentially S(n) - closed.

Let X be a topological space. An open filter \mathcal{F} on X is a regular filter iff for each $U \in \mathcal{F}$ there exists $V \in \mathcal{F}$ such that $\overline{V} \subset U$ [Ba]. Let \mathcal{U} and

 \mathcal{V} be open covers of a space X. \mathcal{V} is a shrinkable refinement of \mathcal{U} iff for each $V \in \mathcal{V}$, there is $U \in \mathcal{U}$ such that $\overline{V} \subset U$. An open cover \mathcal{U} is regular iff there exists an open cover \mathcal{V} which refines \mathcal{U} and \mathcal{V} is a shrinkable refinement of itself [BPS].

THEOREM 2.3. Let X be a T_1 space. The following conditions are equivalent:

- (a) every open elementary regular filter on X has adherent points
- (b) every countable regular cover of X has a finite subcover.

 If X is a regular space then the above conditions are equivalent to:
- (c) X is sequentially regular-closed.

Proof. To see that (a) implies (b) assume that $\mathcal{U} = \{U_i\}_{i=1}^{\infty}$ is a countable regular cover without finite subcovers. For each k = 1, 2, ... we choose a point $x_k \in X$ such that $x_k \notin \bigcup_{i=1}^{n} U_i$. Then clearly $x_k \notin U_i$ whenever $k \geq i$. Let $\mathcal{V} = \{V_{\alpha}\}_{\alpha \in \mathcal{A}}$ be a cover of X which refines \mathcal{U} and $\mathcal V$ is a shrinkable refinement of itself. Clearly the cover $\mathcal V$ has no finite subcovers. It is easy to verify that the filter ${\mathcal F}$ generated by the filter base $\{X \setminus \bigcup_{i=1}^k V_{\alpha_i}, \alpha_i \in \mathcal{A}, k \in N\}$ is an open elementary regular filter on X without adherent points. Contradiction. Let now \mathcal{F} be an open elementary regular filter on X without adherent points. There exists a maximal open elementary filter such that $\mathcal{F} \subset \mathcal{F}$. Let $\{x_k\}_{k=1}^{\infty}$ determines \mathcal{F} '. But \mathcal{F} ' has no adherent points. Then $\{x_k\}_{k=1}^{\infty}$ is a closed set for every $i \in N$. Let $\mathcal{U} = \{U_i \mid U_i = X \setminus \{x_k\}_{k=i}^{\infty}, i \in N\}$ and $\mathcal{V} = \{V \mid \text{there}\}$ exists an open set $W \in \mathcal{F}$ such that $V = X \setminus \overline{W}$. It is easy to verify that \mathcal{V} is an open cover of X which refines \mathcal{U} and \mathcal{V} is a shrinkable refinement of itself. Thus \mathcal{U} is a countable regular cover of X without finite subcovers and this proves that (b) implies (a). Now we prove that (a) implies (c). Assume that X is not sequentially regular - closed. Thus there exists a regular space $Y \supset X$, a point $y \in Y \setminus X$ and a sequence $\{x_n\}_{n=1}^{\infty}$ in X such that $\lim x_n = y$. Let \mathcal{Y}_y be the filter of neighbourhoods of y on Y.

Since Y is a regular space it follows that \mathcal{V}_{ν} is an open elementary regular

filter on Y with no adherent points in X. Then $\mathcal{V} = \{V \mid \text{there exists } W \in \mathcal{V}_y \text{ such that } V = X \cap W\}$ is an open elementary regular filter on X without adherent points. Contradiction. Assume that there exists an open elementary regular filter \mathcal{F} on X without adherent points. Then the standard sequentially determined extension $X_{\mathcal{F}}$ of X by \mathcal{F} will be a regular space. This contradicts the sequentially regular - closedness of X, so (c) implies (a).

Now we show that the class of sequentially regular - closed spaces is not exhausted by the regular - closed spaces and by the countably compact regular spaces.

EXAMPLE 2.4. The space X in Example 4.18 in [BPS] is a minimal regular space which is not countably compact [BS]. Let $x = (\omega_1, 1, 1) = (\omega_1, 1, 2)$ and $Y = X \setminus \{x\}$. Then by Lemma 3.10 Y is a sequentially regular - closed space which is neither regular - closed nor countably compact.

Let X be a topological space. X is completely Hausdorff iff for each pair x, y of distinct points, there exists a continuous real - valued function f such that $f(x) \neq f(y)$. An open filter \mathcal{F} on X is completely Hausdorff iff for each $x \in X$ which is not an adherence point of \mathcal{F} there exists an open set U containing $x, V \in \mathcal{F}$ and continuous real - valued function f on X such that $f(U) = \{1\}$ and $f(V) = \{0\}$. An open filter \mathcal{F} on X is completely regular iff for each $U \in \mathcal{F}$, there exists $V \in \mathcal{F}$ and a continuous real - valued function f on X such that $f(V) = \{0\}$ and $f(X \setminus U) = \{1\}$. Let \mathcal{V} and \mathcal{U} be covers of a space X. \mathcal{V} is a continuous refinement of \mathcal{U} iff for each $V \in \mathcal{V}$ there is $U \in \mathcal{U}$ and continuous real - valued function f on X such that $f(V) = \{0\}$ and $f(X \setminus U) = \{1\}$. An open cover is completely Hausdorff iff it has a continuous refinement [BPS]. An open cover \mathcal{U} is completely regular iff there is an open cover \mathcal{V} which refines \mathcal{U} and \mathcal{V} is a continuous refinement of itself.

THEOREM 2.5. Let X be a T_1 space. The following conditions are equivalent:

- (a) every countable completely Hausdorff cover of X has a finite subcover
- (b) every open elementary completely Hausdorff filter on X has adherent points
- (c) every maximal open elementary completely Hausdorff filter on X has adherent points.
 - If X is a completely Hausdorff space then the above conditions are equivalent to:

(d) X is sequentially completely Hausdorff - closed.

Proof. To see that (a) implies (b) let \mathcal{F} be an open elementary completely Hausdorff filter on X without adherent points. There exists a maximal open elementary filter \mathcal{F} on X such that $\mathcal{F} \subset \mathcal{F}$. If $\{x_k\}_{k=1}^{\infty}$ is a sequence which generate \mathcal{F} then $\{x_k\}_{k=1}^{\infty}$ is a closed set for every $i \in$ N. Let $U = \{U_i \mid U_i = X \setminus \{x_k\}_{k=i}^{\infty}, i \in N\}$ and $\mathcal{V} = \{V_x \mid V_x = f^{-1}[0, 1/2), \}$ $x \in X, W \in \mathcal{F}$ and $f: X \to R$ is such that f(x) = 0 and $f(W) = \{1\}\}$. Then \mathcal{U} and \mathcal{V} are open covers of X and \mathcal{V} is a continuous refinement of \mathcal{U} . Thus \mathcal{U} is a completely Hausdorff cover of X without a finite subcover. Obviously (b) implies (c). We prove that (c) implies (a). Let \mathcal{U} $= \{U_i\}_{i=1}^{\infty}$ be a countable completely Hausdorff cover of X without finite subcovers. Let $\mathcal{V} = \{V_{\alpha}\}_{\alpha \in \mathcal{A}}$ be a cover of X which is a continuous refinement of \mathcal{U} . For every $k \in N$ we choose $x_k \notin \bigcup U_i$ and let \mathcal{F} be the maximal open elementary filter generated by $\{x_k\}_{k=1}^{\infty}$. If x is an arbitrary point of X then there exists $\alpha \in \mathcal{A}$ such that $x \in V_{\alpha}$ and there exists $i \in \mathcal{A}$ N and $f: X \rightarrow R$ such that $f(V_{\alpha}) = \{0\}$ and $f(X \setminus U_i) = \{1\}$. Let $W = f^{-1} \left(\frac{1}{2}, 1 \right)$ and g(x) = 2. min $(f(x), \frac{1}{2})$. Then $W \in \mathcal{F}, g(V_{\alpha}) = \{0\}$ and $g(W) = \{1\}$. Thus \mathcal{F} is a maximal open elementary filter which is completely Hausdorff and it has no adherent points. To prove that (b) implies (d) assume that X is not sequentially completely Hausdorff closed. Then there exists a completely Hausdorff space $Y \supset X$, a point y $\in Y \setminus X$ and a sequence $\{x_k\}_{k=1}^{\infty}$ of points of X such that $\lim_{k \to \infty} x_k = y$. The

filter \mathcal{V}_y of neighbourhoods of y is a completely Hausdorff filter on Y. Let $\mathcal{V} = \{V \mid \text{there exists } W \in \mathcal{V}_y \text{ such that } V = X \cap W\}$. Then \mathcal{V} is an open elementary completely Hausdorff filter on X without adherent points. Contradiction. If there exists an open elementary completely Hausdorff filter \mathcal{F} on X without adherent points, then $X_{\mathcal{F}}$ will be a completely Hausdorff, sequentially determined extension of X. This proves that (d) implies (b).

The space Y in Example 2.2 is also completely Hausdorff, consequently sequentially completely Hausdorff - closed. On the other hand it is neither completely Hausdorff - closed nor countably compact.

LEMMA 2.6. In a completely regular space X every open cover of X is a completely regular cover.

Proof. Let $\mathcal{U} = \{U_{\alpha}\}_{\alpha \in \mathcal{A}}$ be an open cover of X. For every $\alpha \in \mathcal{A}$ and every $x \in U_{\alpha}$ let $f_{\alpha,x}$ be a continuous real - valued function such that $f_{\alpha,x}(x) = 1$ and $f_{\alpha,x}(X \setminus U_{\alpha}) = \{0\}$. If $\mathcal{V} = \{V \mid V = f_{\alpha,x}^{-1}(V_{n},1], \alpha \in \mathcal{A}, x \in U_{\alpha}, n \geq 2\}$ then \mathcal{V} is an open cover of X, \mathcal{V} refines \mathcal{U} and \mathcal{V} is a continuous refinement of itself.

THEOREM 2.7. Let X be a T_1 space. The following conditions are equivalent:

- (a) every countable completely regular cover of X has a finite subcover
- (b) every open elementary completely regular filter on X has adherent points.

If X is a completely regular space then the above conditions are equivalent to:

- (c) X is sequentially completely regular closed
- (d) X is countably compact.

Proof. Let $\mathcal F$ be an open elementary completely regular filter on X without adherent points and let $\mathcal F$ ' be a maximal open elementary filter such that $\mathcal F \subset \mathcal F$ '. If $\left\{x_k\right\}_{k=1}^\infty$ is a sequence which generates $\mathcal F$ ', then $\left\{x_k\right\}_{k=i}^\infty$ is a closed set for every $i \in N$. Let $\mathcal U = \left\{U_i \mid U_i = X \setminus \left\{x_k\right\}_{k=i}^\infty$, $i \in N\right\}$ and $\mathcal V = \left\{V\right|$ there exists an open set $W \in \mathcal F$ such that $V = X \setminus \overline{W}$. Then $\mathcal U$ and $\mathcal V$ are open covers of X, $\mathcal V$ refines $\mathcal U$ and $\mathcal V$ is continuous refinement of itself. Thus $\mathcal U$ is a completely regular cover of X without finite subcovers. This proves that (a) implies (b). To see that (b) implies (a) let $\mathcal U = \left\{U_i\right\}_{i=1}^\infty$ be a countable completely regular cover of X without finite subcovers and let $\mathcal V = \left\{V\alpha\right\}_{\alpha \in \mathcal A}$ be an open cover of X which refines $\mathcal U$ and $\mathcal V$ is a continuous refinement of itself. For every $k \in N$ we choose $x_k \notin \bigcup U_i$ and let $\mathcal B = \left\{W \mid$ there exist $V_{\alpha_i} \in \mathcal V$ such that $W = X \setminus \bigcup \overline{V}_{\alpha_i}$, $k \in N$ }. Let $\mathcal F$ ' be the maximal

exist $V_{\alpha_i} \in \mathcal{V}$ such that $W = X \setminus \bigcup_{i=1}^k \overline{V}_{\alpha_i}$, $k \in N$ }. Let \mathcal{F} ' be the maximal open elementary filter on X determined by $\{x_k\}_{k=1}^{\infty}$. If \mathcal{F} is the open filter

with base \mathcal{B} then $\mathcal{F} \subset \mathcal{F}$ and hence \mathcal{F} is an open elementary completely regular filter without adherent points. Now we prove that (b) implies (c). Assume that X is not sequentially completely regular - closed. Then there exists a completely regular space $Y \supset X$, a point $y \in Y \setminus X$ and a sequence $\{x_k\}_{k=1}^{\infty}$ of points of X such that $\lim_{k \to \infty} x_k = y$. The filter \mathcal{V}_y of neighbour-

hoods of y is a completely regular filter on Y. Let $\mathcal{V} = \{W \mid \text{there exists}$ an open set $V \in \mathcal{V}_y$ such that $W = X \cap V \}$, then \mathcal{V} is an open elementary completely regular filter on X without adherent points. Contradiction. If there exists an open elementary completely regular filter \mathcal{F} on X without adherent points, then $X_{\mathcal{F}}$ will be a completely regular, sequentially determined extension of X. This proves that (c) implies (b). The equivalence of conditions (a) and (d) follows directly by Lemma 2.6.

For a class \mathscr{D} , the class of all first countable \mathscr{D} - spaces will be denoted by \mathscr{D} (1) [BPS]. Evidently every sequentially \mathscr{D} - closed \mathscr{D} (1) space is \mathscr{D} (1) - closed. Hence the sequentially \mathscr{D} (1) - closed spaces coincide with the \mathscr{D} (1) - closed spaces. For various classes \mathscr{D} the \mathscr{D} (1) - closed spaces were studied in [Ste2].

A family of open sets \mathcal{U} in a space X is a proximate cover of X iff $\cup \{\overline{U} | U \in \mathcal{U}\} = X$ [Ka].

THEOREM 2.8. Let X be a T_1 space and $n \in \mathbb{N}$. The following conditions are equivalent:

- (a) every countable S(n-1) cover of X contains a finite proximate subcover
- (b) every countable open S (n) filter has adherent points.

 If X is an S (n) (1) space then the above conditions are equivalent to:
- (c) X is S(n)(1) closed.

Proof. To see that (a) implies (b) suppose that \mathcal{F} is a countable open S(n) - filter on X without adherent points. Then $\mathcal{U} = \{U | U = X \setminus \overline{V}, V \in \mathcal{F}\}$ is a countable S(n-1) - cover of X and \mathcal{U} has a proximate subcover.

So that if $X = \bigcup_{i=1}^{k} \overline{U_i}$ then $\bigcap_{i=1}^{k} (X \setminus \overline{U_i}) = \bigcap_{i=1}^{k} V_i = \phi$. But $V_i \in \mathcal{F}$ for i = 1, 2,

...k. Contradiction. Now let us assume that $\mathcal{U} = \{U_i\}_{i=1}^{\infty}$ is a countable S(n-1) - cover of X which has no finite proximate subcovers. For every

 $i \in N$ we consider $V_i = X \setminus (\bigcup_{j=1}^i \overline{U_j})$. Obviously $\mathcal{B} = \{V_i\}_{i=1}^\infty$ is a countable

open base of a filter \mathcal{F} . One can easily verify that \mathcal{F} is a countable open S(n) - filter without adherent points. This contradiction proves that (b) implies (a). If X is not S(n) (1) - closed then there exists an S(n) (1) extension Y of X and a point $y \in Y \setminus X$. But the trace on X of the neighbourhood filter of the point Y is a countable open S(n) - filter on X without adherent points in X and this proves that (b) implies (c). To see that (c) implies (b) we suppose that \mathcal{F} is a countable open S(n) - filter without adherent points. Then the standard extension $X\mathcal{F}$ of X by \mathcal{F} is an S(n) (1) space. Contradiction.

The above theorem for n = 1,2 is proved by R. Stephenson [Ste2].

3. Properties of the sequentially \mathcal{P} - closed spaces.

It was proved by P. Alexandroff and P. Urysohn [AU] that the regular Hausdorff - closed spaces (regular sequentially Hausdorff - closed spaces) are precisely the compact (regular countably compact) spaces. In fact every regular S(n) - closed space is compact as shown by Herlich [He] for n=2 and by Porter and Votaw [PV] for n>2. On the other hand every completely regular, regular - closed space is compact ([He], [BS]). We show next that similar results are valid for sequentially \mathcal{P} - closed spaces.

COROLLARY 3.1. (a) Let X be a regular space and $n \in \mathbb{N}$. Then X is sequentially S(n) - closed iff X is countably compact.

(b) Let X be a completely regular space. Then X is sequentially regular - closed iff X is countably compact.

Proof. (a). Follows by the fact that every open cover of a regular space is an S(n) - cover and by Theorem 2.1. (b). Follows by Theorem 2.3. and Theorem 2.7.

COROLLARY 3.2. Let X be a Lindelöf, regular space and $n \in \mathbb{N}$. The following conditions are equivalent:

- (a) X is compact
- (b) X is regular closed
- (c) X is sequentially regular closed
- (d) X is sequentially S(n) closed.

Proof. For the equivalence of (a) and (b) see [He]. The equivalence of the other conditions follows by the fact that every Lindelöf, regular space is normal [En] and by Corollary 3.1.

THEOREM 3.3. Let X be a normal space. Then X is sequentially normal - closed iff X is countably compact.

Proof. The proof follows immediately from Corollary 3.1 and Lemma 3.4.

LEMMA 3.4. Let X be a regular space, $x \in X$ and let $X \setminus \{x\}$ be a normal space. Then X is a normal space.

THEOREM 3.5. Let X be a perfectly normal space. The following conditions are equivalent:

- (a) X is perfectly normal closed
- (b) X is sequentially perfectly normal closed
- (c) X is countably compact.

Proof. For the equivalence of conditions (a) and (b) see [Ste2]. Obviously (c) implies (b). It is known that in a normal space the countable compactness coincides with the feeble compactenes (see [Ste1] and [Hew]) and that a regular space X is feebly compact iff every countable open regular filter on X has adherent points [Ste1]. Then the proof that (b) implies (c) follows by Lemma 3.4 and by the fact that if X is a normal space, x is a point in X and $X \setminus \{x\}$ is a perfectly normal space, then X is a perfectly normal space whenever x is a G_{δ} set in X.

THEOREM 3.6. Let X be a locally compact space. Then X is sequentially locally compact - closed iff X is countably compact.

Proof. It is obvious that if X is countably compact then X is sequentially locally compact - closed. Let X be a sequentially locally compact - closed space and let we assume that X is not countably compact. Then there exists a sequence $\{x_n\}_{n=1}^{\infty}$ of distinct points of X without adherent points. Let ωX be the Alexandroff compactification of X (see [En]) and $y = \omega X \setminus X$. It is easy to verify that $\lim_{n \to \infty} x_n = y$. Thus X is not sequentially locally compact - closed. Contradiction.

THEOREM 3.7. For $\mathcal{D} = paracompact$ or metric if X is a \mathcal{D} - space then the following conditions are equivalent:

- (a) X is \mathcal{P} closed
- (b) X is compact
- (c) X is sequentially P closed
- (d) X is countably compact.

Proof. For the equivalence of (a) and (b) see [SSe] and for the equivalence of (b) and (d) see [En]. Obviously (d) implies (c). The proof that (c) implies (d) for $\mathcal{D} =$ paracompact follows by Corollary 3.1 and by the fact that if X is a regular space, $x \in X$ and $X \setminus \{x\}$ is a paracompact space then X is a paracompact space. For $\mathcal{D} =$ metric it follows by Corollary 3.1 and by the fact that if X is a regular first countable space, $x \in X$ and $X \setminus \{x\}$ is a metric space then X is a metric space.

The spaces satisfying the equivalent conditions (a) - (f) of Theorem 2.1 and the equivalent conditions (a), (b) of Theorem 2.3 and Theorem 2.7 and the equivalent conditions (a) - (c) of Theorem 2.5 are in fact natural generalizations of the countable compactness. Moreover for $\mathcal{D} = US(SUS)$ the sequentially \mathcal{D} - closed spaces are precisely the sequentially compact (countably compact) spaces [DGo]. The next theorem shows that some properties of the countably compact spaces are valid also for the sequentially \mathcal{D} - closed spaces.

THEOREM 3.8. Let $n \in N$ and \mathcal{P} be one of the following classes of topological spaces: US, SUS, S (n), regular, completely Hausdorff, completely regular, normal, perfectly normal, locally compact, paracompact or metric. Then the following conditions are satisfies:

- (a) Sequentially \mathcal{P} closedness is preserved by continuous functions onto a \mathcal{P} space.
- (b) If a product of nonvoid spaces is sequentially \mathcal{P} closed then each coordinate is sequentially \mathcal{P} closed.
- (c) Every sequentially \mathcal{D} closed space is pseudocompact.

Proof. Obviously (a) implies (b). Clearly (a) and (c) are true when sequentially \mathscr{D} - closedness coinsides with countable compactness or sequential compactness, i.e. for $\mathscr{D} = US$, SUS, completely regular, normal, perfectly normal, locally compact, paracompact or metric. For the others \mathscr{D} (a) follows from Theorem 2.1, Theorem 2.3 and Theorem 2.5. To see that (c) is true let $f: X \to R$ be a continuous function. Then f(X)

is a sequentially \mathcal{D} - closed metric space by (a). Thus f(X) is a compact space by Theorem 2.7 and Theorem 3.7. This shows that f is bounded.

THEOREM 3.9. Let $n \in \mathbb{N}$. The following conditions are valid:

- (a) S(n)(1) closedness is preserved by continuous functions onto an S(n) space.
- (b) If a product of nonvoid spaces is an S (n) (1) closed space then each coordinate is S (n) (1) closed.
- (c) Every S(n)(1) closed space is pseudocompact.

Proof. (a) follows by Theorem 2.8 and (a) implies (b). We shall proof (c). Let $f: X \to R$ be a continuous function. Then $\mathcal{U} = \{f^{-1}(-k, k)\}_{k=1}$ is a countable regular cover of X. Since X is S(n)(1) - closed then by Theorem 2.8 we can choose a finite proximate subcover of X. This implies that f is bounded.

The above theorem for n=1,2 is proved by R. Stephenson [Ste2]. Let \mathscr{D} be a class of topological spaces. $X \in \mathscr{D}$ is called \mathscr{D} -minimal iff X has no strictly coarser \mathscr{D} topologies. (For \mathscr{D} -minimal spaces see [BPS]).

LEMMA 3.10. Let $n \in \mathbb{N}$, $\mathcal{P} = S(n)$, regular, completely Hausdorff or completely regular and X be a \mathcal{P} -minimal space. If $x \in X$ and x is not a limit point for a non trivial sequence in X then $Y = X \setminus \{x\}$ is a sequentially \mathcal{P} -closed space.

Proof. Let us assume that Y is not sequentially \mathscr{D} - closed space. Then there exists an open elementary \mathscr{D} - filter \mathscr{F}_1 on Y without adherent points. Let \mathscr{F}_x be the filter of neighbourhoods of the point x on X. We consider the filter $\mathscr{F} = \{U | U = V \cup W, V \in \mathscr{F}_1, W \in \mathscr{F}_x\}$. Obviously \mathscr{F} is an open elementary \mathscr{D} - filter on X and x is the unique adherent point for \mathscr{F} . Let \mathscr{F}'_1 be a maximal open elementary filter on Y containing \mathscr{F}_1 . Suppose that $\{x_k\}_{k=1}^{\infty}$ determines \mathscr{F}'_1 . But $\lim_{k \to \infty} x_k \neq x$. Thus $\mathscr{F} \subset \mathscr{F}_x$. But this contradicts to the \mathscr{D} - minimality of X.

COROLLARY 3.11. Let X be a compact Hausdorff space and $x \in X$. The point x is not the limit of a some (non trivial) sequence of X iff $X \setminus \{x\}$ is a countably compact space.

Proof. Every compact Hausdorff space is a minimal completely regular space (see [Ba]). Now the corollary holds by Lemma 3.10 and Theo-

rem 2.7.

Let C(X) be the set of all real - valued continuous functions on a space (X, \mathcal{T}) . The weak-topology \mathcal{T}_{ω} on X is the smallest topology on X such that all functions in C(X) are continuous. Clearly \mathcal{T}_{ω} is coarser than \mathcal{T} and the space $(X, \mathcal{T}_{\omega})$ is completely regular iff (X, \mathcal{T}) is completely Hausdorff.

THEOREM 3.12. Let (X, \mathcal{T}) be a completely Hausdorff space. (X, \mathcal{T}) is sequentially completely Hausdorff - closed iff $(X, \mathcal{T}_{\omega})$ is countably compact.

Proof. It follows by Theorem 2.7 and by the fact that (X, \mathcal{T}) is sequentially completely Hausdorff - closed iff $(X, \mathcal{T}_{\omega})$ is sequentially completely regular - closed.

REFERENCES

- [AU] P. ALEXANDROFF and P. URYSOHN, Zur Teorie der topologischen Räume, Math. Ann., 92 (1924), 258-266.
- [Ba] B. BANASCHEWSKI, Über zwei Extremaleigenschaften topologischen Räume, Math. Nachr., 13 (1955), 141-150.
- [Bo] N. BOURBAKI, General Topology, Part 1, Addison-Wesley, 1966.
- [BPS] M. BERRI, J. PORTER and R. STEPHENSON, JR., A survey of minimal topological spaces, Proc. Kanpur Top. Conf. 1968, Acad. Press. New York, 1970, 93-114.
- [BS] M. BERRI and R. SORGENFREY, Minimal regular spaces, Proc. Amer. Math. Soc., 14 (1963), 454-458.
- [DG1] D. DIKRANJAN and E. GIULI, Closure operators I, Topology Appl., 27 (1987), 129-143.
- [DG2] D. DIKRANJAN and E. GIULI, Ordinal invariants and epimorphisms in some categories of weak Hausdorff spaces, Comm. Math. Univ. Carolinae, 27 (2) (1986), 395-417.
- [DG3] D. DIKRANJAN and E. GIULI, $S(n) \theta$ closed spaces, Topology Appl., 28 (1988), 59-74.
- [DGo] D. DIKRANJAN and I. GOTCHEV, Sequentially closed and absolutely closed spaces, Bollettino U.M.I., (7) 1-B (1987), 849-860.
- [Di] D. DIKRANJAN, Epimorphic order in $S(\alpha)$, (preprint).
- [En] R. ENGELKING, General Topology, Warszawa 1977.
- [Go] I. GOTCHEV, Superneighbourhood spaces and extensions of topological spaces, to appear in Ann. Univ. de Sofia, Fac. Math. et Mec., 80 (1986).
- [He] H. HERRLICH, T_{ν} Abgeschlossenheit and T_{ν} Minimalitat, Math. Z., 88 (1965), 285-294.
- [Hew] E. HEWITT, Rings of real-valued continuous functions, Trans. Amer. Math. Soc., 64 (1948), 45-99.
- [Ho] R. HOFFMAN, On weak Hausdorff spaces, Archiv. der Math., 32 (1979), 487-504.
- [Ka] M. KATETOV, Über H-abgeschlossene und bikompakt Räume, Casopis pest. Mat., 69 (1940), 36-49.
- [MN] M. MURDESHWAR and S. NAIMPALLY, Semi-Hausdorff spaces, Canad. Math. Bull., 9 (1966), 353-356.
- [PV] J. PORTER and C. VOTAW, S (α) spaces and regular Hausdorff extensions, Pac. J. Math. 45, 1 (1973), 327-345.
- [SSe] C. SCARBOROUGH and R. STEPHENSON, JR., Minimal topologies, Colloq. Math., 19 (1968), 215-219.
- [Ste1] R. STEPHENSON, JR., Pseudocompact spaces, Trans. Amer. Math. Soc., 134 (1968), 437-448.
- [Ste2] R. STEPHENSON, JR., Minimal first countable topologies, Trans. Amer. Math. Soc., 138 (1969), 115-127.
- [To] A.Tozzi, US-spaces and closure operators, Rend. Circolo Mat. Palermo Suppl., 12 (1986), 291-300.
- [Ve] H.VELIČKO, *H-closed topological spaces*, Math. Sb. (N.S.) 70 (112) (1966), 98-112; Amer. Math. Soc., Transl. 78 (2) (1969), 103-118.
- [Vi] G. VIGLINO, T_n spaces, Notices Amer. Math. Soc., 16 (1969), 846.