SEQUENTIAL CONVERGENCE IN FREE GROUPS (*)

by RoMaAN Fri¢ (in KoSice) and FaBIO ZANOLIN (in Trieste) (**)

SOMMARIO. - Dato uno spazio di convergenza sequenziale, si costruisce
il gruppo di convergenza libero sullo spazio assegnato. Si esami-
nano varie proprieta che si preservano nel passaggio dallo spazio
di convergenza al gruppo libero di convergenza. La teoria svolta
e utilizzata per la costruzione di vari esempi e controesempi ne-
cessari alla risoluzione di problemi riguardanti la teoria dei grup-
pi di convergenza sequenziali.

SUMMARY. - The free sequential convergence group generated by a gi-
ven sequential convergence space is constructed. Various signifi-
cant properties of the original space are proved to be valid for
the generated free group, too. Such technique is exployted in the
construction of some examples of peculiar sequential convergence
groups which are needed for solving various problems.

We study compatible sequential convergence structures for gro-
ups. In particular, we investigate free groups and convergence struc-
tures in which the elements of a fixed set of sequences converge to
the neutral element and consider continuous extensions of mappings
from the space of generators over the generated free group. Gene-
ralizing earlier results obtained by the second author for the com-
mutative case, we construct the free sequential convergence group
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and investigate its properties. Background information is provided
and extensive list (by no means complete) of references is added.

1. - Introduction

The notion of a convergence on an arbitrary nonvoid set was in-
troduced in terms of sequences by M. Fréchet [18]. Fundamental
contributions to the sequential convergence were made by P. S. Alex-
androff and P. Urysohn [1], [69], F. Hausdorff [33] and K. Kura-
towski [48]. The theory of sequential convergence structures was
further developed in [53], [15], [39], [561, [17]1, [10], [43], [31],
[9]1, [34], [58], [71, [45], [28], etc., mostly within the realm of ge-
neral topology. The interested reader will find more information in
a survey paper by F. Siwiec [68] and in the Proceedings of various
conferences devoted to convergence structures (e.g. Reno 1976, Frank-
furt/Oder 1978, Szczyrk 1979, Lawton 1980, Schwerin 1983, Katowice

1983, Bechyng 1984). Sequential structures also provide an abstract
framework in which many problems in abstract analysis (involving
limits of sequences) can be formulated and solved. They appear in
connection with measure theory and probability ([54], [47], [4], [37]),
abstract analysis ([38], [36]1, [16], [52], [5]1, [31, [30]1, [401, [64],
[29], [6]) and dynamical systems and differential equations ([32],
[67], [501, [81, [14]).

In many cases the space in question is equipped with an alge-
braic structure (i.e., it is a group, ring, linear space, ordered space)
and at the same time with a sequential structure, the two structures
being linked together by a compatibility condition. As far as we
know, groups equipped with a sequential convergence were intro-
duced by 0. Schreier in [65]. The theory was further developed in
[61], [55], [57], [59], [2], [19], [701, {711, [62], [21], [41], [44], [27].
To a certain extent, recent results in this area are covered by two
survey papers [22] and [23]. Sequential convergence in free groups
is investigated in [70], [71], [601, [47], [72], [24], [25], [26], and
basic properties of free sequential convergence commutative groups
are estabilished in [71]. In the present paper we develop the theory
of noncommutative free sequential convergence groups. As shown in
[24], [25], [26], the free group technique is very useful for construct-
ing sequential convergence groups having some prescribed properties.
It is to be noted that although sequential convergence groups re-
semble in many aspects topological groups and k-groups ([49]), Re-
mark 2.1 indicates that sequential structures provide finer invariants
than other continous structures compatible with a group structure.

In section 2 we recall some basic notions and introduce a suitable
notation. Section 3 is devoted to sequences converging to the neutral
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element of a group. In section 4 we construct the free sequential
convergence group and describe some of its properties. The last sec-
tion contains miscellaneous remarks and illustrative examples.

2. - Basics

Denote by N the set of all natural numbers and by S the set of all
increasing mappings of N into N. If X is a nonvoid set, S = (x,) € XN
a sequence of points of X (i.e. a mapping of N into X) and s€ S,
then S.s denotes the subsequence of S the n-th term of which is
S(s(n)) = xsn). For x € X the constant sequence each term of which
is x is denoted by (x). For Ec XN X X and xe X put £<(x)=
= {(x,) € XN:({x.),x) € &}; we say that (x,)L — converges to x
whenever (x.) € £<(x). For £ € XN X X we consider the following
axioms of convergence:

F) If (S,x)e &, then (S-s,x)e & for all s€S;

(U) If (S,x)¢ L, then there exists s € S such that (Ses-t,x)¢ £
for all teS;

S) (x),x)el forall xeX;
H) If (S,x)eL and (S,y)e L, then x=1y.

If, e.g., £ c XN X X satisfies axioms (F), (U) and (S), then we
say that £ is a FUS-convergence for X. A set equipped with a FUS-
convergence is said to be a FUS-convergence space. Similar convenc-
tion will be used for other systems of axioms.

Let f be a mapping of a set X into a set Y, let X be equipped
with a FUS-convergence £ and Y with a FUS-convergence . If
({f(xn)),f(x)) € M whenever ({x.),x)€ £, then f is said to be se-
quentially continuous or, for short, continuous.

If X is a group and S,T € XN, then (ST)(n)= S(n) T(n) and
S-1(n) = S(n)-! for all n € N. For a commutative group the additive
notation will be used correspondingly.

Recall that a FLUS-convergence group is a group G equipped with
a FUS-convergence & satisfying the following compatibility axiom:

LY If (S,x),(T,y)e@, then (ST, xy-)e .

ReMARK 2.1 - It is known that if G is a topological group and &
is the convergence of sequences in G (a sequence {x,) & - converges to
x € G whenever each neighborhood of x contains x, for all but finitely
many # € N), then @& is a FLUS-convergence for G. A similar assertion
holds if G is a k-group (the proof is analogous to that of Lemma
1.3(h) in [63]). As pointed out by A. Kamiriski and P. Antosik at the
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Conference on convergence held in Szczyrk in 1979, there are FLUS-
convergence groups the convergence in which fails to be topological.
E.g., let R be the group of all real numbers and let ({x,),x)eR
whenever the range of (x,) is a finite subset of R and x is any real
number. Then R is a FLUS-convergence for R and the antidiscrete
topology is the only topology for R in which all R-convergent se-
quences converge. Clearly, R differs from the sequential convergence
of the antidiscrete topology. Note that it is not difficult to construct
a FLUS-convergence in a free group which fails to be topological.

REMARK 2.2 - It is easy to prove (cf. [57]) that in order to equip
a group G with a FLUS-convergence it suffices to start with
& < GN X G satisfying axioms (F), (S) and

(L) If (S,x), (T,y)e @, then for some s € S we have
((Ses)(T-1es5),xy ) e@;

and then to pass to the so-called Urysohn modification @* of & (i.e.
(S,x)e 3" whenever for each s€ S there exists t€ S such that
(Ses-t,x)e @). Then &* is a FLUS-convergence for G (note that
S and @” induce the same sequential closure operator for G). Further,
if & satisfies (H), then &* satisfies (H), too. Also, in a FLUS-con-
vergence group axiom (H) is equivalent to the following one:

(Ho) If S is the constant sequence generated by the neutral ele-
ment e of G and (S,x)e @, then x=¢.

3. - Neutral sequences

If G is a topological group and N(e) is a neighborhood base at
the neutral element ¢ of G, then xN(e) = N(eg)x is a neighborhood
base at x, for all x € G. Further, a certain system of normal sub-
groups of a group G can be used to equip G with a group topology
so that the system becomes a neighborhood base at ¢ (see e.g. [35]).
Similar assertions are true for FLUS-convergence groups. The com-
mutative case is covered by Theorem 2 in [57] and by Corollary in
[70]. We are going to extend these results to the noncommutative
FLUS-convergence groups.

Let G be a group equipped with a FLUS-convergence & and let
GN be the group of all sequences in G. Recall that

B<(x)={SeGN: (S,x)e B}, xeG.
LemMMA 3.1 - &<(e) has the following properties:
(i) G<(e) is a subgroup of GN;
(i) If (S,x)e &, then SB<(e) S-1=G«(e) ;
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(iii) G«(x)= (x) B (e) = B<(e) (x) for all xe€ G;
(iv) If Se®@<(e) and s€S, then S-s € G-(e);

(v) Let SeGN. If for each s€S there exists t€S such that
Soscte @G<(e), then Se G- (e);

(vi) @ satisfies axiom (H) iff (e) is the only constant sequence in
SG<(e).

The easy proof is omitted.

A sequence belonging to &< (e) is said to be neutral. Motivated
by Lemma 3.1, we introduce some additional terminology and no-
tation.

Let G be a group. Identifying x € G with (x) € GN, we can con-
sider G as a subgroup of GN. A subgroup H of GN is said to be nor-
mal with respect to G if gSg-! = (gS(n)g-!) € H whenever g € G and
SeH. Let A be a subset of GN. Let 8A be the set of all sequences
S.s such that S € A and s € S and let ZA be the set of all sequences
S € GN such that for each s € S there is £ € S such that S.s-ft€A.
Finally, consider the set of all subgroups of GN containing A and
normal with respect to G. Denote by [A]¢ the intersection of all such
subgroups. Then GN is the largest and [A]c is the smallest element
of the set.

Note that if & is a FLUS-convergence for G, then by Lemma 3.1
&< (e) is a subgroup of GN normal with respect to G and closed with
respect to ¢ and &. We shall see that each such subgroup of GN is
precisely the set of all neutral sequences of some FLUS-convergence
for G.

LeMMA 3.2 - (i) [Alc consists precisely of finite products of se-
quences of the form gSeg-' = (gS(n)eg-1), where ge G, S€ A and

e==+1.

(ii) ¢ [8A]c is the smallest subgroup of GN containing A, closed
with respect to & and ¢ and normal with respect to G.

(iii) If A = ¢ [8A]c, then A is the set of all neutral sequences of
a FLUS-convergence for G.

Proof. (i) and (ii) follow directly from the definitions of the no-
tions involved.

(iii) . Define & < GN X G as follows: (S, x) € @ whenever Sx-1 € A.
It follows immediately from (ii) that & is a FLUS-convergence for G.
Clearly, A = @+<(e). This completes the proof.

THEOREM 3.3 - Let G be a group and let A be a subset of GN.

(i) There is a FLUS-convergence &Ga for G such that A c {[8A]¢c =
= G<(e)-
A
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(ii) If @ is a FLUS-convergence for G such that A C &<(e), then
B @.

(iii) ®a satisfies axiom (H) iff {[8A]e contains no constant sequence
except (e).

Proof. (i). The existence of &, follows from (iii) of Lemma 3.2.

(ii). Let & be a FLUS-convergence for G such that A < G<(e).
By Lemma 3.1, &«<(e) is a subgroup of GN which is closed with
respect to & and ¢ and normal with respect to G. By (iii) of Lemma
3.2, ([8Alc = @; (e) is the smallest of all subgroups of GN containing
A, slosed with respect to & and § and normal with respect to G. Hence
@:(e)c G <(e) and also GrcC §.

(iii) follows from (vi) of Lemma 3.1.

Theorem 3.3 provides a very efficient way how to equip a group
with a FLUS-convergence (resp. FLUSH-convergence). We shall say
that ®, is the FLUS-convergence for G generated by A.

Our next result is a construction dealing with convergence quo-
tient groups. The construction has an auxiliary character. Once we
have developed the theory of noncommutative free convergence
groups, it will enable us to obtain theorems for commutative free
convergence groups.

LEMMA 3.4 - Let h be a homomorphism of a group H equipped
with a FLUS-convergence § into a group G equipped with a FLUS-
convergence & . Then we have

(i) h is continuous iff h-S={(h(S(n))) e &<(ec) for all SeH-(en),
and .

(ii) if $<(en) = ¢[8Blxy for some B € HN and h-S € &< (ec) for all
S € B, then h is continuous.

We omit the proof of these simple assertions.

Let H be a group and let K be a normal subgroup of H. Denote
by G the quotient group of H by K and denote by % the natural
homomorphism of H onto G defined by h(x)=xK, x€ H. Let B a
subset of HN and let § be the FLUS-convergence for H generated
by B. Denote by &a the FLUS-convergence for G generated by
A={h-S:SeB} (G.e. @;(ec) = ¢[6A]¢c).

LEMMA 3.5 - B¢ (ec) = ¢{h-S:SeH-(en)}.
The proof is straightforward and is omitted.

THEOREM 3.6 - (i) ®Ga is the smallest FLUS-convergence for G
rendering the natural homomorphism h of H equipped with § into
G continuous.
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(i) Let f be a homomorphism of G equipped with G, into a
group F equipped with a FLUS-convergence §. Then f is continuous
iff foh is continuous.

(iii) Ga satisfies axiom (H) iff K is a sequentially closed sub-
group of H.

Proof. (i) and (ii) follow from Lemma 3.4 and Lemma 3.5. (iii)
follows from axiom (Hs) and from the construction of G, .

DEFINITION 3.7 - Under the above notations, &, is said to be the
quotient convergence for G ; it will be denoted by #($).

4. - Free convergence groups

Free topological groups have been investigated for over four de-
cades (see [35]). The study of sequential convergence in free com-
mutative groups was initiated by F. Zanolin in [70] (see also [71],
[72]). The noncommutative case was first considered by J. Novak
in [60]. He investigated the so-called pointed free group, i.e., given
an infinite set ¥ equipped with a convergence of sequences, a point
pe€Y is singled out and the free group G generated by Y\ {p} is
equipped with a compatible convergence of sequences subjected to
the following restriction: if a sequence of points of Y\{p} converges
to a point x in K, then the sequence converges in G to x provided
x = p and to the neutral element ¢ of G provided x = p (elements
of Y\ {p} are considered as one-letter words in G). In fact, he con-
sidered the case when p is the only nonisolated point of Y. Fine
FLUSH-convergences in free groups (commutative, noncommutative,
pointed commutative and pointed noncommutative) are studied in
[26]. Using some results from [26], we develop in this paper a general
theory of free convergence groups.

In this section we construct the noncommutative free conver-

gence group over a FUS-convergence space and describe some of its
properties.

Let X be any nonvoid set. Recall (cf. [35]) that a word is either
void, written e, or a finit formal product XELeo XSk of elements of
X,where es=+1,i=1,...,k. A word is reduced if it is void or if
& = €41 Whenever x; = xiy1. The length 1(w) of a reduced word w is
defined as follows: 1(w)=0 if w = ¢ and I(w)=k if w = X1 X,
k> 0. Denote by F(X) the set of all reduced words of X. If
Wi =x%...x5% and w; = yii.. .¥31 belong to F(X) then their product
o(wi1,ws) is defined as follows. Consider X Xk yfl. . .yfz. If this
word is reduced we define it to be o(wi,w:) and write o(w;, ws) =
= wiw,. If it is not reduced, then xx = y; and & = — §. Then consider
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X€1...X%k-1¥82...y% and if it is reduced we define it to be o(w;,w,).
1 k=1 "2 1

If it is not reduced, we continue in the indicated way until a reduced
word is obtained and define it to be o(w;, wz). With this multiplica-
tion, F(X) is a group and is called the free group generated by X.
The neutral element of F(X) is e and the inverse of XEL. .. XEk is

—£ bt 2
xk k...xl 1.

Throughout the remainder of this section, X is a nonvoid set, £
is a FUS-convergence for X, F(X) is the free group generated by X,
&o is a subset of F(X)N x F(X) defined as follows:

(C) (W,w)e Fo whenever
W= U(Sfl""'si") aqd w = o‘(xil,...,xik),
where ke N, (Si,x)e€e& and e¢;,==+1,i=1,...,k, and,
for each n € N, either a(Sil(n),...,S;k(n))z e or
Sgl(n)...Sik(n) is a reduced word ;

and § < F(X)N x F(X) is defined as follows:

(CH (W,w)e § whenever for each s € S there exists ¢ € S such
that (Wesot,w)e€ Fo;

i.e., § is the Urysohn modification of &o-

THEOREM 4.1 - (i) Fo restricted to X is equal to £.
(ii) Fo satisfies axioms (F), (S) and (L’).
(iii)  &o satisfies axiom (H) whenever £ does.

(iv) & is a FLUS-convergence for F(X) and § restricted to X is
equal to &. Further, § is the finest of all FLUS-convergences
for F(X) the restriction of which to X is equal to £.

(v) Put A={{c(xx,x1))€F(X)N: ((x,),x)€L}. Then F<(e)=
=¢[8A]Fx).

(vi) Let h be a continuous mapping of the FUS-convergence space
X into a FLUS-convergence group G. Then h can be uniquely
extended to a continuous homowmorphism of F(X) equipped
with § into G.

(vii) X is a (sequentially) closed subset of F(X) iff & satisfies
axiom (H).

Proof. The fact that o satisfies axioms (F) and (S), as well as
(i) and (iii), follows directly from (C). The proof that &, satisfies
(L") is virtually the same as the proof of the corresponding assertion
of Theorem 3 in [26] and is omitted.

(iv). According to Remark 2.2, §§ is a FLUS-convergence for F (X)
and, clearly, its restriction to X is equal to £. Let G be a FLUS-con-
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vergence for F(X) such that (S,x)e & whenever (S,x)e 2. Let
(W,w)e Fo. By (C), W is a certain product of £-convergent sequen-
ces and w is the corresponding product of their £-limits. Using axiom
(L) we get (W,w)e @ and from Foc G we infer Fc G = @.

(v) follows from (iv) and Theorem 3.3.

(vi). Since F(X) is the free group generated by X, % can be uni-
quely extended to a homomorphism of F(X) into G. Now (v) and
condition (ii) of Lemma 3.4 imply that the homomorphism is con-
tinuous.

(vii). Assume that £ satisfies (H). If S is a sequence of points of
X and (S,w)e€ §, then, for some s € S we have (S-s,w) € Fo. From
(C) we infer that 1(w) =1 and hence w € X. Thus X is a closed sub-
set of F(X). Conversely, assume that £ does not satisfy (H). Then
some S € XN £-converges in X to two different points x and y. By
axiom (L), the constant sequence SS-! = (e) & -converges to the re-
duced word xy-! and the constant sequence (x) & -converges in F(X)
to the reduced word xxy-!. Hence X is not closed in F(X). This
completes the proof.

COROLLARY 4.2 - For every FUSH-convergeence space X, there exists
a FLUSH-convergence group F with the following properties:

(i) X is a closed subspace of F;
(i) Algebraically, F is the free group generated by X ;

(iii) Every continuous mapping of X into a FLUSH-convergence
group G can be uniquely extended to a continuous homomor-
phism of F into G;

(iv) Let F be a FLUSH-convergence group such that X is a subspace
of f’, the smallest closed subgroup of F that contains X is

F itself, and every continuous mapping of X into a FLUSH-con-
vergence group G can be extended to a continuous homomor-

phism of F into G. Then there is a homeomorphic isomorphism
of F onto F leaving X pointwise fixed.

Proof. (i), (ii) and (iii) follow directly from Theorem 4.1. The
last assertion follows by the so-called extension of the identity prin-
ciple (for FUSH-convergence spaces, if two continuous mappings
agree on a dense subset of the domain, then they agree on the whole
domain).

DEFINITION 4.3 - F(X) equipped with § is said to be the free con-
vergence group over the FUS-convergence space X .

Let us turn to properties of F(X). Some of them depend on the
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additional properties of X and some of them are valid for every FUS-
convergence space X . First, we shall prove that F(X) equipped with
§ is always complete.

Recall that in a FLUS-convergence group a sequence S is said
to be Cauchy (two-sided) if both (S-s)(S-1-t) and (S-los)(S-t)
are neutral sequences for all s,z € S, and the group is said to be
complete if every Cauchy sequence converges.

LEMMA 4.4 - Let S be a Cauchy sequence in F(X).
(i) Se-s is a Cauchy sequence for all s€S.

(ii) If for some s € S the sequence S-s converges in F(X) to some
point x, then S-t converges to x for all t€ S.

(iii) There exists k € N such that for each ne N we have 1(S(n))<k.

(iv) For some s€ S, S-s is either a finite reduced product of one-
to-one and constant sequences of points of X resp. X1
(i.e. there are a natural number k and sequence Ssi,- e XN, ¢ =
==x1,i=1,...,k, such that each S; is either constant or
one-to-one and for each n € N Si(n)...S«(n) is a reduced word
equal to (S-s)(n)) or S-s is the constant sequence {e).

Proof. (i) and (ii) hold in every FLUS-convergence group and
follow easily from the definition of a Cauchy sequence. Now assume,
on the contrary, that (iii) does not hold. Then there are s, ¢ € S such
that (1(((S-s)(n))((S-'-t)(n)))) is an increasing sequence of na-
tural numbers. Since (S-s) (S-!-¢) is a neutral sequence, we have a
contradiction with (C). (iv) is a straightforward consequence of (iii).
This completes the proof.

THEOREM 4.5 - F(X) is complete.

Proof. Let S be a Cauchy sequence in F(X). We have to prove
that S converges in F(X) to some point x. By (ii) of Lemma 4.4, it
suffices to prove that any subsequence of S converges in F(X). If for
some s €S we have (S-s)(n)=-e, for all n e N, we are done. In
the opposite case, by (iv) of Lemma 4.4, there are s€ S, k€N,
Sj,- eXN,g;==x1,i=1,...,k, such that each S; is either constant
or one-to-one and for each n e N Si(n)...Sit(n) is a reduced word
equal to (S-s) (n). If all sequences S; are constant, then S-s is a con-
vergent sequence. So, assume that at least one of the sequences S; is
one-to-one. Put m = max{ie{l,...,k}:S; is a one-to-one sequence}
and define t€S by t(n)=s(n+ 1), ne N. Then for each neN,
Si(n)...Sm(n) S 1(n+1)...S:(n+1) is a reduced word equal to
c(((Ses)(n))((S1-t)(n)) ). On the other hand, by (C), there exists
u € S such that the sequence (Seos-u)(S-1-t-u) is a finite reduced
product of sequences T; such that for some & = +1 each T?% is a
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convergent sequence in the original FUS-convergence space X. Since
Sm+1,..., Sk are constant sequences, the subsequence S-s-u of S con-
verges in F(X). This completes the proof.

THEOREM 4.6 - If points of the space X are separated by continuous
functions, then points of F(X) (equipped with §) can be separated by
continuous functions.

Proof. Assume that points of X are separated by continuous func-
tions. Then X satisfies axiom (H). Let X be the completely regular
modification of X (X is the underlying set of X equipped with the
weak topology with respect to the set of all continuous functions on

X, cf. [43]), let F be the free topological group generated by X (?‘
is the underlying group of F(X) equipped with the weakest of all
(Hausdorff) group topologies the restriction of which to X is the

topology of X), and let sF be the corresponding associated FLUSH-
convergence group (see Remark 2.1). The identity mapping of the

FUSH-convergence space X into the FLUSH-convergence group sF
is continuous and hence it can be uniquely extended to a continuous

homomorphism of F(X) into sF. It is easy to see that the extended
mapping is in fact a continuous isomorphism, viz. the identity mapp-

ing. Since points of F are separated by continuous functions and each

continuous function on F is a continuous function on sF, points of
F(X) are also separated by continuous functions.

Recall that each FS-convergence space is equipped with a closure
operator: for each subset A, its closure clA is defined to be the set
of all limits of convergent sequences of points of A. The operator
need not be idempotent and if it happens to be, then the space is
said to be Fréchet. It is known that a FLUSH-convergence group is
a Fréchet space iff the following diagonal condition holds (cf. [61],
[28]):

(PSD) If for each n € N, S, is a sequence converging to the neu-
tral element e, then there is a mapping f of N into N and
s € S such that the corresponding subdiagonal sequence
{Ssm(f(s(n)))) converges to e.

THEOREM 4.7 - Let X be a FUSH-convergence space. Then F(X) is
a Fréchet space iff X is discrete.

Proof. By (iii) of Theorem 4.1, &, satisfies axiom (H). Conse-
quently, by Remark 2.2, & also satisfies axiom (H). If X is discrete,
then from (C) we easily infer that F(X) is discrete, and hence a
Fréchet group. On the other hand, assume that X is not discrete. Then
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there is a one-to-one sequence {x,) converging in X to a point x such
that x,= x for all ne N. Define S = (x,x"!) and S,=S",n€N.
Since each S, converges in F(X) to e and for each k e N we have
1(S.(k)) = 2n, it follows from (iii) of Lemma 4.4 that no subdiagonal
of (S,) converges to e. Consequently, F(X) does not satisfy (PSD),
and hence it fails to be a Fréchet group.

REMARK 4.8 - Let Y be a FUS-convergence space and let p be any
point of Y. Using some results from [26], the pointed free noncom-
mutative convergence group F,(Y) over Y can be constructed parallel
to the construction of F(X) equipped with § . Namely, the free group
F,(Y) generated by the set Y\ {p} can be equipped with a FLUSH-
convergence &, such that:

(i) Y\{p} is a subspace of Fy(Y);

(ii) if S is a sequence of points of Y \{p} converging in Y to p,
then S &,-converges to the neutral element of Fy(Y);

(iii) for every continuous mapping 4 of Y into a FLUSH-conver-
gence group G, carring p into the neutral element of G, there
exists a unique continuous homomorphism #% of F,(Y) into G
such that 72(x) = h(x) for all x e Y \ {p}.

The explicit construction of &, can be found in [26]. Note that
in [26] only FUSH-convergences are considered, but the generaliza-
tion to FUS-convergences involves no difficulty .

5. - Miscellanea

Let X be a nonvoid set, let F(X) be the free group generated by
X, and let K be the commutator subgroup of F(X) (i.e. the subgroup
generated by all elements of the form o(a,b,a"!,b"!), where
a,beF(X)). It is known that K is a normal subgroup of F(X) and
that the factor group of F(X) by K is the free commutative group
FC(X) generated by X. Denote by # the natural homomorphism of
F(X) onto FC(X). In the additive notation, elements of FC(X) are
represented by formal finite linear combinations of the form
_LCZI Zi x;, where z; is a nonzero integer, x;€ X, i=1,...,k and x; # x;
whenever i s« j ; the neutral element 0 of F(X) is represented by the
void combination (k = 0) and the sum o.(wi,w2) of w; and w; is
defined in the obvious way. We shall identify each x € X < F(X) with
h(x)e FC(X)=F(X)/K.

Let X be equipped with a FUS-convergence £. Symbols o and
&% have the same meaning as in the previous section. We shall show
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that FC(X), as a quotient of F(X) by K, can be equipped with the
quotient convergence /() so that it becomes the free commutative
convergence group.

LEMMA 5.1 - If & satisfies axiom (H) then K is sequentially closed
in F(X). :

Proof. Let S be a sequence of points of K & -converging in F(X)
to a point w. According to (C*) there is a subsequence W of S Fo-
converging to w. By (C), there are ke N, ¢; = = 1 and (Si,x)e g,
i=1,...,k, such that W is the product of the sequences S¢; and w
is the corresponding product of the points x¢i. Since £ satisfies
axiom (H), the limit w is uniquely determined and it easy to see that
since each W (n) = G(Slil(n),...,S;k(n)), n € N, belongs to K, then
also w = O'(xfl, . "'xik) belongs to K. Thus K is sequentially closed
in F(X).

THEOREM 5.2 - (i) The quotient convergence h(gF) for FC(X)=
= F(X)/K is generated by {(oc(xn,xY) ) € FC(X)N: ({x.),x)€ L}.
(ii) h(F) restricted to X is equal to L.

(iit) h(F) is the finest of all FLUS-convergences for FC(X) the
restriction of which to X is equal to £.

(iv) Let g be a continuous mapping of the FUS-convergence
space X into a commutative FLUS-convergence group G. Then g can
be uniquely extended to a continuous homomorphism of FC(X) equip-
ped with h(¥) into G.

(v) h(F) satisfies axiom (H) whenever £ does.

Proof. All the assertions are straightforward consequences of the
properties of F(X) equipped with  and the properties of the quotient
convergence h(§) for FC(X)= F(X)/ K. The details are omitted.

COROLLARY 5.3 - For every FUSH-convergence space X, there exists
a FLUSH-convergence group F with the following properties:

(i) X is a closed subspace of F ;
(i) Algebraically, F is the free commutative group generated by X;

(iii) Every continuous mapping of X into a commutative FLUSH -
convergence group G can be uniquely extended to a continuous
homomorphism of F into G;

(iv) Let F be a commutative FLUSH-convergence group such that
X is a subspace of F, the smallest closed subgroup of F that
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contains X is F tself and every continuous mapping of X into
a commutative FLUSH-convergence group G can be extended

to a continuous homomorphism of F into G. Then there is a

homeomorphic isomorphism of F onto F leaving X pointwise
fixed.

DEFINITION 5.4 - FC(X) equipped with 4 (%) is said to be the free
commutative convergence group over the FUS-convergence space X .

REMARK 5.5 - Virtually in the same way as in the noncommu-
tative case it can be proved that:

(i) FC(X) equipped with A(F) is complete;

(ii) If points of X can be separated by continuous functions, then
points of FC(X) can be separated by continuous functions;

(iii) FC(X) is a Fréchet space iff X is discrete.
Note that (ii) has been already proved (in a different way) in
[25].

REMARK 5.6 - Let Y be a FUS-convergence space and let p be any
point of Y. Then the free commutative group generated by Y \ {p},
denote it by FC,(Y), can be equipped with a FLUS-convergence
such that ‘

(i) Y \{p} is a subspace of FC,(Y);

(ii) If S is a sequence of points of Y \ {p} converging in Y to p,
then S ¥,.-converges to the neutral element of FC,(Y);

(iii) For every continuous mapping 4 of Y into a commutative FLUS-
convergence group G, carring p into the neutral element of G,
there exists a unique continuous homomorphism # of FC,(Y)
into G such that #(x)= h(x) for all xe Y\ {p}.

The convergence §p. can be straightforwardly obtained by mo-
difying the construction of the fine convergence for FC,(Y) given
in [26]. The group FC,(Y) equipped with F, is said to be the
pointed free commutative group over Y.

Free groups equipped with FLUSH-convergences are natural can-
didates when looking for a FLUSH-group having some prescribed
properties (cf. [70], [71]). If we start with a FUSH-convergence
space X, then & and A(g¥) satisfy axiom (H). But, if G is a free
group (either commutative or noncommutative) generated by a set
X, A c GN is a set of sequences of points of G, and G, is the gene-
rated FLUS-convergence for G, then, according to (iii) of Theorem
3.3, G satisfies axiom (H) iff {[8A]¢ contains no constant sequence
except (e). Our last theorem provides a simple sufficient condition
for Ga to satisfy axiom (H).
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Let X be a nonvoid set and let F(X) be the free group generated
by X. For a reduced word w = XL Xk, k=21, put gen(w)=
={x € X :x=x; for some ie{1,...,k}} and put gen(e)= ¢ . Recall
that if (A,) is a sequence of subsets of X, then

limsup A, = {x € X : x € A, for infinitely many n € N}.

THEOREM 5.7 - Let G be the FLUS-convergence for F(X) generated
by a set ACF(X)N. If for each (w,)€ A we have lim sup gen(wn) = ¢,
then G, satisfies axiom (H).

Proof. The assertion follows from (iii) of Theorem 3.3 and (i)
of Lemma 3.2. Indeed, for each x€ X and each S € 8A we have
x € gen(S(n)) for at most finitely many n € N. Now, assume that for
some w = e we have (w) € L[8A]rx). Then for infinitely many n € N
we have gen(w)= gen(T(n)), where T € F(X)N is a product of fini-
tely many sequences of the form (g S¢(n) g-!) with ge F(X), e = = 1,
S € 8A. Clearly, this is impossible. Consequently, {[5A]rx) contains
no nontrivial constant sequence and hence &, satisfies axiom (H).

REMARK 5.8 - Note that the above criterion for G, to satisfy
axiom (H) can be also used in the commutative case.

To illustrate the theory developed throughout the paper we pre-
sent three examples.

EXAMPLE 5.9 - In [24] the following FLUSH-convergence group
G having no (two-sided) completion has been constructed. Consider
two disjoint countable infinite sets A ={a,:n €N} and B={b,:neN}.
Put X = AUB and S = (a.), T = (b.). Let G be the free group gene-
rated by X. For A={T}U{S-s)c(S «t)-¢:5,t€S, e= 1} let G,
be the generated FLUS-convergence for G. It follows by Theorem 5.7
that G satisfies axiom (H). Clearly, S is a (two-sided) Cauchy se-
quence no subsequence of which converges in G . Further, T is a neu-
tral sequence, but no subsequence of STS-! converges in G to the
neutral element. Consequently, the sequence S cannot converge in

any FLUSH-convergence group G containing G as a dense conver-
gence subgroup, i.e., G has no completion.

The importance of the above result becomes clear when realizing
that all topological groups (both commutative and noncommutative)
have (two-sided) completions and that until [24] it was not clear
whether all FLUSH-convergence groups have (two-sided) completions.
As shown in [59], each commutative FLUSH-convergence group has
a «categorical» completion and it can have several nonhomeomorphic
completions. At present, however, it is still not known whether for
any nontrivial class of noncommutative FLUSH-groups a «categori-
cal» completion exists. Further, observe that each commutative filter



SEQUENTIAL CONVERGENCE IN FREE GROUPS 215

convergence group has a categorical completion, it can have several
nonhomeomorphic completions ([20]), but nothing is known about
the completions of noncommutative filter convergence groups. For a
categorical completion theory of various convergence structures (in-

cluding filter and sequential convergence groups) the reader is re-
ferred to [42].

The next two examples deal with coarse convergence in groups,
a notion similar to minimal group topology (cf. [11], [12]). Recall
that a FLUSH-convergence & for a group G is coarse if there is no
FLUSH-convergence for G properly larger than &. According to
Theorem 1 in [27] (see also Theorem 2 in [25]), every FLUSH-con-
vergence can be enlarged to a coarse one. For a more detailed discus-

sion of the properties of coarse convergence groups we refer to [27]
and [13].

ExaMPLE 5.10 - We are going to construct a coarse convergence
group which fails to be complete. Consider a countable infinite set X,
choose a point p € X and arrange X \ {p} into a one-to-one sequence
S. Let G be the free commutative group generated by X. Put A =
={2S — (p)}U{S-5s —S-t:s,t €S} and equip G with the generated
FLUS-convergence &, . Using Theorem 5.7 and Remark 5.8 it can be
easily verified that &, satisfies axiom (H). Clearly, S is a Cauchy se-
quence and 2S Ga-converges to p. Let &¢ be a coarse FLUSH-con-
vergence for G such that Gy < Gc. Then no subsequence S-s of S
Sc-converges. Indeed, w = Gc¢-limS(n) and p= Sc¢-lim2S(n)
would imply 2w = p, a contradiction with the fact that p is a gene-
rator of the free group G.

In [66] U. Schwanengel proved that there is a minimal topolo-
gical group with a closed (normal) subgroup which is not minimal.
A closed subgroup of a coarse commutative group is coarse ([27]).
We show that the assertion cannot be generalized to the noncom-
mutative case.

ExaMPLE 5.11 - Let X’ be a countable infinite set. Choose p € X’
and put X = X'\ {p}. We denote by G and G’ the free groups gene-
rated by X and X’, respectively. Let &'s be the FLUS-convergence
on G’ generated by the set of (neutral) sequences A ={S{(p)S-1:SeGN
and S is one-to-one}. Using (iii) of Lemma 3.3 and (i) of Lemma 3.2
it can be easily verified that &', satisfies axiom (H), too. According
to Theorem 1 in [27], let &'c be a coarse FLUSH-convergence for G’
with &’c D &'a and let us denote by G¢ the restriction of &'¢c to G.
We claim that B¢ is discrete. Indeed, if a sequence T € GN, G¢-con-
verges to a point y € G’, then T must be eventually constant. Other-
wise, for some one-to-one subsequence S = T -s of T, we would have
e =C8c-limS{p)S-'=ypy-! and hence p =e. Note that in this
way we have also proved that G is a closed subgroup of G’ equipped
with &’c. Since G = F(X), from Corollary 1 in [27] it follows that
@c is not coarse.
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