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SOMMARIO. - Si studia il problema dell'esistenza di infinite soluzioni

d 9% a<
periodiche per il sistema Lagrangiano zz—t—a-; - E 4+ f(t)=0
(ove f(t) é un termine «forzante» periodico). Si assume che il

potenziale «cresca» in modo sopraquadratico all’infinito.

SUMMARY. - We study the existence of infinitely many periodic solu-

d £
tions of the Lagrangian system ;1?8_q——'g?+f(t)=0 (where

f(t) is a periodic «forcing» term). We assume that the potential
«grows» superquadratically at infinity.

1. - Introductton

Let us consider a constrained mechanical system (with holono-
mous, bilateral, smooth constraints) embedded in a conservative field
of forces; this situation has been studied in [5] (c. [6[ for a parti-
cular case): these authors showed that, if the potential energy pos-
sesses a suitable superquadratic growth at infinity, then there are
infinitely many (free) oscillations of any fixed period 7.

(*) Pervenuto in Redazione 1’8 maggio 1986. Lavoro eseguito col contributo dello
GNAFA (CNR), fondi 40-60%.

(**) Indirizzo dell’Autore: Dipartimento di Matematica dell’Universita degli Studi -
Via G. Fortunato - 70125 Bari (Italy).
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In this paper we study the case of forced oscillations, i.e. we
assume that the mechanical system it also subject to a T-periodic
external force.

The main result (c. Th. 1.1) shows, roughly speaking, that, if
the potential energy grows in a controlled superquadratic way, and
suitable symmetry assumptions hold, then there are again infinitely
many forced T-periodic oscillations.

Let us now introduce some notations. Let
N N
£(q,8)=" X 1 aii(q) €& + -21 bi(q) & +c(q)—V(q) q,E€RN
i,j= i=
be the Lagrangian function (aj, bi,c and V are C! real functions) and
let f : R— RN be continuous and T-periodic; then we look for T-perio-

dic, C*solutions g = g(t) of the following system of ordinary diffe-
rential equations:

d a5
L —_—
L) dt 9t
We indicate by pg and by |p| (p, g € R¥) the scalar product and
the norm in R¥ and we set

a(q) (&) = (,-%1 i(q) E)imtoz.. N

b(q) = (bi(q))i=1,2,....n.

We suppose that the functions a(q), c(q) and V(g) are even,
and the function b(gq) is odd. Mereover we assume that:

(1.1 there exist 3 € ]0,% [ and R > 0 such that V(q)<3V’(q)q
for every |g| = R

. a< . _
(Q;Q)——a'a'(q,Q)-i-f(t)—O.

(12) V(g)<cl|q|*+ c, where ¢1,c=0 and 2<v<4/3—2
(1.3) a(q) is symmetric and positive-defined: a(q) (§) § = M |§|?,
A>0.

1
(1.4) there exists € ]2 — ry ,0[ such that

a'(q)lqg,tl1& + Ba(q) (E)E<0
(1.5)  there exists M > 0 such that |b(g)| < M,|b’'(q) ()| <M

(1.6) c¢(gq) = 0 and there exists & > % such that #¢’(q) g < c(q) for
every |g| =R.

Then the following theorem holds:

THEOREM 1.1 - If (1.1)-(1.6) hold, then the system (L) has infini-
tely many T-periodic, C?, solutions.

We take T = 2= to simplify the notations; || - ||, is the norm in
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the space Lr=Lr((0,2r),RN) and E = H!.2(S!,RN) is the Sobolev
space of 2m-periodic absolutely continuous functions u : R— RN with
square integrable derivative. The E-norm is [[u||2=|la|2 + | &|2.

Let us consider the functional 7 : E—~R
(1.7)  I(u)= Y fa(u) (4) & + fb(u) 0 + fc(u)— SV (u)— [fu

(here and in the sequel the integrals are extended to (0,2x)). The
functional I is C! and we have:

(1.8)  (I'(u),v) = fa(u)(4) u+ Y2 fa’(u)[v,alu+ [b(u) v +
+ [b'(u) (v) a + fc’(u) v — [V’ (u) v — ffv.

The critical points of I (i.e. the zeros of I') are the 2z-periodic
C? solutions of (L).

If f =0, then the functional I is invariant for the Z,-action, i.e.
Iu)=1(—u).

In our case the forcing term f(z) «destroys» this symmetry.

In recent years some autors have studied perturbed symmetric
functionals (c. [1]-[4], [7]1-[10]); they applied their results to
elliptic problems, second order Hamiltonian systems, and general
Hamiltonian systems. Our proof of Theorem 1.1 is based on some
tools introduced in [9] @,

REMARK - Hypothesis (1.1) is the classical superquadratic condi-
tion; it implies

(1.9) V(gzc|q|*+ cs,

where p = 1/% and ¢3,¢cs > 0. (1.2) is a rather technical assumption;
it probably can be removed (on this subject cf. [3], [41). (1.3) has
an obvious physical meaning, while (1.4) is similar to (A;) in [5].
The bilinear form a’(g)[-,-] in (1.4) is, of course, the Fréchet-deri-
vative of g—a(q).

Notice that (1.4) implies:

(1.10) a(q) () E=<cs|q|—P|E|*+ cs.

Finally (1.5) and (1.6) are technical limitations to the growth of
the kinetic energy with respect to Lagrangian coordinates. In parti-
cular (1.6) implies

(1.11) c(g)=ca1|q|* +cs,
A A
where p =1/%.

(1) Pisani and Tucci have recently presented a result like theorem 1.1 (c. 181);
without symmetry assumptions on £.. On the other hand, if we think, for
instance, of the fixed constraints case, then A:;) and A, in [8] appear un-
necessary; moreover (1.1) is weaker then V) (because 4/9 —2>6>4).
Finally we should point out that the physical meaning of (1.1) - (1.6) is
rather transparent.
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2. - Proof of the result
Following [9] we consider a modified functional I which is, un-
like I, almost invariant in a suitable sense (c. Lemma 2.4).

The critical points of I are related to those of I by Lemma 2.5.

Let xe C*(R) such that 0 <y <1, =<0, x(s)=11if s<1 and
x(s)=0 if s = 2. We set
1

o(u)= (I(w)*+1)% , Y(u)=x(
o(u)

[l2]]2)
and
1)  I(w)=Y2fa(u) () a+ [b(w) a+ fc(u)— [V (u) — Y(u) ffu.
Then I € C! and
(I'(u),v) = fa(u) (&) v+ Y2 fa’ (W) [v,a]a + [b(u) v +
Q22) +Jwa+ (v —JV(wv—[(buv+
+ ('), v)u)f,
where, of course,

(V' (u),v) =x’(—1—-

(2.3) o (u) “ u“ﬂ) (e (1) "lflul“"zuv —

— o (u) = I(u) (I'(u), v} || #||2).
In the sequel ai, a2, ... will denote positive constants.

LEMMA 2.1 - 9(u) £ 0 implies | ffu| < ai(I(u)? + 1).

LEMMA 2.2 - There exists o > 0 such that if c=a,9(u)=0, and
I(uy=c, then I(u)= a:c.

The proof of Lemmas 2.1 and 2.2 is as in [9], Lemmas 1.13 and
1.25. Now, let us check the well-known Palais-Smale condition for
the functional I.

LEMMA 2.3 - There exists g > 0 such that if
(Un), < E, I(u,)—>c =8 and I' (u,)—>0,
then (u,), has a converging subsequence.

Proof. Let 8 > 0 free for the moment, and ¢ = . Let (u.), be
as i nthe statement of the lemma. Then we can suppose (we write
for simplicity u instead of u,) |( I'(u),u)| <||u||; it gives (because
of (2.3) and (1.8)):

—(1 4+ Ti(u)) (Sa(u) (n) a + Y2 fa’ (u)[u,ala + [b(u) a +
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Q4)  +[b’(w) (u) (W) + J'(w) u — V' (u)u) +
+(b@) + Ti(w) ffu + Ta(u)||u|k < ||u]|,

where

’ 1 i @ J—
Tl(u)=x(Wllullu)llullpcp(u) *1(u) ffu

1
o (u)

- - A
Set 3 =%(1+¢); we may choose € >0 such that & <® and

Va —-5(1——5—)>0. Using (1.1), (1.3)-(1.6) and (1.9), the (2.3) be-

Tz (u) = ux'(

| ll%) o(w) - ffu.

comes:
(=51 —2))ra 3= —I—Jr—i@-;)—llull -
2.5) _ '5(¢1(zz £ T0w). g,
= B ule el il - )+ as
Arguing as in [9], we can show that Ti(u) and T2(u) are small if
B is big enough. Then we can suppose that i% +a>0, so

(2.5) gives || a|2<as|ul| —ar||u[|* + as, and therefore
lul?=asllull —ar|lufls + || u]l} + as.

Fix 0 <& <a; and set s=p/(n—1). From the Hélder- Young
inequality there exists gy such that ||u|[2 <& ull* + as|[u|ls. Then
we get ||ul2=asj|u|| — (a1 — &)]| ullt + as||ulls + as. Because s<2,
it follows (remember that u = u,):(u,), is bounded in H.

At this point, standard arguments permit us to achieve the con-
clusion.

We can now state two lemmas. The proofs are as in [9], Lemma
1.18 and 1.29.

LEMMA 2.4 - There exists aio > 0 such that

{T(u) —I(—u)| < an(|I(w)|*+ 1)
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for every ue H.

LEMMA 2.5 - There exists ¥ > 0 such that I(u)= v, I'(u) =0 imply
Iu)=1(u) and I'(u)=0.

Let e1,...,en be the standard basis in RN; for j=1, we set

Vim(t)= (sinjt) em if 1=<m=<N, and Vjm(t)=(cosjt)en_n if
N+1=<m=<2N. Moreover, for k=1 and 1<i<2N, we set

Ei=R¥@span{Vim|1<j=<k,l<m=<i}
It is easy to check that there exists Ri; > 0 such that f(u)<0

for every u € Ei, ||u|| = Rui. Indeed, from (1.10), (1.5), (1.11) and
(1.9), it follows:

I(u)sfziuu;—wp+2m+Mf[a[+c7fgu|a+

Cs A~
+21t08—C3flu|“—2ﬂ04570”u||2‘9+a11HuH +
+ anflullt — as |l ull + a

where c =max{f|u|*|u#|> | ueEu,||u|=1}. Since the norms
on E are equivalent, and i < ,2 — 8 <p, we have I(u) <0 if ||u]|
is large enough.
We suppose that
Rii < Rkiv1i(k = 1,1 <i<2N —1),Rs,2n < Riy11.

Set B,={u€ekE|||u||=<r} (for every r>0), Di = Ei N Bri
and :

I'vi={h € C(Du,E)|h is odd and h(u)= u if
| #|| = Ru}

b = inf max [(h(u))
heTw u€ D

LEMMA 2.6 - There exist ais, ais such that bii = ais K(v+2/v=-2) — gy .

Proof. We follow a simple comparison argument. Let € > 0 be such
that Me <\/2. There exists, of course, a7 >0 such that |x| <e|x|?+ a
and | x| = V(x) + an for every x € R¥. Then (1.3), (1.5) and (1.6) give:

A A
1)z 5[l = Mf ] = V() = ||l § | ]2 = (5 Me) § 2]
—(1+||f]l«) SV (u) — as =
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_ M . 1+f]|-
—(T—ME)(flulz—me(u))—als.
Set J(u)=f|a|2—}iﬂj—-lL:IV(u) and b;i= inf max J(h(u)).
M2 —eM heTw ue Dy
v+2

Arguing as in [9], we get b’;d > ap k¥-2; since
A
bri = ( 5 e) b}, — ai, the lemma is proved.

Proof of Theorem 1.1 - Set (we replace Vi, ans1,Ri,2n+1 with
Vit11, Riy11)
Uki ={u = ti,is1+ Q|7 € [0,Rs,1411],Q € ExiN Br

k,i+1’
[|u]] = Rk, is1}
Ai={HeC(U,E)|Hpyu€Tuand H(u)=u
if ||u|| =Rk, iq1 or ue(BRk'm\BR,‘,)ﬂEki}

cki = inf max [I(H(u)).
H e A ue Uy

In general we have bu < cii. Suppose that b < cx: for suitable
(k,i), fix 8 e R with 0 < & < ¢ — by; and set

Awi(8)={H € Ani| sup I(H(u)) < bwi + 8}
U € Dy;

cki(8) = inf sup I(H(u)).
H € A (8) u € Dy

Then one can check that ci:(8) is a critical level of I (by stand-
ard deformation argument; c. Lemma 2.3).

Now we claim that there exists infinitely many pairs (k,i) (with
keN,i=1,2,...,N) such that bu < ct:; for if not, arguing as in
[9] Lemma 1.64 and using the Lemma 2.4, we get bu < ax kv/(+-1,
But this is impossible because of Lemma 2.6 and the assumption
v<4p — 2 in (1.2).

Then there exists infinitely many critical points of the functional
I. Finally we observe that cii(8)=> 4 o, therefore the Lemma 2.5
give us the result.

Added in proof. While this note was in press, we have known
that Yiming Long («Multiple solutions of perturbed superquadratic
second order Hamiltonian systems», Math. Research Center, Tech.
Summ. Report #2963, Univ. of Wisconsin - Madison, 1987) has proved
the existence of infinitely many solutions of (L) under assumptions
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weaker than ours. In particular, the symmetry assumptions on the
coefficients of £ and (1.2) are unnecessary, and a weaker version
of (1.5) is required.
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