ON LOCAL T-TIGHTNESS (*)

by Angelo Bella (in Catania) (**)

Sommario. - In questa nota si dà una nozione di T-tightness locale e si studiano alcune sue proprietà.

SUMMARY. - In this note a notion of local T-tightness is given and some properties of it are studied.

I. Juhàsz in [8] introduced the notion of T-tightness as a variation on the classical notion of tightness. The definition of this new cardinal function given in [8] is of global nature, while it is well known that the tightness can be considered as a function of local character. In this note we present a notion of local T-tightness that agrees with the global one i.e., for any space X, $T(X) = \sup_{x \in X} T(x, X)$ (see definitions below).

For notations not explicitly mentioned here we refer to [5], [6]. m, ρ will denote cardinal numbers and α , β ordinal numbers. m^+ is the successor cardinal of m and a cardinal number is assumed to be an initial ordinal. The cardinality of a set S is denoted by |S|. All topological spaces considered here are assumed to be T_1 . We recall the following:

DEFINITION 1. - Let X be a topological space and A a subset of X. The tightness of A with respect to X, denoted by t(A,X), is the

^(*) Pervenuto in Redazione il 25 marzo 1986.

^(**) Indirizzo dell'Autore: Dipartimento di Matematica - Città Universitaria - Viale A. Doria, 6 - Catania (Italy).

smallest cardinal number m with the property that for any set $C \subset X$, for which $A \cap \overline{C} \neq \phi$, there exists a set $C_0 \subset C$ such that $A \cap \overline{C}_0 \neq \phi$ and $|C_0| \leq m$. If $A = \{x\}$ we write t(x, X) instead of $t(\{x\}, X)$. The tightness of X, denoted by t(X), is defined as $t(X) = \sup_{x \in X} t(x, X)$.

DEFINITION 2. (see [8] - Let X be a topological space. The T-tightness of X, denoted by T(X), is the smallest cardinal number m with the property that, for any increasing sequence $\{F_{\alpha}\}_{\alpha \in \rho}$ of closed subsets of X such that $cf(\rho) > m$, the set $\bigcup F_{\alpha}$ is closed.

For a discussion on the behaviour of the T-tightness under the usual topological operations see [3]. Various relations between the T-tightness and other cardinal functions can be found in [4] and [8].

We now pose the following:

DEFINITION 3. - Let X be a topological space and A a subset of X. The T-tightness of A with respect to X, denoted by T(A,X), is the smallest cardinal number m with the property that, for any increasing sequence $\{F_{\alpha}\}_{\alpha \in \rho}$ of closed subsets of X such that $\mathrm{cf}(\rho) > m$, $A \cap \overline{\bigcup F_{\alpha}} = \phi$ whenever $A \cap \bigcup F_{\alpha} = \phi$.

It is easy to see that for any space $X, T(A, X) \leq t(A, X)$.

If $A = \{x\}$ we write T(x, X) instead of $T(\{x\}, X)$.

PROPOSITION 1. - If X is a topological space then $T(X) = \sup_{x \in X} T(x, X)$.

Proof. It is clear from the definitions that, for any

$$x \in T$$
, $T(x, X) \leq T(X)$.

So we need to show that $T(X) \leq \sup_{x \in X} T(x, X)$. Let $\{F_{\alpha}\}_{\alpha \in \rho}$ be an increasing sequence of closed subsets of X such that $\mathrm{cf}(\rho) > m$ where

$$m = \sup_{x \in X} T(x, X).$$

If $x \notin \bigcup_{\alpha \in \rho} F_{\alpha}$ then $x \notin \overline{\bigcup F_{\alpha}}$, by the fact that $T(x, X) \leq m$. This implies that the set $\bigcup_{\alpha \in \rho} F_{\alpha}$ is closed and therefore $T(X) \leq m$.

PROPOSITION 2. - Let X be a topological space and A_1 , A_2 two subspaces of X such that $A_1 \subset A_2$. If for any set $F \subset A_2 \setminus A_1$, that is closed in A_2 , there exist two disjoint open sets in X containing respectively A_1 and F, then $T(A_1, X) \leq T(A_1, A_2)$ $T(A_2, X)$.

Proof. Let $m=T(A_1,A_2)$ $T(A_2,X)$. Let $\{F_\alpha\}_{\alpha\in\rho}$ be an increasing sequence of closed subsets of X such that $A_1\cap (\bigcup_{\alpha\in\rho}F_\alpha)=\phi$ and $\mathrm{cf}(\rho)>m$. The family $\{F_\alpha\cap A_2\}_{\alpha\in\rho}$ is an increasing sequence of closed subsets of A_2 and so $A_1\cap\overline{\bigcup(F_\alpha\cap A_2)^{A_2}}=\phi$, by the fact that $T(A_1,A_2)\leq m$. Thanks to the hypothesis there exist two disjoint open sets U and V such that $A_1\subset U$ and $\overline{\bigcup(F_\alpha\cap A_2)^{A_2}}\subset V$. The family $\{F_\alpha-V\}_{\alpha\in\rho}$ is an increasing sequence of closed subsets of X and $A_2\cap \left[\bigcup_{\alpha\in\rho}(F_\alpha-V)\right]=\phi$. As $T(A_2,X)\leq m$ we have $A_2\cap\overline{\bigcup(F_\alpha-V)}=\phi$, i.e. there exists an open set V such that V such th

$$W\cap \left[\bigcup_{\alpha\in\rho}(F_{\alpha}-V)\right]=\phi.$$

The set $U \cap W$ is an open neighborhood of A_1 and it is easy to see that $U \cap W \cap \left(\bigcup_{\alpha \in \rho} F_{\alpha} \right) = \phi$. This means that $A_1 \cap \overline{\bigcup_{\alpha \in \rho} F_{\alpha}} = \phi$ and therefore $T(A_1, X) \leq m$.

COROLLARY 1.

- a. If X is a Hausdorff space and F_1 , F_2 two compact subspaces of X such that $F_1 \subset F_2$ then $T(F_1, X) \leq T(F_1, F_2) T(F_2, X)$;
- b. If X is a regular space and F is a closed subspace of X then, for any $x \in F$, $T(x, X) \leq T(x, F)$ T(F, X).

PROPOSITION 3. - Let X and Y be topological spaces. If $f: X \to Y$ is a closed map and A is a subset of Y then $T(f^{-1}(A), X) \le T(A, Y)$.

Proof. It easily follows from the definitions.

From Prop. 1, Cor. 1b. and Prop. 3 we can deduce the following:

PROPOSITION 4. - Let X a regular space and Y a topological space.

If $f: X \to Y$ is a closed map then $T(X) \le \max_{y \in Y} T(Y), \sup_{y \in Y} T(F^{-1}(y))$.

REMARK - Prop. 4 as been already proved in [3] Th. 3.2.

In the next Propositions some sufficient conditions in order to guarantee the equality between the local *T*-tightness and the local tightness are given.

PROPOSITION 5. - Let X be a topological space and A a subset of X. If t(A, X) is a successor cardinal then T(A, X) = t(A, X).

Proof. Since t(A,X) is a successor cardinal, say m^+ , there must exist a set $C \subset X$ such that $|C| = m^+$, $A \cap \overline{C} \neq \phi$, and for any $B \subset C$

for which $|B| \leq m$, $A \cap \overline{B} = \phi$. Well ordering the set C we can write $C = \{x_{\alpha} : \alpha \in m^{+}\}$. Let $F_{\alpha} = \overline{\{x_{\beta} : \beta \in \alpha\}}$. The family $\{F_{\alpha}\}_{\alpha \in m^{+}}$ is an increasing sequence of closed subsets of X such that $A \cap \left(\bigcup_{\alpha \in m^{+}} F_{\alpha}\right) = \phi$ but $A \cap \bigcup_{\alpha \in m^{+}} F_{\alpha} \neq \phi$. This implies $T(A, X) \geq \operatorname{cf}(m^{+}) = m^{+}$ and therefore T(A, X) = t(A, X).

PROPOSITION 6. - Let X be a topological space and A a subset of X. If, for any set $C \subset X$, $A \cap \bar{C} = \phi$ whenever $A \cap (C)_{\aleph_{\omega}} = \phi$, then T(A, X) = t(A, X). $(C)_{\aleph_{\omega}}$ is the set $\bigcup \{\bar{B} : B \subset C, |B| < \aleph_{\omega}\}$.

Proof. We proceede by contraddiction. Let us assume

and let T(A,X)=m. Since t(A,X)>m there is some $C\subset X$ for which $A\cap \overline{C}\neq \phi$ but, for any $B\subset C$ such that $|B|\leq m$, $A\cap \overline{B}=\phi$. By the hypothesis we have $A\cap (C)_{\aleph_{\omega}}\neq \phi$ and so there is some

 $C_0 \subset C$ such that $A \cap \overline{C_0} \neq \phi$ and $|C_0| < \aleph_{\omega}$. We can assume that C_0 has minimal cardinality, i.e. A does not intersect the closure of any subset of C_0 whose cardinality is less than $|C_0|$. Let $|C_0| = \rho$. Clearly ρ is a successor cardinal and an argument similar to that used in the proof of Prop. 5 shows that $T(A,X) \geq \rho$. This is a contradiction because $\rho > m$.

In [8] it is proved that T(X) = t(X) for a compact Hausdorff space X. We do not know if the same holds locally, i.e. T(A, X) = t(A, X) for any $A \subset X$, or, in particular, T(x, X) = t(x, X) for any $x \in X$.

REFERENCES

- [1] ARHANGEL'SKII A. V., Structure and classification of topological spaces and cardinal invariants, Russian Math. Surveys, 33 (1978), 33-95.
- [2] BELLA A., Free sequences in pseudo-radial spaces, Comment. Mat. Univ. Carolinae, 27 (1986), 163-170.
- [3] BELLA A., On set tightness and T-tightness, Comment. Mat. Univ. Carolinae 27 (1986), 805-814.
- [4] BELLA A., Some remarks on set tightness in pseudo-radial spaces, Ricerche di Matematica, to appear.
- [5] ENGELKING R., General topology, Warsaw, 1977.
- [6] JUHASZ I., Cardinal Functions in Topology, Math. Centre Tract. n. 34, Math. Centrum, Amsterdam, 1971.
- [7] JUHASZ I., Cardinal Functions in Topology. Ten years later, Math. Centre Tract. N. 121, Math. Centrum, Amsterdam, 1981.
- [8] JUHASZ I., Variations on tightness. Topology and its applications, Fourth Int. Conf. Dubrovnik Sept. 30 oct. 5 1985, Abstracts.