A NEW APPROACH
TO RATE-DISTORSION THEORY (*)

by JANos KORNER (in Budapest) and ANDREA SGARRO (in Trieste) (**)

SOMMARIO. - La teoria della distorsione di Shannon non é sufficiente-

mente generale per i problemi di codifica di sorgente a piut utenti.
Diciamo che due criteri di fedelta sono complementari per una
data sorgente quando da una qualunque coppia di codici che li
soddisfino si ricava un terzo codice che riproduce la sorgente es-
senzialmente senza errori. (Cio porta a una versione non coope-
rativa del problema della descrizione multipla). Ora il comple-
mento di un criterio di fedelta alla Shannon non é sempre di que-
sto tipo: ne viene la necessita di una nuova teoria. In questo la-
voro proponiamo una tale teoria e proviamo un teorema di co-
difica diretto.

SUMMARY. - The classical rate-distorsion theory of Shannon is not ge-

*)
(**)

neral enough for multi-terminal source coding problems. We
would call two fidelity criteria complementary with respect to a
given source if any two codes satisfying these two respective cti-
teria can be combined into a third code that guarantees an es-
sentially error-free reproduction of the source. (This situation
leads to a non-cooperative version of the wmultiple description
problem). It can be shown that the complement of a Shannon-
type fidelity criterion is not necessarily a Shannon-type criterion:
hence the need for a new theory. In this paper we put forward
such a theory; a direct theorem is proved.
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I. Non-Cooperative Multiple Description - An Introduction

Let us be given a discrete memoryless stationary information
source {X,-}ij’1 , i.e.,, the X; ’s are ii.d. random variables taking their

values in the finite set % . Suppose that an encoder is producing
n-length block codes {f., 9.} = of this source that meet the known

n=1
fidelity criterion (d, A). Suppose this is all you know about the codes
{fn, q’"}n: L Then, at another location, you have another encoder whom

you would like to produce some codes that, in a sense, complement
the unknown {f,, 9.} ~ . In other words, you are trying to devise a
code {g,, L[ln}n: , such that (f, g.) would allow for an essentially er-
ror-free reproduction of X», the first n outputs of the source. This
is always possible, if you set g.(X") = X", but you would like to do
it economically. Is there an optimal way to do it? Can one achieve

() ;11— log || fa|| +;11— log || gn || — H (Xy)

if lim —log||f.|| is known to be its minimum, the rate-distorsion va-
Nn—> oo 1’l

lue R(X1,d,A)? Is there a fidelity criterion (d*, A*) optimal satisfac-
tion of which by {g., Un} = would automatically guarantee that
{f,gn} contain enough information for an essentially error-free re-
production of X", and even (1) holds? These are some of the que-
stions we would like to answer. First, some definitions. Here and in
the sequel log’s and exp’s are to the base 2.

A Shannon-type fidelity criterion (d,A) is given in terms of a
function d:9C X 9f — R+ that assigns a non-negative value to every
pair of elements x € &, y € 9, where 9f is an arbitrary finite set
called the reproduction alphabet. Then d (x,y) is interpreted as a
measure of the loss resulting from one’s representing x by y. Con-
centrating on block codes, we now extend d by introducing

dy:%n X Ofn—s R+
through
1 =
An(%,9) =— Z d(x1,9), E=X1...%n, Y = Y1... Pn.
i=1

An n-length block code is a pair of mappings (f., ¢.) such that
the composite mapping ¢.(f,) maps %" into €. The code { fr, <p,,}n"="1
is said to meet the fidelity criterion (d,A) if

) Pr{dn.(X", ¢n(fa(X"))) > A}—0.

Information theory is devoted to the study of cheap ways of
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efficient communication. In the present model we ask for the least
complex f, that achieves (2). Let || f»|| denote the number of different
values f» takes. Rate-distortion theory tells us that

1
3) liminf;—i-longnH =R(d,A)
whenever {f., ¢»} meet the fidelity criterion (d,A). Here R(d,A) is
the rate-distortion function of the source {X.-}i;“1 , and we have

4) R(d,A) =R(X:1,d,A)=minI(X\Y).
X:Py =Py
Ed(X,Y)< A

For more detail on this particular result of Shannon and information
theory in general, we refer the reader to [1] or [2]. Time has proved
that the above is a useful model of data compression. This does not
mean, however, that one should not look for other, equally meaningful
models.

In the past decade or so, information-theoretic research has been
concentrating on multi-terminal communication problems. A parti-
cularly intriguing question several authors have investigated is that
of multiple descriptions, [3]-[6]. We shall concentrate on a charac-
teristic special case of this still unsolved problem, in which the basic
difficulty is already present. In this case, a discrete memoryless sta-
tionary information source {X;}~ with alphabet has to be re-
constructed within small probability of error on the basis of two sepa-
rately encoded versions of the same source. At the same time these
two codes have to satisfy certain fidelity criteria, one for each. For-
mally, let (f.,¢.) be an n-length block code of {X:} that e,-satisfies
the fidelity criterion (d’,A’) where d’ is defined on & X 9f . Simi-
larly, let (g, ¥s) be another n-length block code of {X;} e, - satisfying
the fidelity criterion (d”,A”) where d” is defined on & X Z, i.e,,

(5) Pr{d (X", 0n(fn(X")))> A’} < ¢,
Pr{d” (X", Un(g.(X"))) > A’} < &,.

Further, let the function w, be defined on the Cartesian product of
the ranges of f» and g. so that the inequality

(6) PI'{X” =+ wn(fn(Xn); gn(X")) } < €

holds. We say that (R’, R”) is an achievable rate pair for the (coope-
rative) multiple description problem if for every & > 0 and n = no(3)
there exist n-length block codes (fn,®.), (gn,¥n), a corresponding
common decoder w, satisfying (5)-(6) for some &, < & and

1 1

The determination of all achievable rate pairs for given {X:}, (d’,A’)
and (d”,A”) remains an open problem. '
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In an early paper [7], G.Longo and the first author have intro-
duced a non-cooperative variant of this problem. In the previous sett-
ing, one was looking for optimal pairs of (f.,@,) and ( gn,Yn) along
with a suitable w,. Thus, although the actual coding was supposed to be
carried out at separate locations not being able to communicate with
one another, the design of the overall system of codes was supposed
to be done in collaboration. In fact, typically, an optimal system
would consist of (f.,9n), (g, ¥s) which are suboptimal with respect
to their own fidelity criteria. Some individual rate has to be sacrified
in the interest of the common goal of achieving (6). In other words,
typically, for an achievable rate pair (R’,R”) one has

R'+R">R(d',A')+R(d",A").

What happens if no cooperation in designing the codes is pos-
sible? What is the minimum rate the encoder for (d”,A”) has to
choose if all it knows about the other code is that it satisfies the
criterion (d’,A’)? It can always encode the whole source, i. e.,
R” = H(X,) is a safe choice, and hence the problem is always mean-
ingful. What, however, is the smallest value of R” if R’ = R ,N)?
A particularly interesting case is when

R’ =R(d’,A') R’ = R(d",A")

is an achievable rate pair, and in fact, to every code (fn,9n) and
(gn,Yn) satisfying (5) there exists an w, satisfying (6). Clearly, this
is a property of the fidelity criteria (d’, A’) and (d”, A”). We shall
call them complementary if they have this property. To every (d’,A’)
there are several choices of a complementary (d”,A”). The simplest
choice is Z =X,

d’(x,z7)=1—-=38;, A”=0.

What is the condition for equality? We shall not answer these
complementary (d”,A”) minimizes R(X1,d”,A”)? In the case of
simple fidelity criteria, those for which the distortion measure takes
only one non-zero value and for distortion level A this problem has
been studied in [7]. Clearly, if (d’,A’) and (d”,A”) are complemen-
tary, then

R(X:,d’,A’) + R(X1,d”,A”) > H(X,).

What is the condition for equality? We shall not answer these
questions here. We have shown in [7] that some fidelity criteria have
a natural (optimum) complement, which, however, cannot be defi-
ned in terms of a distortion measure d and distortion threshold A
in the previous sense. In the present paper, we shall introduce a
new kind of fidelity criteria for which the optimal complementary
criterion also belongs to the same class. The corresponding multiple
description problem will be addressed in a subsequent paper.
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1I. An intrinsic distortion measure

We shall restrict ourselves to block codes. An n-length block
encoder of the source {X;} = is an arbitrary mapping f with domain
o&n. Its aim is to compress the source within tolerable distortion.
Compression creates a situation whereby certain source outputs —
those belonging to the same level set of f — become indistinguishable.
This is an unavoidable side effect of data compression. In order to
evaluate it, we shall introduce the concept of an intrinsic distortion
measure (IDM). A function d:% X % - R+ where R+ is the set of
the non-negative real numbers is an IDM if

d(x',x")=d(x",x’) and d(x,x)=0
for every x’,x” and x in & . We extend d to sequences in the usual

way:

d(x’1,x"1), where x' = x"1x’»...x", and

1
dig,5")=—
1

T

13
-txll — x”1 x}lz o xiln .

Given an n-length block code f:%"— 91U where 9 is an arbi-
trary finite set, all the elements of the level set f-!(m), m € 9T, the
full inverse image of m, can be confounded with one another. Qur
fidelity criterion is given in terms of a threshold A. We declare an
error if two sequences confounded by the code f have an intrinsic
distortion larger than A. Let us introduce

d(A) = maxd(gc,z).
xed

;ea

We shall say that the code f emeets the intrinsic fidelity criterion
(d,A) if

®) Pri{d(f-'(f(X")))> A} <e.

This means that except for a set of probability less than ¢, no
confoundable source outputs have a pairwise distortion larger than
A. A non-negative number R will be called an e-achievable rate for
the source {X;} and the intrinsic fidelity criterion (IFC) (d,A) if
for any & > 0 and n = n¢(3) there exist n-length block codes e-meeting
the IFC (d,A). Similarly, R will be called an achievable rate for
{Xi}l."_"1 and (d, A) if it is e-achievable for every e € (0,1).

For the rest of this paper, we fix the source {X,-}ij1 , and denote
by P the common distribution of the Xs. Similarly, we fix the IDM
d and will omit references to both whenever this does not create
misunderstandings. Let R*.(A) denote the infimum of the e-achievable
rates for the fixed source and IDM, and let R*(A) denote the infimum
of the achievable rates in the same case. By definition, we have
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R (A)= sup R'.(A).

ee@©,1)
To state our main result, we need some notation. Let 9f be an
arbitrary finite set. We set

9 (U ,A)={Pux:Ue®%, X € X, Px =P, max Ed(X,X) <A},
UXZX : Pyy = Py

where Py denotes the probability distribution of the random variable
(RV) Y. Note that 8(9f,A) is non-empty for || = |%€ |, since as-
suming % < 9 we can always have U= X.

For arbitrary A = 0 we write

(10) R(A)=R(P,d,A)= inf I(UAX)
o e )
and
(11) R(A)=R(P,d,A)= min I(UA X).
PUX:]%|<|9C 342
PUX<-:8( , A)

Obviously, }~2(A) < R(A). A routine argument will show (cf. the Ap-
pendix) that

LemMMaA 1 - R(A) = R(A).

LEMMA 2 - R(A) is a continuous, convex, non-increasing function
of A. R(A) =z 0 with equality only if A = A* where

A"=max Ed(X,X).
XZ:Py=Py=P

The proof of this lemma will be postponed to the Appendix.

ITI. The Coding Theorem

Our main result is

THEOREM

R.(A)<R'(A)<R(A) foree (0,1).
Proof. The result is a straightforward consequence of the proof
of Berger's Type Covering Lemma [5, Lemma 2.4.1]. In fact, let the
RV’s UX achieve the minimum in the definition of R(A), cf. (11).

Then, by definition, we have

(12) max Ed(X,X)<A.
Pyy = Pyx
Let us fix some 8§ > 0. By the proof of Lemma 2.4.1 in [1], there
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exists a set B c T?U] of U-typical sequences of length n with cardi-
nality

(13) |B| < eXP[n(I(U/\X)+—)]

such that, with the notation of [1],
T < U Tn» (u).

x1 ved [x|Ui
Hence there exists an obvious construction for a function
:%"—>&BU{be} with the property
Fiu)cTr,  (u), uedB.

[x|vl

Let us partition every level set f~!(u), u € & of this function ac-
cording to the joint type of u and x € f-!(u). More precisely, let 8,
denote the set of all possible joint types of pairs of n-length sequences
uedB,xeTr ,and let f:X"—> B X 8, map every x € T* _ into

x1’ [X]
(x)=(f(z), P ),
f&) =7z f(x)x
where Pf (1) is the joint type of f(x) and x. By the Type Counting
Lemma [1], p. 29 and (13),
1 1 log (n 4+ 1)
(14 —log||f||=—log|B| + || 8| ="

Further, if be &, Q€ 8, and f-1(b,Q) is non-empty, then, ob-
viously, for n large enough, n = n(3), (12) implies

d(f-'(b,Q))< A +35.
Next observe that (cf. Lemma 2.12 in [1])

Pr{X"eTFX] }—>1
and thus, for n = n.(3, P)
Pr{d(f-1(f{(X"))) > A+ 38}—0.

On the other hand, (13) and (14) imply

-11;-log||f[|sR(A)+'6

for n = n.(8). Hence by the continuity of R(A) proved in Lemma 2
the result follows.

IV. Discussion

The above model, and in particular, the evaluation of the rate-
distortion trade-off depend entirely on the encoder, inasmuch it is
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the encoder alone that determines the kind of data compression the
encoder-decoder pair achieves.

Formally, we may introduce a decoder in the following way:
given an encoder f: 9" — 9 where O is an arbitrary finite set as

before, we let g: 9 —2X" map the elements of 9T into subsets of
9. Here 2X" denotes the family of all such subsets. We may choose
g(m)=f-1(m).
We can define

max d(x’,x") if xe&.
x €l

x"ed

4 oo else

d(x,8)=

Clearly, this «distortion measure» cannot be derived from a single-
letter measure of the same kind and thus our new model is not a
special case of the classical one of Shannon. Nevertheless, just as in
the case of Shannon’s model, our IFC (8) has an alternative. We shall
say that the code (f, g) meets the IFC (d,A) in the average if with

the above extension of d to a distortion measure on 9%” X 2X" we
have

(15) Ed(X»,g(f(X"))=A.

Similarly to the foregoing, we shall denote by S*(A) the infimum
of those numbers R = 0 for which there exists a sequence (fn, gn)
of n-length block codes meeting (15), and satisfying

lim infllogH fo|l=R.

noe N
One easily sees using the technique applied in this paper that
S*(A) < R(A) for A>0.

Although S§°(0) 4= R(0), the determination of S*(0) is equivalent to a
combinatorial problem solved by McEliece and Posner [8], cf. [1],
Problem 2.4.11. In order to keep this paper selfcontained, we do not
go into the details for which graph theoretic terminology would be
needed.

The special case A =0 of our model can be interpreted within
the framework of Shannon’s classical theory. This special case has
an interesting graph-theoretic interpretation introduced in [9], where
the quantity R"(0) is called graph entropy. Recently, the latter has
been used very substantially in combinatorics to derive efficient non-
existence bounds for the number of functions necessary in perfect
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hashing, [10], [11]. Using [10], one can obtain a more explicit for-
mula for R(0). In order to see this, let us take a closer look at the
set 3(®4,0). Clearly,

8(%,0)={Pyx:UeWU,X €%, Px=P, Pxx(x',x”")> 0 and Pux = Pyx
imply d(x’,x”)= 0 for every x’,x"” € &}.

This has the consequence that for every Pyx € 8(9£,0) the sup-
port of every distribution Pyx( - |u), u € % must be a set on which
d(.,.) is identically zero. If &, is such a set, then x’ € &., x” € &,
imply d(x’,x”) = 0. Let us now introduce a graph G on 9 in the fol-
lowing way: (x’,x”)e E(G), i.e., there is an edge between x’ and x”

in G if and only if d(x’, x”)> 0. Let & c 2% " be the family of all the
independent sets of G. For any fixed Pyx € 8(®£,0) to every u €

there corresponds a unique A c 2X”, the supporting set of the distri-
bution Pyx( - |u). Identifying for every PD Pyx the set 4 with the
corresponding subset of it, we can think of Pyx as a distribution on
% X d. Let us denote the family of these distributions as Pyx runs
over 3(°%,0) by H. Then,
R(0)= min I(UA X).
Pyyed
|U|<|%|?2+2

This is the same formula as in [9], with the slight advantage of
having a bound on the number of independent sets needed (recall
Lemma 1).

Appendix

Proof of Lemma 1 - This a straightforward application of
the Support Lemma [1], Lemma 3.34. Let us fix any distribution
Pyxx € 8(9% ,A), where U € @ and || < ~ . We would like to prove
that there is another PD Py'x'2 € 8(9,4A) for which

Ed(X,X)=Ed(X’',X)
HWUAX)=1I(UANX)

and
U'eU with || <|9C|2+ 2.

Consider the following |9C |2 + 2 continuous real functions over
the set of all the PD’s on & X C:

A
fr,x"(Pxx) = Pxx(x’,x") for every (x’,x”)e % X & except,
(x.,%x.), say.



186 JANOS KORNER and ANDREA SGARRO

A
f o a(Pxx) = Ed(X , X)

A
frecs 1 1 (Pxt) = H(X)

A
(Pxzx)= X |Px(x)— Px(x)|.

(€12 + 2 re o

An application of the Support Lemma to these [2C |2 + 2 functions
shows that there is a random triple as asserted.

Proof of Lemma 2 - The monotonicity and non-negativity are ob-
vious.

R(A) =0 is possible if and only if there is a PD in 8(9f,A) for
which U and X are independent and thus Ed(X, X) < A must hold
whenever Px = Pz = P. Clearly, this happens only if A = A",

Let us look at convexity. Let A;,A; and a €(0,1) be arbitrary

non-negative numbers and write « =1 — &, A = aA; + aA;. Assume
that Pyx and Pyy achieve the minimum in the definition of R(A;) and

R(A;), respectively, Px=Py=P, Ue %, Ve®. Let us introduce
the random triple IWZ by the following conditions. Without loss of ge-
nerality we can suppose that 2% N% = ¢ . Let W have range 2 U
and let Z be conditionally independent of I given W . Further, assume

Pr{iIl=1}=1—-Pr{I=2}=w,
Pwir(-|I=1)=Py(-)
Pwi(-|I=2)=Py(-).

We claim that Pwz € 3(®4U% ,A). Obviously Pz = P. Assume that

Z is an arbitrary RV with PWZ= PWZ' Then

Ed(Z,2)=eEd(X,X)+ aEd(Y,?)<aA; +ad, = A,

where X resp. ¥ are RV’s the joint distribution of which with X resp.
Y equals the conditional joint distribution of Z and Z under the re-
spective conditions I =1 and I = 2. By the last inequality and the
definition of R(A), we see that

RA)=IWAZ)=sI(IWAZ)=I(IANZ)+ I(ZAW]|I).
But I and Z are independent, and hence

RA)=I(ZAW|I)=eal(UANX)+ al(VAY)=aR (A1) + aR (As).
Convexity implies that R(A) is continuous for every A > 0. For A =0
monotonicity implies

R(0)= sup R(A).
A>0
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We will conclude by proving inequality in the opposite direction.
By the well-known Ascoli theorem, cf. [12], max Ed(X , X) is a con-
Pyxx : Pyx = Pyx
tinuous function of Pyx. Hence R(A) is of the form

R(A)= min f(t)
t:g(t) <A

where both f( - ) and g( - ) are continuous. Let A,— 0 monotonically.
Let ¢, achieve minimum in the definition of R(A,). Then, by the
compactness of the range of the t's (the distributions Pyx) we have
a subsequence of the t.’s converging to some t.. Without loss of
generality, we can suppose that #,—f.. Since A, is a decreasing
sequence, for every A, we have g(t.) <A, for every m =n and
hence g(t..) < A, by the continuity of g( - ); and therefore g(t.)=0.
This means that R(0) < f(t.). However, by the continuity of f( - ),
f(t.) = lim f(t,) = lim R(A,). Hence lim R(A.) = R(0).

n— oo n=>» oo n - oo
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