ON CRITICAL GROUPS AND THE HOMOTOPY INDEX
IN MORSE THEORY ON HILBERT MANIFOLDS (*)

by KrzyszToF P. RYBAKOWSKI (in Freiburg) (**)

SOMMARIO. - Sia U un aperto nello spazio di Hilbert H, ¢ € C*~(U,R),
€ € U un punto critico isolato di ¢, e = il flusso generato dalle
soluzioni di 1t = — Vo (u). Se € ha un intorno fortemente ammis-
sibile, allora i gruppi critici di (¢,E) nel senso di Rothe sono
isomorfi ai gruppi di omologia dell’indice di omotopia di ({E})
(Teorema 2). Se ¢ € C*(U,R), 9" (€) é un’applicazione di Fred-
holm, ma & non ha un intorno fortemente ammissibile, allora
tutti i gruppi critici di (¢,€) sono uguali a zero (banali) (Teo-
rema 4).

SUMMARY. - Let U be open in the Hilbert space H, ¢ € C>-(U,R),
£ € U be an isolated critical point of ¢ and © be the flow gene-
rated by the solutions of u = —Veo(u). If § has a strongly ad-
missible neighborhood, then the critical groups of (¢,t) are
isomorphic to the homology groups of the homotopy index of
(n,{€}) (Theorem 2). If o€ C*(U,R), @"(€) is a Fredholm
operator, but & does not have a strongly admissible neighbor-
hood then all critical groups of (¢,%) are trivial (Theorem 4).

1. - Introduction

Let M be a Riemannian manifold of class C? modelled on a Hilbert
space H. If ¢ : M—R is a function of class C?-9, i.e. if 9 € C!(M,R)
and the gradient V¢ : M — TM is locally Lipschitzian, then ¢ induces
a local flow ©, on M generated by the solutions of the ODE

(*) Pervenuto in Redazione il 20 gennaio 1986.

(**) Indirizzo dell’Autore: Institut fiir Angewandte Mathematik der Albert-Lud-
wigs-Universitit - Hermann Herder Strasse 10 - 7800 Freiburg im Breisgau -
West Germany.



164 KRZYSZTOF P. RYBAKOWSKI

x(t)= —Vo(x(t)) (1)
Critical points of ¢ are just the equilibria of =, .

If € is an isolated critical point of ¢, then the critical groups
Ci(9,8),q € Z are defined as

Cq(9,8) =Hy(o°NB, ¢°NB\{E}).

Here H, is the singular homology theory with coefficients in a field
F, c=9(), o°={xeM|o(x)<c}, and B is an arbitrary closed
neighborhood of & ([6], [20]).

The notion of critical groups extends that of the Morse index
of §. In fact, if ¢”(€) exists and is nondegenerate, then the Morse
index of (¢,&) is the dimension m of the unstable manifold of & with
respect of (1). If m is finite, then C, = F for ¢ = m, and C, = {0}
otherwise.

If m is infinite, then C, = {0} for all . ([6]).

Critical groups can be used to prove the generalized Morse ine-
qualities for degenerate critical points ([6]). To do this, one must
impose an asymptotic compactness assumption on ¢ called the Palais-
Smale condition.

Every isolated critical point & of ¢ forms an isolated invariant
set K = {€} with respect to the flow &, . If K has a strongly &, - admis-
sible isolating neighborhood, then the homotopy index #(x,K) is
defined ([8], [13]).

Using the homotopy index theory one can prove the generalized
Morse inequalities for arbitrary Morse decomposition of an arbitrary
isolated w-invariant set S. Here, & is a local semiflow on X and we
only have to assume that S has a strongly m-admissible isolating
neighborhood ([19]).

The strong m-admissibility is an asymptotic compactness condi-
tion related to the Palais-Smale condition ([21]).

Therefore one is naturally led to ask about the relation between
critical groups and the homotopy index.

The aim of this note is to show that, under the admissibility
assumption, the critical groups are nothing else but the homology
groups of the homotopy index (Theorem 2).

This extends earlier well-known results ([2], [11]) to the case
of degenerate critical points.

Moreover, if the admissibility assumption is not satisfied, then,
under some additional assumption, all critical groups are zero, so
they play no role in the Morse inequalities (Theorem 4).
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These two theoretical results show that, essentially, the Morse
theory (with Palais-Smale), both for nondegenerate and for dege-
nerate critical points, can yield no better results than the extended
homotopy index theory. On the other hand it is known that the ho-
motopy index has several advantages over the Morse index or critical
groups, the most important one being its homotopy invariance pro-
perty. This makes the homotopy index a flexible tool for perturba-
tion problem as opposed to the «static» nature of Morse index or
critical groups.

Unless otherwise specified, let = be a local semiflow on a metric
space X. Recall that a closed set N c X is called n-admissible, if given
any two sequences x, € X, t, =0, n € N, such that t,—> o as n—> o
and x,m[0,%.,] € N for all n € N, then the sequence {x,%t.|n € N}
has a convergent subsequence.

N is called strongly m-admissible if N is w-admissible and & does
not explode in N, i.e. whenever x e N and xn[0,w,)c N, then
w; = oo . Here, w, is the supremum of all t = 0 for which x= [0, ¢]
is defined.

We will now state without proof a sufficient condition for strong
w-admissibility, which is a special case of results proved in [11], [14].

ProPOSITION 1 - Let X be a Banach space and U be open in X .
Let A:X — X be a bounded linear operator and f:U— X be locally
Lipschitzian. Let & be the local flow on U generated by the ODE

x = Ax + f(x). (2)

Suppose that there is a direct sum decomposition X = X1 @ X;
with A(X:))c Xi, Ai:=A|X;, i=1,2, and such that dim X; < oo
and re o(Ai1)) < — & for some 6§ > 0.

Then the following properties are satisfied:
1. Iff(0)=0, f'(0) exists and f'(0) =0, then K = {0} has a strongly
rm-admissible neighborhood.

2. If f is compact, i.e. takes bounded sets into relatively compact
sets, then every bounded set N c U which is closed in X is
strongly w-admissible.

Lastly we will recall the definition of an isolating block.
Let B be closed in the metric space X, and x € dB.

x is called an exit (resp. entrance, resp. bounce-off) point of B
if for every solution o¢:[— &;,8:] > X through x = ¢(0) with & =0
and &; > 0 the following properties hold:

(i) there is an g, 0 < & < &, such that o(t)¢ B (resp. o(t)e IntB,
resp. 6(t)¢ B) for 0 <t <e,.
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(ii) if & > 0, then there is an &, 0 <& <& such that o(¢z) € Int B
(resp. o(t)¢ B, resp. c(t)¢ B) for —e1<t<0.

B is called an isolating block if:

(i) each boundary point x of B is an entrance, an exit or a bounce-off
point of B.

(ii) the set B- consisting of all exit and all bounce-off points of B
is closed.

REMARKS - The homotopy index theory for two-sided flows on
compact spaces is due to Conley [2].

This theory was extended by the present author to «admissible»
semiflows on noncompact spaces. For more information on this
extended theory see [2] and [8]-[19].

2. - The main results

Unless otherwise specified, let = be a local semiflow on a metric
space X.

For the rest of this paper, let H,, q € Z, be an arbitrary homo-
logy or cohomology theory with values in an arbitrary R-module G.
We assume that H; = {0} for g <0, and that H, is defined for all
pairs of topological spaces.

By E we denote the set of all equilibria of . If ¢ : X —R is any
function and ¢ € R, we write

o° ={x€X|o(x)=<c}
E.={xeE|9(x)=c}.

If 9: X—R is continuous, then ¢ is called a quasi-potential of
n if for every x € X\ E there is an € >0 such that the function
t—>o(xxt), t€[0,¢), is strictly decreasing.

1
Note that if ¢ is continuous and lim sup - (p(xwt)— @(x)) <0
-0+

for all x € X\E then ¢ is a quasi-potential of To.
In particular, if ¢ € C>-°(M,R), then ¢ is a quasi-potential of 7,.

For the rest of this section, let ¢ be a quasi-potential of & and &
be an isolated critical point of ¢ with EeE..

The critical groups Cq4(9,%) are defined as
Ca(9,8)=Hy(9°NB,9°NB\{E}), g€ Z 3
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where B is any closed neighborhood of &.

The excision axiom of (co)homology easily implies that C,(¢,E)
is independent of the choice of B.

We can now state

THEOREM 2 - Let € € E. be an isolated equilibrium of © admitting
a strongly w-admissible closed neighborhood N .

Then the homotopy index h(w,K), where K = {£}, is defined and
Hy(h(n,K)) = Cq(9,E), g€L. “4)

In other words, the critical groups of (¢, &) are just the (co)ho-
mology groups of the homotopy index of (w,{£}).

Proof. Using the definition of a quasi-potential it is easily proved
that N is an isolating neighborhood of the isolated invariant set
K = {t}. By results in [8], the homotopy index %(=n, K) is defined.
Moreover, given any isolating block B c N, & € B, it follows from
results in [8], [19] that

Hy(h(m,K))=Hq(B,B~), q€Z. &)
Here, B- is the set of all exit and bounce-off points of B.
We will show that there exists an isolating block B < N with

Hqo(B,B-)= Hq(¢p°NB,9°NB\{E}), g€ Z (6)
thereby completing the proof:
We need the following

LEMMA 3 - There exists an a < ¢ and an isolating block B c N,
& € B, such that B-c ¢=*.

Lemma 3 is proved in the Appendix.

Choose a and B as in the lemma.

Recall that A*(B) denotes the set of all x € X such that xnt € B
for all ¢+ = 0 for which x=t is defined. Since & does not explode in
N (by the strong admissibility assumption), it follows that for
x € At(B), x~t is defined for all t = 0.

Similarly A-(B) is the set of all x € X for which there is a solu-
tion ¢:R-— B with ¢(0)=x.

For x € B\A+(B) define s;(x) =sup{t=0|xn[0,t] is defined
and xn [0,t] < B}.

It is easily seen that s 3 is continuous (see Lemma 13 in [19]).

Let C=¢°NB\{€}. Then CNA+*(B)=¢. In fact suppose
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x€CNA*(B). Then xwt—>& as t—> oo . Therefore x # & implies
o(x) > o(E) = ¢, a contradiction.

Define D:[0,1] X C—C by
D(z,x)=xn(< - si(x)). )

D is well-defined and continuous. Moreover, our choice of B
implies that B-< C and, clearly, s;(x) =0forxeB-,soD(z,x)=x
for x € B-. Moreover, D(0,x)=x and D(1,x)e B-, for xeC.

This proves that D is a strong deformation retraction of C onto
B-.

It follows that
Ho(B,B-)=Hy(B,¢o"NB\{t}), geZ. ®)
Now notice that if x € B\A+(B) and ¢(x)> c, then
<p(x'n:sg(x)) <=a<c
so that there is a unique #(x) < sg(x) such that @ (xwt(x))=c.
Define for (t,x)e [0,1] X B

x if p(x)=c,
xn(t/(1—-=)) ifo(x)>c,xeA*(B),0<t<1,
E if o(x)>c,xe A*(B), = =1,

plt,x)= {xn('c/(l—‘r)) if o(x)>c,x¢ A+(B),0<t<1,

/(1 —=)<t(x) 9)
xTt(x) if o(x)>c,x¢ A*(B), 0 <1< 1

and ©/(1 — <) > t(x)
xTt(x) if o(x)>c,x¢ A*(B), vt =1

p is a well-defined map from [0,1] X B— B. In the Appendix we
prove that p is continuous.

Clearly p(<,x) =x for x€¢°NB, and p(0,x) =x and p(1,x) ep°NB
for all xe B.

Consequently p is a strong deformation retraction of B onto
o°NB.

Thus we obtain that
Hq.(B,o°NB\{E}) = Hy(¢°NB, ¢9°NB\{E}), geZ (10)
(8) and (10) imply (6) and the theorem is proved.

We shall now specialize to the local flow =, of section 1. If £ is
an isolated critical point of (i.e. an isolated equilibrium of) =,
then the critical groups of (¢,£) are defined even if there is no
strongly =,-admissible neighborhood of & .
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However, using a result of Mawhin and Willem, we will prove
that in such a case, under some additional assumption, all critical
groups are zero, so they play no role in the Morse inequalities. Since
all considerations are of local character, we may assume that M is
an open set in a Hilbert space H, £ =0 and ¢(£)=0.

Consider the following assumption (S):
(S) U is an open neighborhood of 0 in a Hilbert space H, ¢:U—R

is a C?-function with Vo¢(0)=0, Vo(u)=0 for us=0, and
L=¢”(0): H—>H is a Fredholm operator.

We use some arguments from [7]. Let R(L) (resp. N(L)) be the
range (resp. the kernel) of L. Let Q: H — H be the orthogonal pro-
jector of H onto R(L). Write u=v+w where v=Qu and
w=(I—-Q)u. Then ve R(L) and we N(L).

Now the implicit function theorem implies that there is a ball
0 < H centered at zero and a unique C'-map g:QNN(L)-> R(L)
such that g(0) =0 and

QVo(w+ g(w))=0 for we QNN(L). (11)
Let

d(w)=o(w+g(w)). (12)
Then ¢ is a C?-function (!) and

Vow)=(I—-Q)Vo(w+ g(w)) (13)

¢"(w)=(I - Q) ¢”(w+ g(w)) (Id + g'(w)) (14)

for we QNN(L).

By the generalized Morse Lemma due to Mawhin and Willem [51,
there is an open neighborhood U c U of 0 in H, an open neighbor-
hood Wc QNN(L) of 0 in N(L), and a homeomorphism # from U
into U such that %(0) = 0 and

o(h(u))=1/2(Lv,v)+ §(w) (15)
foru=v+webU.

Let R(L)= H+* @ H- be the direct sum decomposition of R(L)
into the subspaces H+ and H- on which L is positive— (resp. nega-

tive—) definite, and let v = v+ + v~ be the corresponding decompo-
sition of v € R(L).

We can now state

THEOREM 4 - Let (S) be satisfied and ¢ be as in (12). Let
m = dim H-. Then the following properties hold:
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1. If m = «, then all critical groups of (9,0) are trivial.
2. If m< e, then K={0} has a strongly m-admissible isolating
neighborhood, h(w,,K) is defined and for all q € Z
Cq(9,0) = Hy(h(mo,{0}) = Hy_m(h(ms,{0}))=Cq($,0)  (16)

Here, Tg is the local semiflow on QNN (L) generated by w=—-Vé(w).

Proof. Let B be any closed bounded neighborhood of 0 in H, Bc U.
Then
Cq(9,0)=Hy(e°N1(B),o°Nh(B)\{0}) = H,(W’NB,{°"NB\{0}=
=Cq(¥,0) (17)

where
Y(u)=1/2(Lv,v) + d(w). (18)
Consider the ODE
u=—Vi(u) (19)

(19) is uncoupled and has the form

v+ = —Ly+
v- = —Lv- (20)
w = —Vo(w)

Let us prove that 0 is the only critical point of ¢ in U. In fact,
V{(0)=0 of course. If Vy(u)=ILv+4Vd(w)=0, then v=0 and
Vé(w)=0. Now (11) and (13) imply that Vo(w + g(w))=0, so
w+gw)=0, i.e. w=0. The claim follows. If m < e, then by
Proposition 1, {0} has a strongly T,-admissible isolating neighbor-
hood, so #(m,,{0}) is defined. By the same token, A (x,,{0}) is de-
fined .

Here we have used the fact that dim N(L) < o . Since T, is a
product of local flows, we obtain

h(my,{0})=Z"Ah(m,{0}). (21)

Here, 2 is the homotopy type of the pointed wm-dimensional unit
sphere. (cf. [14]). ;

Hence, using simple arguments from algebraic topology (cf. the
proof of Proposition 3.1 in [15]), we get

Hq(h(my,{0})) = Hy-m(h(ms,{0})) (22)
(17), 21) (22) and Theorem 1 imply formula (16).
Now assume that m = « . By our assumption BNN(L) is an
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isolating neighborhood of {0} with respect to m;. Moreover, since
dimN(L) < e, BOAN(L) is trivially strongly =, - admissible.

Let € > 0 be arbitrary and set
By = {v+ e H*|(Lv+,v+)<¢g} (23)
By={v-eH-|—(Lv-,v-)<¢}. (24)

Since ¢(0) =0, there is a ball W in N(L) at 0 with radius < ¢
such that

|o(w)| <e/2 for weW (25)
Choose € > 0 so small that Bi@B:@Wc U.

By Lemma 3, there is an isolating block Bsc W, 0 € B3, with
respect to T such that B ;< $-% for some & > 0. Choose such a

block B3 and let B=B1@Bz@B3.
Define for t€[0,1], u=vt4+v-+weB
Di(r,u)=(1 —=)vt+v-4+weB.

D; is a continuous map from [0,1] X B to B. Moreover
Di([0,11 X ({*NB))cy*NB. Let t€[0,1] and u € (*NB\{0}. Then
Di(t,u)=0if t<1, of course. Suppose Di(1,u)=0. Then v-+w=0
so u =v*+ = 0. But then {°(u)> 0, a contradiction.

Thus using D;, we see that (N (B,@ B;) is a strong deforma-

tion retract of ¢°NB and {°N (B, @ B3)\{0} is a strong deformation
retract of Y°NB\{0}.

Thus
Cq(y,0)= Ha(4"N (B @ Bs), Y°N (B, @ B3)\{0}). (26)
As in the proof of Theorem 2, define for u=v- +we B; @ B;
s+(u)=sup{t|um,[0,t] is defined and u=,[0,¢] € B.@ Bs}.

If u¢ A+(B.@® Bs), then s*+(u) < « . Moreover, as before, s+ is
easily seen to be continuous on B:@ B3\ A+(B.@ B3;).

Let us show that YN (B @ B3)\{0}NA+(B,@ B3s)= ¢ . In fact
let u=v-+weN (B.@ B3)\{0}.

If v—0, then from (20), u ¢ A+*(B.@ B3). Suppose v- =0.
Then w0 and ¢(w)=<0. Since ¢ is a potential of ;, it follows
that the solution of w through x = w must leave B;. The claim is
proved. Define for 1€ [0,1], ue ¢°N (B.@ B;\ {0},

Dy(v,u)=umry(z - s*(u))c B.@ Bs.

Since ¢ decreases along solutions of =, ,D:(t,u) € {*\{0}.
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D, defines a strong deformation retraction onto
q:"ﬂ (632@B3UB2@B3") = aBz@B3UBz@Bs“.
The last equality is a consequence of our choice of €,8 and Bs.

Now (26) implies that
Cy(V,0)= H,({°N (B,@® Bs), 4B @ BsUB.@® Bs~). 27

Let p: [0 1] X B;— B3 be defined as in (9) with ¢,§,n,B being
replaced by ¢,0,w;, B3, respectively.

For t€[0,1], u=v- +w € B, + B; define
Ds(v,u)=v- +p(7,w).

From (9) we see that ¢(p(t,w)) < d(w). Hence, if u € {?, then
Y(Ds(v,u))=Ya(Lv=,v-)+ (p(v, W) =Y(u) < 0.

ThereforeD; : [0,1] X (V°N (B2@ B3))—> YN (B @ Bs) is well-defined
and continuous. D; is a strong deformation retraction onto

YN (B2®(9°NB3)) = B @ (§°N By).

Moreover the restriction of D; to [0,1] X (dB.@ B:UB,@® B3~) is
easily seen to be a strong deformation retraction onto

8Bz(-9(<b°ﬂB3) UBz@Bf.

Thus from (27),

Cq(Y,0) = Hy(B.®($°NBs), 3B ®($°NBs) UB.@ Bs).  (28)

On H- define the norm |v-|= —¢-1. (Lv- v-).
| v—| is equivalent to the scalar product norm on H-.

Since H- is infinite-dimensional, a well-known result of Dugundji
implies that there is a strong deformation retraction Ds of the closed
unit ball Q in (H-,| |) onto 90 (see [4], page 66 for an easy proof

that there is a retraction r:{—>9Q and define the strong deforma-
tion retraction Ds by Ds(7,x)=(1 — ) x + <r(x)).

However, Q= B;, so there is a strong deformation retraction D4
of B, onto dB;. Define Ds(t,v— + w)= Ds(z,v-) + w.
Using Ds and arguments as above, we get from (28)
Cy(Y,0) = Hy(dB: ®(¢°N Bs3), 3B @ (9°N B3)) = {0}. (29)

Now (17) and (29) complete the proof that C,(¢,0) = {0} for all
qel.

REMARKS - Since ¢ defines a local center manifold for the un-



ON CRITICAL GROUPS AND THE HOMOTOPY INDEX etc. 173

coupled system (20), formula (16) is a variant of the index product
formula. For a more general version of the index product formula
see [14]. Related finite-dimensional results also appear in [1] and [3].

3. - Appendix

Proof of Lemma 2: We use arguments from the proof of Theorem
2.1 in [8].

There is an open set U,£ € U with N: = Cl0 c Int N, and func-
tions g+t =g+, g = 8% defined on page 360 in [8] such that for so-

U
me § >0 and all 8,8, 0 < 81,8 <3 the set
B=Bs5=Cl{xeU|g+(x)< 8,8 (x) < &} (30)
is an isolating block with
B-={x€dB|g+(x)=381}. 31

(Note that in [8], B+’ is written to denote what we mean by B-).

Fix & < §. We will show that there is an a < ¢ and a 8, < § such
that B- c ¢=. In fact, otherwise, there is a sequence x.€ U with
g5 (xn) =81, @(xn)=c—n-lforne N, and g (x,)—0 for n—> oo . As
in the proof of Theorem 2.1 in [8], this implies that for a subsequence
of {x,}, denoted again by {x.}, we have

xn—>Xx€A-(N) as n— o,

There is a solution ¢ : R-— N of © with ¢(0) = z. By admissibility
c(t)—>E as t— —oo . Since g+ and g~ are continuous on B, it follows
that g+(z) = 8 > 0 so z = &. Therefore ¢(z) < 9(§)=c. However, by
our assumption ¢(z) = ¢, a contradiction which completes the proof.

Now we prove that p defined by (9) is continuous. In fact, other-
wise there are B > 0, and a sequence (7., %s) € [0,1] X B converging
to (t,x)€[0,1] X B and such

d(p(tn,xn), p(t,x)) =8 for all n (32)

where d denotes the metric on X .

We will consider several cases, each time arriving a contradiction.
1. o(x)<c: Then p(t,x)=x
By (32), we may assume that ¢(x.) > ¢ for all n. Thus o(x)=rc.

1.1. xe A+(B):
Then, clearly, x =& and so x,—>& as n—> « . Moreover, by
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(9), for every n, p(tn,xn) = xn7t. for some #, >0 and
Q(xaTts) = c, Or else p(tn, x,) =E.

By (32) we may assume the first case for all n.

We claim that x,nt,—> & for n— o . In fact, this is so if {¢,}
is bounded, since €nt =& for all t = 0.

If {t,} is unbounded, then, w.l.o.g. t,—> o . Then by admissi-
bility {x.nt.} has limit points. Let z be any such limit point,
then z € A-(B) (cf. [8]), and by our assumption, ¢(z)=c.
As in the proof of Lemma 2 we obtain z = £. The claim is
proved.

It follows that p(t.,x.)— & = p(7, x), a contradiction to (32).

12. x ¢ A*(B):

We may assume that x,¢ A+(B) for all n since A+(B) is
closed. We claim that #(x,)—0 as n—> o . In fact let ¢ > 0
be any small number. Since x =&, ¢(x)=c. We obtain
o(xme) < @(x) =c. Thus @(x,me) < c for all n large enough.
Hence t(x.) < ¢ for all such »n, and the claim follows. By (9)
p(Tn, Xn) = Xy S, with 0 < s, < #(x,). Now the claim implies
p(Tn,Xn)=>x70 = x = p(7,x) a contradiction to (32).

o(x)>c:
Then we may assume that ¢(x,) > ¢ for all n.
21. xe A+(B):
Then by (32) we may assume that xn ¢ A*(B) for all n.
2.1.1. {#(x,)} is unbounded: |
Then w.lo.g. t(x,)—> o : If T < 1, then
Ta(l — tp)l—>1(l — 1)1

as n—> o, hence, in particular, 1,(1 —<,)-1 < t(x,) for n
large enough. Then (9) implies e (Tn, Xn)—>p(7,x), a contra-
diction. If v =1, then p(t,x) =&, and p(=,, X») = x.Tt, With
tn—> o, and @(p(tn, %)) =c. As in the proof of Lemma 2,
this implies that p(<t,..x,)— &, a contradiction.

2.1.2. {t(x.) } is bounded:

Then, w.l.o.g. t(xn)—>t1< o as m—> . It follows that
C=0(xnTt(xs)) > (x7to), SO @(xTte) = c. But xmto € A*(B),
hence xmty = €. (Note that this cannot happen if & is a local
(two-sided) flow). Thus x=t = & for all ¢ > #,. This and )
clearly imply that p(t., x.)—>p(7,x) as n— =, a contradic-
tion.
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x¢ At(B):
Then we may assume that x, ¢ A+ (B) for all n.

We claim that #(x,)— t(x). In fact, if M >0, M < t(x) is given,
then ¢(xmM) > ¢ for n large so t(x.) > M for n large. Similarly,
t(x) < M implies ¢ (x,) < M for n large and the claim follows. Our
claim and (9) now clearly imply that p(<., x.)—p(T,x), again a
contradiction to (32).

The proof is complete.
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