ON A THEOREM OF GEL' FAND AND A NEW PROOF
OF THE ORLICZ-PETTIS THEOREM (*)

by BoLis Basit (in Cairo) (**)

SOMMARIO. - In questa nota si estende al caso di funzioni con valori
in F-spazi un teorema di Gel'fand sulle funzioni debolmente con-
tinue definite su uno spazio topologico con valori in uno spazio
di Banach. Usando questa estensione si da una nuova dimostra-
zione del teorema di Orlicz-Pettis in F-spazi con base.

SUMMARY. - In this note a theorem of Gel'fand on the weak continuous
functions defined on topological spaces with values in Banach
spaces is extended to the case of functions with values in F-spaces.
Using this extension we gave a new proof of Orlicz-Pettis theorem
in F-spaces with basis.

1. - Introduction

In this note G will denote a topological Hausdorf space, X a linear
space, X" the linear vector space of all continuous functionals on X
and I" a total subset of X*. A function f: G— E is said to be weakly
continuous iff x*(f(t)) is continuous for each x' € X* and f is called
I'-continuous iff x*(f(t)) is continuous for each x" € I'. In this note
we extend a theorem of Gel'fand [1] stating: if a function f:G—>X
defined on G with values in a separable Banach space B = X is weakly
continuous, then it is discontinuous on a subset of first category of G.

(*) Pervenuto in Redazione il 18 settembre 1985.
(**) Indirizzo dell’Autore: Cairo University, Faculty of Science, Department of Ma-
thematics - Cairo (Egypt).
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In Sec. 2 we prove that if X = E is a complete linear metric space
(F-space) with basis {e.}, and if I' ¢ E* is the total sequence of the
coordinate functionals for {e.} and if f: G— E is Icontinuous, then
it is discontinuous on a set of first category of G.

Let X Xn be a series of elements from E. It is called weakly sub-
M=1
series convergent iff for each subsequence = = {r(M) } of naturals N,

the series X x, weakly converges to an element x: € E. It is called

NET

subseries I'-convergent iff for each subsequence m — N there exists
%= € E such that X x"(x.) = x"(x:),x" € T'. In Sec. 3 we give a new

nexn

proof of Stiles extension of the Orlicz-Pettis theorem. This theorem

says if the series X x, with elements in a Banach space B is weakly
neN

subseries convergent, it is subseries convergent [3], [4]. This result
has been extended to F-spaces with basis by Stiles [5] and to separ-
able F-spaces with separating dual by Kalton [2].

2. - Gel’fand theorem

In this section G will denote a topological space, and E an
F-space with basis {e.} and T the total system of E* consisting of the
coordinate functionals for {e.}, ie. I' = {x",: x"»(er) = 8mx,n, k € N}.
We prove the following extension of a result of Gel'fand [1].

THEOREM 2.1 - Let f:G— E be T-continuous. Then f is disconti-
nuous on a set of first category of G.

Proof. Consider the following expansion of the function f by the
basis {es}:f(t)= X an(t) en,t€G. Let x4 €T we have x'%(f()) =
=or(t),keN. Hg;ée {ax(t) } are continuous functions on G. There-
fore the partial sums S,(t)= % ar(t)er are continuous functions.

k=1
Since f(t) is a point-wise limit of {S.(¢) }, by Baire category theorem

([6] p. 13) f(t) is discontinuous on a subset of first category of G.

3. - Orlicz-Pettis theorem

Let E be an F-space with dual space E* separating the points of
E. Denote by so the set of all subsequences of the naturals N. Obvious-
ly, so0 is a closed subset of the complete metric space s of all sequences
of numbers endowed by the metric
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_ 3 | & — i —fEY =
OL(E..,TI)— ifl 21(|+|g1—n1|) ’ E—{Eﬂ})n {nl}es (3.1)

Hence (so,d) is a complete metric space and therefore it is a set of
second category. Let I' be a total subset of E* and let the series

X x, be I'-subseries convergent. So for each =« € so there is x: € E

n=1

such that X x"(x,) = x*(x:),x" € I. Define the function ¢: so— E by

NET

the following formula:

o(T)=%x= Z Xn, TESo (3.2)

nen

We prove the following
LEMMA 3.1 - The function ¢ defined by (3.2) is I'-continuous.
Proof. Let {m} € so,"xk—> T, k— . We show that
x(o(rr) ) > x*(9p(w)), k—> o ,x" €T.

Indeed, since the series X x"(x,) is convergent for each subsequence

nNET
nc N,x" €T, it is absolutely convergent, i.e. 3 | £ (%) < o ,x" €T.
n=1
Hence for each £ > 0 and each x* €T' there exists m =m(x",¢)e N

such that < | x"(x.)] < e/2. Since mr—>T,k—> o, there exists
k=m+1

r = r(x"e) such that m¢(n)==(n) ,k=2r,n=1,2,...,m. This implies
the inequality

| x* (@ (Tx) ) — 2" (@ (w) )| =

=] X &(Xe)— Z X(Xo)|<2 T |X(x)| <& k7.
1

new k neT n=m+
This proves the lemma.

We now give a new proof of the extension of Stiles of the Orlicz-
Pettis theorem.

THEOREM 3.1 - Let E be an F-space with basis {e,} and T be the

total system of the coordinate functionals for {e.}. Let T x. be sub-
n=1

series I'-convergent. Then it is subseries convergent.

Proof. Since (so,d) is a set of second category, by Lemma 3.1
and Theorem 2.1 the function ¢ defined by (3.2) has at least one point
of continuity. Using this fact we prove that || x,||— 0,7 —> o . Assum-
ing the contrary, there exists § > 0 and a subsequence © € N such
that || x» || 2 8,7 € ©. Without loss of generality we can assume that
|| xn|| = 8,n € N. We show that ¢ has no points of continuity. Assum-
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ing that ¢ is continuous at m € sy and considering the sequence

To(n), n = k we get Tr—>To,
0 ,h=k

k— o« . Hence o¢(wr)—> ¢ (™), k—> o . We have

{7} € so defined by the formula m(n)= {

10 (m) = 0 (1) = || eyt || >0, ko> o0

This implies that there exists m = m (o, 8) such that ||x,=0(n) <8,
n=m and this is a contradiction with the assumption | x.|| > §,
n € N. Hence every series satisfying the conditions of Theorem (3.1)
has the property that its n* element tends to 0 when n—> . We
now show that for each « € so, the series X x, is convergent. Assum-

neET

ing the contrary, there exists o € sp such that X x, is not conver-

nGﬂo
gent. In this case there exists § > 0 and two subsequences {p.}.{q:} N
such that the sequence {yi},yx = Z Xxn,pr < # < gr, gk < pis1 satis-

nem
0

fies the property that ||y:|| = &,k € N. The series X y: is weakly
k=1
subseries convergent and hence || yx||—>0,k—> o . This is a contra-

diction with the construction of {y:} and this proves the theorem.

Finally, we note that in the proof of Theorem 3.1 we used only
the following property of the F-space E. Every I-cotinuous function
f:G— E is continuous on at least one point of G.
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