ON THE COUNTABILITY
OF A SET OF REAL NUMBERS (*)

by ALEXANDER ABIAN (in Ames) (**)

SOMMARIO. - Si dimostra che se ogni sottoinsieme numerabile di un
insieme S di numeri reali é sommabile, allora S & numerabile.
Poggiando su cié si da una originale dimostrazione della nume-
rabilita di insiemi di sequenze ortonormali.

SUMMARY. - It is shown that if every countable subset of a set S of
real numbers is summable then S is countable. Based on this an
original proof of the countability of any sey of orthonormal se-
quence is given.

To the knowledge of the author Theorem 1 below which states a
rather basic property of real numbers has not appeared in the litera-
ture. Based on Theorem 1 a new set-theoretical proof (in contra-
distinction to the known function-theoretic proofs) is given of the
countability of any orthonormal set of infinite real sequences.

In what follows w stands for the first infinite ordinal and w; for
the first uncountable ordinal. We need the following obvious lemma.

LEMMA 1. - Let W be a set of real numbers such that W is well
ordered by the usual order of the real numbers. Then W is countable.

Proof. Let us assume to the contrary that W is uncountable. But
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then uncountably many rational numbers can be chosen each located
between a pair of consecutive elements of W. This contradicts the
fact that there are contably many rational numbers.

THEOREM 1. - Let S be a set of real numbers such that every count-
able subset of S is summable. Then S is countable.

Proof. Let us assume to the contrary that S is uncountable. But
then S would have a subset S; all of whose elements are of the same
sign, say, positive and such that S; is in one-to-one correspondence
with w;. Let us recall that w; has uncountably many countable initial
segments and that the set of these initial segments is well ordered
by the set-theoretical inclusion. Since every countable subset of S; is
a summable subset of positive real numbers we may consider the set
W whose elements are the sums of those subsets of S; which (by
virtue of the above one-to-one correspondence) are in one-to-one
correspondence with an initial segment of w;. But then, clearly, W
would be an uncountable subset of the real numbers which is well
ordered by the usual order of the real numbers, contradicting Lem-
ma 1. Thus, our assumption is false and the Theorem is proved.

As shown below, Theorem 1 provides a novel (and perhaps quite
original proof of the following classical result [1, p. 237] of the Hil-
bert Space of the square summable (real) sequences.

THEOREM 2. - Let N be an orthonormal set of (countably) infinite
sequences of real numbers. Then N is countable.

Proof. Let us assume to the contrary that N is uncountable. Let
Ni be a subset of N such that N; is in one-to-one correspondence
with w;. Let M be an w; by w matrix whose rows are the elements

r1,72,73,...,1i,... (for i€ew)) of Ni. Let M be given by:
aa ap ai ... d4dij
an 4arn an ... Qj
M=1...
aii Qi 4z ... QAij ..

foriew; and jew.

Let us denote by e; the w by 1 matrix which is the transpose of
the matrix (1,0,0,...). Clearly, the ineer product 7; - e; is the length
of the projection of e; on r;. Moreover,

(1 ri- ey =au for i € wy.

Now, let us consider the set S of the squares of the elements of
the first column of M, i.e,,

(2) S={afl,agl,agl,...,afl,...} for i€ wy
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We claim that every countable subset C of S is summable. This
is because from (1) it follows that the elements of C are the squares
of the lengths of the projections of e; on the elements of a denumer-
able orthonormal set C. Thus, by Bessel’s inequality [2, pp. 15-17]
the sum of the squares of the elements of C is less than or equal to 1
which is equal to the square of the length of e;. Hence, every count-
able subset of S given by (2) is summable and therefore, by Theo-
rem 1, the set S is countable. But then since the first column of M
has at most twice as many distinct elements as S does, we see that
the first column of M has countably many distinct elements. Conse-
quently, for a countable ordinal u; we have:

3) Au1 = ay with us€w; for i>u;.

Now, let us consider e; instead of e; where e; is the transpose of
the matrix (0,0,...,1,0,0,...) with 1 at the j-th coordinate. But then
with a reasoning analogous to the case of e; we derive (in accordance
with (3)) that for a countable ordinal u; we have:

()] Quj = Qij with ujew; and jew for i> u;.

Finally, let u = sup{u;|j € w}. Clearly, u is a denumerable ordi-
nal and from (4) it follows that for the rows 7, and 7, of M, we have:

5) ry=17. for vews with v>u.

But then (5) implies that M has only countably many distinct
rows which is a contradiction since by our assumption M has unco-
untably many (in fact wi) distinct rows. Thus, our assumption is
false and the Theorem is proved.
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