NONLINEAR MONOTONE BOUNDARY CONDITIONS
FOR PARABOLIC EQUATIONS (*)

by G. MoROSANU and DaN PETROVANU (in Iasi) (*%)

SOMMART0. - In questo lavoro viene trattato il problema (0.1) - (0.3),
con 1 operatore monotono. | principali risultati sono contenuti
nei teoremi concernenti Uesistenza, l'unicita, regolarita e compor-
lamento asintotico delle soluzioni,

SUMMARY. - This paper is handling problem (0.1) - (0.3) with 1 a mo-
notone operator. The main results are contained in the theorems
concerning existence, uniqueness, regularity and asymptotic be-
haviour of the solutions.

0. - Introduction

In this paper we shall investigate the problem:

du z . ai diu _
OD e+ B, GV et 55+ A, wy = 02, ),

for t>0,0<x<1,
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(0.3) u(0,x)=u(x), 0<x<1,

where

n n . ai—k diu
. - — ji-k i -
Musui= 3 2 (=1 [@i(x) <53 |
(n natural 21,k = 1,2,...,n) and 1:D(l) R — R?" is assumed to
be maximal monotone (possibly multivalued) mapping.

Under suitable hypotheses on a;; (i,j=1,2,... ,n), A, f, and uo
we shall handle the existence, uniqueness, and asymptotic behaviour
as t— o for the solutions of problem 0.1), (0.2), (0.3). The idea is
to restate this problem as an initial-value problem (IVP) for an or-
dinary differential equation in 12(0,1) in which the boundary con-
dition (0.2) is «incorporated» in the definition of some associated
operator which turns out to be maximal monotone. So we can derive
our results by using the existence theory for evolution equations
associated to monotone operators and also exploiting the particula-
rities of our problem.

The stationary case of the problem we are talking about is also
considered.

The physical models which lead to our problem come from «heat
conduction» theory (case n = 1) or from «beam theory» (case n=2).

We emphasize that, to our knowledge, boundary condition (0.2)
was never considered in the literature (in this general form). This is
the main novelty of the paper. Notice also that many classical boun-
dary conditions (BC) can be derived from (0.2) by making suitable
choices of 1 and, eventually, of a;;. Let us give a few examples:

ExaMPLE 1 [ =9g (the subdifferential of gi1), where

griR¥—>] —eo, o]
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is defined by

0, if fk=bk,5k=Ck,(k=1,...,1’l)

gi(col[r1,51,...,7n,5.]) : = {+ o , otherwise,

with be,cr (k=1,...,n) fixed in R. Then (0.2) becomes

dk-1y dk-1y
(0’2'1) axk—l (t,0)=bk,m(t,l)=0k,t>0,
(k=1,...,n): bilocal conditions.

EXAMPLE 2 1=23g;, where & :R™ 5] — o, 0] is defined by

0, ifri=si(k=1,...,n)

gi(collry, si, .., 7u,80]) 1 = + oo, otherwise.

In this case (0.2) becomes

k-1 k-1
e (6, 0= Z (1), (M) (£,0) = (Manr ) 1, 1), £ 0

(k=1,...,n). If in addition we admit that a;;(x) = Ci(i,j=0,1,...,n)
the matrix (C;) is positive semi-definite, and C,, > 0 (that is a spe-
cial case of hypothesis (H») below) then we obtain the periodic
conditions :

oku oku
dxk dxk

EXAMPLE 3 - Take n =2, an(x)=C1 20, an(x)=C, > 0, and the
other a;i(x)=0. Let g;: R*—] — » ] be defined by

Cz(dsfz——d4$2), if 1"1=d1, S1=d2,
+ oo, otherwise,

0.2.2) (t,0)= (¢,1), t>0 (k=0,1,...,2,.4).

gs(col [rl,sl,rz,&]) = {

with di, d,, ds, ds some fixed real numbers and let { = dgs. In this
case, problem (0.1), (0.2), (0.3) becomes:

(0.1.3) st + Crthesss — Crtdes + A(x, ) = (2, %),

0.23)  u(t,0)=di, u(t,1) = d, uu(t,0)=ds, Ue(t,1) = da,
(03.3) u(0,x)= us(x),

i.e. a quasi-stationary problem of the beam theory.

EXAMPLE 4 - Let I be a (2n X 2n)-positive, semi-definite matrix
(not necessarily symmetric). In this case, (0.2) (where «€» is repla-
ced by «=») represents linear boundary conditions. Let us recall that
an m X m positive, semi-definite matrix M is a subdifferential if and
only if M is symmetric (more exactly, in this case the matrix M is just
the Fréchet differential of E—=>(1/2) e Mg ,E € R™, where & denotes
the transposed of £), i.e. when the (linear) BC are self-adjoint. The-
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refore, assuming that ! is a general positive, semi-definite matrix we
effectively go beyond the case of subdifferential in (0.2).

Not only classical problems, but also many other problems can
be expressed in the form 0.1), (0.2), (0.3). To illustrate this we give
the following simple example

EXaMPLE 5 -Taken =1, au(x) : =1, an(x) : =0, awp(x) : =0 and
let 1 = dIx, where K is a closed, convex subset of R? and Ik is its
indicator function, i.e.

e ([2])= {0 BLadeE

+ o, elsewhere.

Then problem (0.1), (0.2), (0.3) becomes
(0.1.5)  ur— ux+ A(x,u)=1(t,%),

025 [409ex [ _uleY Jen ([Len])

(0.3.5) u(0,x)=us(x).

Here N(col[r,s]) is the normal cone to K at the point
col[r,s]eK, ie.

N([ED)= 1l em

wi(r — &)+ wa(s — &) =0, (%) [Z;]GK}.

NOTATION, TERMINOLOGY, AND BACKGROUND MATERIAL

Let X be a Banach space and denote by || - ||x its norm. If X is
Hilbert, we denote by (.,.)x its inner product.

By We?(a,b) (knatural, 1S p < + ,and —oo K a<b < + )
we denote the usual Sobolev spaces. For the particular cases k=0 and
p = 2 we shall use the well-known notations L?(a,b) and H*(a,b),
respectively. In the vectorial case we use the usual notations
Wk (a, b; X), L?(a, b; X), H*(a,b; X).

The space of all continuous functions:
[a,b]>X (— o <a<b<+ )

endowed with sup-norm will be denoted by C([a,b]; X). If X =R
we simply write Cla,b] instead of C([a,b]; R). Finally, C(")“(a,b)
denotes the subspace of C[a, b] of all infinitely times differentiable
functions with support included in the open interval Ja,bl[.

We assume the familiarity of the reader with the monotone ope-
rator theory, convex analysis, and the existence theory for evolution
equations associated to monotone operators. For notation, termino-
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logy and fundamental results in this direction we refer the reader,
e.g., to V. Barbu [2], H. Brézis [3].

1. - Some Lemmas

We state first the following

LEMMA A - Let m > 2 be a natural number and let ue Wm1(0,1).
Then, for each je€{1,2,...,m — 1}, there exists a constant Cim>0
such that

L0y [u?|lcwon < Cim|| u||2on + ||u™ ||y .

We omit the proof of this «Poincaré Lemmas A. Notice only that
for m = 2 we found the proof of Lemma A in R. A. Adams [1, p. 70].

In all which follows we denote by (Hi), (Hz), (Hy)’ and (H5) the
following sets of hypotheses:

(H) [:D()cR*">R> is g maximal monotone (possibly multiva-
lued) mapping (n is a fixed natural number =1).

(H) aijeWi=(0,1) (i,j=0,1,...,n) and, besides,

Mz

aij(x) Ei€;j =0, ae. xG]O,i[,
0

for any &: = col[£o,&1,...,E,] € R*™*!. Moreover Anm(x)> 0,
0<x<1.

(Hz)' aije Wi=(0,1) (i,j=0,1,...,n) and, besides,

i,

—ay
1]

2 ay(x) 85> 082, ae xe 10,11,
i,j=0

for any &: = col [Eo,E1,...,E,] e R+I(cy > 0).
Clearly, (H,)’ is stronger than (H,).

(Hs) The function x> A(x,r) is in 12(0,1) for any fixed r e R.
Besides, the function r=>A(x,r) is continuous and nondecreas-
ing from R into R, for a.e. x € J10,1T.

Now, denote X = 12(0,1) and consider the operator
T2n : D(Tzn) cX->X
defined by

(1.1 D(T2) : ={u € H"(0,1); u satisfies (1.3) below},

(12) Twu:= X (=1)i[a;u®]0

i,j=0
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(Man1 1) (0) ) ([ %0 1
— (Ma-1u) (1) u (1)
13 (Mani) (0) | | | u*=V (0)
— (Mznitt) (1) ulk-v (1)
(M, u) (0) utn=1 (0)
| —(Mau) (1) | L[ ut=-v (1) |)

where ! and aj satisfy (Hi) and (H), respectively, and

M=

(1.4) My _ru: =
i=0

1

S (—1)i-k[ag(x) ud16-¥ (k=1,2,...,n).
j=k

Remark that in the special case n = 1 the operator T: is connected
with the «heat conduction», whilst in the case n = 2 the operator T4
is connected with the elastic beam theory.

LEMMA 1 - Suppose 1 satisfies (Hi) and aij (i,j=0,1,...,n) sa-
tisfy (Hz). Then operator T2 :D(Tw)c X—>X (X =12(0,1)) given
by (1.1), (1.2) is maximal monotone.

Proof. T3, is monotone: For any u,v € D(T>,) we have by repeat-
ed integration by parts:

(1.5) (Tontu — Tonv,u —v)x =

i,

M

n4ﬂjmwu—wwwuu-wdx=

0

fl

1
Jaij[u® —v&] - [ui) — vl dx +

M=z

i,j=0

N
I

+ éx {[u®*=1 (x) — vk (x) 1 [ (Man-r 1) (x) — (Mzn-xv) (x)]1} 2220,

because of (H;) and (H>).
To show that T, is maximal monotone, it is sufficient to prove
that for any fixed p € X the problem made up by (1.6), (1.3), where

(16) X (—1)ilayud]P +u=p,

t, =0

-~

has (at least) a solution.

Remark that if u; is a solution of the problem made up by equa-
tion (1.6) and boundary conditions

1.7 u(0)=u(l)=uv’'(0)=uv'(l)=...=u"-9(0)=u=-1(1)=0,

whilst u, is a solution of problem
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(1.6.H) E (—1)ifazu®]i +u=0,

i,j=0
(1.8) wo + col [ (Man-1u) (0), — (Man-1u) (1),...,(Mau) (0),
—(M.u)(1)] € 1(col [u(0), u(1),...,u-v(0), u-v(1)1),
where

wo: = col [ (Mau-1u1) (0), — (Man-1u1) (1),...,(Maus) (0), —(Mnu1) (1)]
then u = u; 4+ u, is a solution of problem (1.6), (1.3).

Since am(x)>0(0<x<1), it is obvious that equation (1.6.H)
has a fundamental system of solutions
y1(%), y2(%), . .., (%)
i.e. the general integral of (1.6.H) is

2n
(1.9) u(x)=.21c,~y,-(x),c,-eR (i=1,2,...,2n).
l:

As it is known, problem (1.6), (1.7) has a unique solution (which
can be found by «variation of constants»). So all we have to prove
is that problem (1.6.H), (1.8) has (at least) a solution. Denote

(1.10) w=w(u)=col [wi,ws,..., Wo—1,Wsj,..., Wan1,Wa] : =
:=col[u(0),u(1),...,ui-v(0),uli-v(1),...,u=-1(0),
un-(1)7,

and c: =col[ec1,c2,...,c2n] . We have by (1.9)
(1.11) w = Dc,

where D: =[di,...,ds,...,d] is the 2n X 2n-matrix whose s — th
column is

ds: =col[y5(0),y5(1),...,y-1(0),y=-V(1] (s=1,...,2n).

Remark that D is an invertible matrix, no matter how the funda-
mental system was chosen. (Indeed, problem (1.6.H), (1.7) has the
unique solution u= 0. Le., imposing to (1.9) to satisfy (1.7) we have
the implication w =Dc =0=c¢ =0, i.e. detD = 0).

On the other hand, we obtain from (1.9) and (1.11)
(1.12) col [(MZn—‘l u) (0), - (MZn-'l u) (1); ey (Mn u) (0):
—(M,u)(1)] = Bc = BD-'w,

where B: = [by,..,bs,.., b2s] is the matrix whose s — th column is
bs: = col [ (Mzn-1y5) (0), — (Man-1ys)(1),..,(Mnys)(0), —(M.ys)(1)].
Thus, boundary condition (1.8) reduces, by (1.10) and (1.12), to

(1.13) wo € —BD-'w + I(w).
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Since ! is maximal monotone, it suffices to prove that the matrix
—BD-! is positive definite to conclude that there is a unique solution

w of (1.13), ie. u(x) given by (1.9) with c: = D-lw satisfies both
(1.6.H) and (1.8). Thus all we have to prove is that
(1.14) —w'BD-'w >0, forany we R>, w =0,
where w" is the transposed of w.
To prove now (1.14) remark that for any choice of c¢i,cs,.., cm,

u(x) given by (1.9) satisfies (after repeated integration by parts and
essentially the same computation as in (1.5))

n 1
(1.15)  0=ATwmu+u,u)x=|ulZ+ Z . (— l)ig' [a:ju®]0) udx =
i1,1=

n n 1
=llul2+ E (utI(x) Maniad (1) 10 + 5 fagu® uir dx.
X k=t =l " 4,i=00
Thus, by (1.15), (1.10), (1.11) and (1.12) we obtain

1
—w' BD-lw =%+ E fajuuiddx >|ul2>0,
i,j=00

for any u = x cjyj(x) =0, that is for any ¢=0, ie. for any
i=1

w € R, w3 0. Thus (1.14) holds and the maximality of T, is proved.
In particular, the proof of maximality of T2, shows that D(T2,) is a
non void set. Lemma 1 is proved.

ReMARK 1.1 - In addition to Lemma 1 we have: D(T2,) is dense in
X = 12(0,1). Indeed, take #i € D(T.,) and note that

(1.16) 4+Cy0,1):={d+v;veC;(0,1)} c D(T2).

Since C;(O, 1) is dense in X, the set @ + C;(O, 1) is also dense
in X and thus, by (1.16), D(T2,) is dense in X .

LEMMA 2 - Suppose ai; (i,j =0,1,..,n) satisfy (Hz) and, besides,
the matrix (ai;) is symmetric, a.e. x €]10,1[. Suppose also 1 is the
subdifferential of a function g:R*—>] — oo, 4+ ] which is proper,
convex and lower semicontinuous (LSC). Denote, as usual,

(117 D(g): ={weR™; g(w) < + o} (the effective domain of g),
take w(u) as in (1.10) and define p: X =] — o0 ,00],X : = 12(0,1) by

s f; fga,-,-uﬁ)u”)dx+g(w(u)), if ue H»(0,1)
. i,i=0
(1.18)  o(u): = ’ and w(u)€ D(g),
+ oo, otherwise.

Then o is proper, convex and LSC and operator T2, defined by (1.1),
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(1.2) is just the subdifferential of o.

Proof. Obviously D(T2.,) < D(9), i.e. ¢ is proper. It is also clear
that ¢ is convex. Let d¢ denote its subdifferential. It is easy to see by
a straightforward, standard computation that D(T2.,) c D(d9) and

Tonu € 99 (u), for any u € D(T2).

Since by Lemma 1 T3, is maximal monotone it follows that T, = do.
Hence T3, is cyclically maximal monotone and so, according to a well-
known result (see, e.g., V. Barbu [2, p. 59]), T2 is the subdifferential
of a proper, convex and LSC function which is uniquely determined
up to an additive constant. Therefore ¢ is LSC. Q.E.D.

ReMARK 1.2 - Let (Hi) and (H;) be satisfied. If we assume further
that a;; =0, for i # j, then (H:) becomes equivalent to (H.)’ and, de-
noting a;: =a;ji(j =0,1,...,n), this hypothesis can be rewritten as:
(Hy)%:a;e Wi~ (0,1); an(x)>0, a,(x)=20 (r=0,1,..,n—1).

Operator T3, becomes

TO u= % (—1)i[aui]0,
j=0

which is the general form of a formally self-adjoint linear differential
operator of order 2n, whilst Mz,—x in (1.3) become

M® u= X (—1)i~*[qud]0-% (k=1,2,..,n).
n— j=k

If in addition I = dg then T = dgo, where

Y X [la;|u |2dx + g(w(u)), if ue H"(0,1)
. — j=0
@(u): =4 ' and w(u) € D(g)
+ oo, otherwise.

2, - A perturbation result

The purpose of this section is to establish the following pertur-
bation result:

LEMMA 3 - Suppose 1,aii(i,j=0,1,...,n), and A satisfy (Hi),

(Hz)’, and (Hs) respectively. Then, operator Qu:D(Qum)c X—X,
X:=1?0,1), defined by

2.1) D(Q2s): = D(T2,), (see (1.1) and (1.2))
2.2) Quu:=Tou+A(-,u(-))

is maximal monotone.
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Proof. Remark first that, because of (H3;), we have that
A(.,q9(-))eX for any q € D(Qx) and consequently Q. q € X for
any q € D(Qzn).

Now, it is easy to see that Q. is monotone. To prove its maxi-
mality, consider the «approximate» equation

U+ Tomu+ Av(x,u)= p(x),
(2.3) {u € D;an): = D(T2),

for any fixed pe X and A > 0. Here Ay(x,.) denotes the Yosida ap-
proximate of A(x,.), ae. x€]0,1[.

Obviously, for any g € X the function
x> AM(x,q(x)):=Ax,[I+NA(x,.) 11 q(x))
is measurable in ]0,1[ and since
| Av(x, q(x))| < |An(x,q(x)) — Ar(x,0)| +

1
+ | (x,0)] < —|a(x)] + | A(x, 0],

it follows that x+> Ax(x, g(x)) is in X for any fixed A > 0. Moreover,
the canonic extension g +> Av(., ¢( - )) is maximal monotone in X (for
it is everywhere defined, monotone and continuous in X). Since the
domain of the extension is all the space, T, + extension is maximal
monotone (cf. Rockafellar’s Theorem; see, e.g., V. Barbu [2, p. 46]).
Thus (2.3) has a unique solution u. for any fixed A > 0, i.e.

24) 4+ Toamur 4+ Ar(x, )= p, urn € D(T2,).

We intend to go to the limit in (2.4) as A— 0 to conclude that
Q2. is maximal monotone. To this purpose, some a priori estimates
are needed. Take first uo € D(T2,) and denote

2.5) o+ Tontho + Ar(x,u0): = pr (M>0).

From | Av(x,u0(x))| < | A(x,uo(x))]|, from inf uo(x) < us(x) < sup uy(x)
and from (H;) we find that {As(.,uo( - )); N> 0} is bounded in X.
Consequently

(2.6) {p»; N >0} is bounded in X.

Now, from (2.4) and (2.5) we obtain by using the monotonicity
of Av(x,.):

2.7) e — wo||2 +
+ L E (=D Tas(ul — uf) 10 (i — w) dx <
<%lp—pll2 + % |jwm— w2,
After some integrations by parts in (2.7) we get by virtue of
(2.6), (Hy), (Hz)’ and on account of wy,, uo € D (T2n):
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n Il . » I3
| —uo[2 + féi ’Eo ai (uf —ul) (u® —u)) dx < Const.,

or, on account of (H)’:
|t — wo||% + col|ufm — uf||2 < Const. (co>0).

Hence, we have
2.8) {upn; N> 0} is bounded in X and
2.9) {u{"’;)\. >0} is bounded in X.

By (2.8) and (2.9) we have, according to Lemma A
(2.10) {u{f');k > 0} is bounded in C[0,1], (j=0,1,..,n—1).
From (2.10), (Hs;) and |Av(x,r)| < |A(x,7)| we immediately obtain
2.11) {An(.,urn(-)) ;N> 0} is bounded in X .
Therefore, by virtue of (2.4) and (2.11) we have:
(2.12) { 'E:n(_ 1)i (ai,-u;j))(ﬁ;')» > 0} is bounded in X.

1,]1=

Denote now

@13)  wa(x)i= I (=" am(x) uf (x) +
+ flo(— 1)n-1fzai naa(s) ufl(s) ds +
+ & E (1) 2 dsamjor SV dsncjoa. . St aip(s) ul(s) ds .
i=0j=0
Note that by (2.8), (2.9), (2.10) we have
2.19) {wr; N> 0} is bounded in X .
Also, it is obvious that

(= 1)i(ayu®)o.

i,j=0

(n) —
w)»

Hence, from (2.12) we have

(2.15) {w;") ;A >0} is bounded in X.

Moreover, from Lemma A it follows, by virtue of (2.14) and (2.15),
(2.16) {w;j);)» > 0} is bounded in C[0,1] (j=0,1,..,n—1).

Now, differentiating in (2.13) and using (2.9), (2.10) and (2.16)
we see that {u{"“) ;A > 0} is bounded in X. After differentiating two
times in (2.13) we find {u;‘"‘rz) ;A > 0} is bounded in X. Thus, by re-
peated use of this argument we get

2.17) {u{“;)\,>0} is bounded in X (j=n+1,..,2n).
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{u&“ ;A> 0} is bounded in C[0,1] (j=0,1,..,2n—1)

and {ulim ;% > 0} is bounded in I*(0,1).

Therefore, by Arzeld’s Criterion it follows that there exists
u e H™(0,1) such that (eventually on a subsequence)

(2.18) u;i)-—>u(i) in C[0,1],asA—0 (j=0,1,..,2n—1)
(2.19) u{zﬂ)eu(zﬂ) weakly in 22(0,1), as A—0.

In addition (see (2.4) and (2.11))

(2.20) A(.,m(-))>h:=p—u—Tyu, weakly in I[2(0,1).

Let us prove now that # = A(.,u(-)). To this purpose remark
first that for a.e. x€]0,1[ and any A > 0

[T+ MA(x,.) ] i (x) — u(x)| < |un(x) — u(x)| +
+ [T+ MA(x,. )] u(x)— u(x)|.
So by (2.18) we have for ae. x€]0,1[
[I+MA(x,.)]'un(x)=>u(x) as A—>0,
eventually on a subsequence. Therefore, for a.e. x€]0,1[
@21)  A(x,wn(x))=A(x,[I+NA(x, )] ur(x))=> A(x, u(x)),

as A—>0. From (2.11) and (2.21) we get by virtue of Lebesgue’s Do-
minated Convergence Theorem (eventually on a subsequence)

(2.22) Av(.,urn(-))=>A(.,u(-)), strongly in 12(0,1), as A—0.

Now, on account of (2.18), (2.19), (2.22) we conclude by taking
the limit in (2.4) that

u+Quu=p

and, in addition, as ! is closed, u verifies (1.3). Therefore Q,, is
maximal monotone, as desired, and Lemma 3 is proved.

REMARK 2.1 - If all the assumptions of Lemma 3 are satisfied and
(aij(x)) is a symmetric matrix, a.e. x€]0,1[ whilst I = dg, where
g:R™—] —o0, 4] is proper, convex and LSC then operator Q.
defined by (2.1), (2.2) is the subdifferential of the function

(.IJ:X—)] — 0o, +°°]
defined by

o(u) + fédx_fg(")A(x,s) ds, if ue D(o)
+ o , otherwise.

(2.23) Y(u): = {

The function ¢ and its D(¢) were defined in Lemma 2.
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Actually, by (2.9), (2.10) and (2.17) we have from Lemma A

Indeed, ¢ is proper, convex and D (y) = D(¢). Moreover, it is easy
to see that D(Q.,) = D(T2,) < D(9Yy) and

Quu=Twu+ A(.,u(-))c d¥(u), for any u € D(T2).

As Q). is maximal monotone (Lemma 3) it follows that Qz, = d{ as
asserted and ¢ is LSC.

3. - The stationary problem

In keeping with the notation above consider the following BVP:
3.1 Qnu=p(x) (0<x<1), u satisfies (1.3),

where p € L?(0,1). Obviously, if (Hy), (Hz)’, (Hs;) are fulfiled and, in
addition, A satisfies some appropriate condition which assures the
coerciveness of Q.. then problem (3.1) has at least a solution. For
example, assume that

(3.2) (A(x,r1) — A(x,1)) (11— 12) = ko(r1 — r2)%, ae. x€]0,1],

for any r1,7 € R, where ko is some positive constant. Then, there
exists a unique u € H?*(0, 1) which satisfies (3.1) (u is unique because
in this case Q.. is strongly monotone !). Remark also that Q,, could
be non-surjective (i.e. problem (3.1) might have no solution for some
p) if no additional assumption is made on A, as the following simple
counterexample shows.

COUNTEREXAMPLE - Take in (3.1) :n=1, an:=1, an:=0,
an:=0, awn: =0, A(.,.): =0, p: =0 and let [:D(])=R2—>R? be
defined by I(col([r1,72])=col[0,— 1], for any col[r,r.]€R2.
Then, problem (3.1) becomes

u”'=0; 40)=0, #(1)=1
which has no solution.

Let us also mention here an existence result for the case of a
linear equation:

t,]=

(3.3) { _Eo(— 1)i[ayu?]? = p(x),0<x <1, (peL?(0,1))
u satisfies (1.3).

ProrosiTiON 3.1 - Assume 1 satisfies (Hi) and ai satisfy:
am(x)>0,(0<x<1), and a;;e Wi-~(0,1) (i,j=0,1,..,n), while

B4) % ay(x) &Y > wkl, ae xe]0, 1L,

t,]=

for any € = col [&,&1,..,E.] € R**! (ag > 0). Then (3.3) has a unique
solution ue H>(0,1).
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Proof. By Lemma 1 operator T2, is maximal monotone. Moreover,
by (3.4) T.. is surjective.

REMARK 3.1 - The existence in the BVP (3.1) can be treated by a
«variational» approach, i.e. by introducing the functional

n

a(u,v):= X of(‘)aiiu(i)v(i) dx + féA(x,u) vdx + (l(w(u)),w(v))Rz,,

i,j=

for u,ve H*(0,1), with w(u) € D(1). Under assumptions (Hi), (Hz)’,
(H:) one can prove that for any pe(H"(0,1))’ (the dual of H")
there exists a u € H7(0,1) satisfying

a(u,v)s p(v), for any ve H»

which is called a variational solution of (3.1). The problem of «varia-
tional solutions» and regularity results is discussed in a more general
frame in [7]. Let us only remark that such results like Lemma 1 and
Proposition 3.1 cannot be obtained via such theorems which use a
(sufficient) condition of coercivity «on» a(u,v) (with A:=0). In
any case, the proof of Lemma 1 given here is preferable for it has
the advantage to be direct and elementary.

REMARK 3.2 - In the particular case [ =dg, aij =aji, p€ L?(0,1)
u is a solution of (3.1) if and only if u# is a minimum point of

3.5) v»dz(v)—fépvdx, vel?0,1),

where ¢ is given by (2.23). Therefore, in this case, the existence for
(3.1) (in particular the maximality of Qz,) can also be obtained by
studying the functional (3.5).

4. - Existence, uniqueness and regularity of solutions to Problem
(0.1), (0.2), (0.3)

THEOREM 4.1 - Assume that 1,a:i (i,j=0,1,...,n) and A satisfy
(H), (Hy)’' and (Hs) respectively (or A: =0 and 1,ai; satisfy (Hi)
and (Hy)). Let f e W.1(0,t,; L2(0,1)) (t1 > 0 fixed), and uo € D(T2n)
defined before by (1.1). Then, there is a unique function

ueWt=(0,t;L2(0,1)) NL*(0, t,; H(0,1))

such that u satisfies equation (0.1) (for a.e. (t,x)€]10,t:[x10,1[),
boundary condition (0.2) (for every t € [0,t]) and initial condition
(0.3). Moreover

diu .
4.1) —a-FeL”(]O,tl[x]O,l[) (ij=0,1,..,2n-1).

Proof. Consider in X : = I?(0,1) the following Cauchy problem
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d
(4.2) —d-‘:—+oz,,u=f(t,.), 0<t<t

(4.3) u(0) = uo,

where Q, is the operator defined by (2.1), (2.2). From Lemma 3
(respectively Lemma 1 for A: =0) we know that Q,, is maximal
monotone in X. Thus, from the general existence theory for evo-
lution equations associated to monotone operators (see, e. g V.
Barbu [2, Ch. III, §2]) we know that there is a unique function
ue Wh=(0,¢; X) which satisfies (4.2) (for ae. £€]0,#[) and IC
(4.3). Moreover, u(t) is everywhere differentiable from the right in
[0,#:[,u(t)e D(Q,) for every t € [0, [ and u(?) satisfies for every
t€[0,t1[ equation (4.2), where du/dt is replaced by d+u/dt. In
fact, we may consider (4.2) on [0,# +¢], e> 0 (by extending cor-
respondingly f) and so we have u(t;) € D(Qz,). Since

d+
44)  Qumu(t)=f(t,.)— -;t‘i (1)

we have
(4.5) sup {||Qumu(t)||x;0<t <t} < + .

Denote Di‘: = 9%/dx*. Now, a straightforward computation gives

(4.6) (Quu(t,.)— Qumuo,u(t,.)— ) x =

\%

iéofgaﬁ(x) D; [u(t,x)— us(x)1Di[u(t,x) — us(x)] dx >
2 col|Dru(t,.)— w2 .

By (4.5) and (4.6) it follows that

4.7) sup{||Dru(t,.)|jx ; 0<t<t} < + .

Since u € C([0, #1]; X) we get from (4.7) by virtue of Lemma A

(4.8) sup{||Diu(t,.)||x ;0Ststi< e (j=0,1,..,n).

On the other hand we have

49 Diu(t,x)=fi[yDi u(t,y)+ Diu(t,y)]dy -
—J;Di*'u(t,y) dy.

Therefore, according to (4.8) we have

(410) DiuelL=(10,t[%x10,1[) (j=0,1,..,n—1).

Now, from (4.8), (4.9) (with j =0) and (H;) we get

(4.11)  sup{||A(.,u(t,.))||x ; 0<t<H} < + o.
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Henc, by (4.5) and (4.11) we have

4.12)  sup{|| i_o (—1)iDi[a;(-)Diu(t, )1||x;0 S t S} < + o,

which is similar to (2.12) (where the parameter M\ is replaced by ).
So, by the same argument as in the proof of Lemma 3, (4.8) can be
extended for j =0,1,...,2n and, correspondingly, (4.10) holds for
j=0,1,..,2n — 1. Summarising, we see that u is a solution of pro-
blem (0.1), (0.2), (0.3) in the same sense as in Theorem 4.1. Q.E.D.

THEOREM 4.2 - Assume a; (i,j=0,1,..,n) and A satisfy (Ha)’
and (Hs) (or A: = 0 and aij satisfy (Ha)). Assume further that matrix
(a;) is symmetric and 1 = dg, where g:R*—>] —o , 4+ o] is proper,
convex and LSC. Let fe [*(0,t;;12(0,1)) and us € L?(0,1). Then,
there exists a unique ue€ C([0,t]1; L2(0,1)) NW'2(8,t; L*(0,1))
(for every 8 €]10,t1[) such that u satisfies (0.1) (for a.e. (t,x) €]o0,
t1[x]10,1[), BC (0.2) (for ae. t€l0,t1[), and IC (0.3) (for a.e.
x€]10,1[). Moreover Vtu,€1*(10,t1[x10,1[). If in addition
uo € D(9p) (see (1.18) in Lemma 2) then u,€ L2(10,t:[x]10,1[).

Proof. Consider again Cauchy problem (4.2), (4.3), where Q. is
defined by (2.1), (2.2). According to Remark 1.1, D(Qz) = D (T2.) is
dense in 1?(0,1). Moreover, by Lemma 2 and Remark 2.1, Qzx (T2, in
case A: = 0) is the subdifferential of ¢ (respectively ¢). Thus we can
apply a general known result (see, e.g., V. Barbu [2, p. 189]) to pro-
blem (4.2), (4.3) and all the conclusions follow. Q.E.D.

REMARK 4.2 - For an abstract IVP of type (4.2), (4.3) we have the
well-known concepts of strong and weak solution (see, e.g., H. Brézis
[3, p. 64]). We shall say that u is a strong (weak) solution for pro-
blem (0.1), (0.2), (0.3) if u is a strong (respectively weak) solution
of (4.2), (4.3) with Q;. defined by (2.1), (2.2). For instance, the solu-
tion given by Theorem 4.1 is, according to this terminology, a strong
solution of problem (0.1), (0.2), (0.3).

5. - Asymptotic behaviour of solutions

For the sake of brevity, we confine ourselves to give here only
two results of asymptotic behaviour related to our problem.

Let us first give the following

PROPOSITION 5.1 - Assume (Hy), (H2)’' and (Hs) are satisfied. Then,
for any N > 0, the operator (I + \Qz,) ! (the resolvent of Qu defined
by (2.1), (2.2)) maps bounded subsets of X = I?(0,1) into bounded
subsets of H*(0,1).
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Proof. Let A > 0 be fixed and let Y be a bounded subset of X.
Let

(5.1) Up: =(I + M) -'p, pe?,

i.e.
1
(52) QZnup=—):'(p*—Up),p€Y.

As (I 4+ MQ2n) ! is a contraction on X, it follows from (5.1) that the
set {u,; p € Y} is bounded in X . Therefore we get from (5.2)

(5.3) {Qznu,; pe Y} is bounded in X,

which is similar to (4.5) (where the parameter ¢ is replaced by p).
Thus, we can again use the argument in the proof of Theorem 4.1
(or that of Lemma 3) to conclude that all the sets {ul(,i); peEY}
(1=0,1,..,2n) are bounded in X, i.e. {up; pe Y} is bounded in
H*»(0,1).

THEOREM 5.1 - Assume a; (i,j=0,1 ,--,1) and A satisfy (Hy)’,
(Hs), the matrix (ai;) is symmetric (a.e. x €]10,1[) and 1 = dg, where
g:R¥?—>]—oo, ] is proper, convex and LSC. Assume also
(Hs) There is at least a q € H? (0,1) which satisfies the problem

(54) Qug=0,0<x<1); q verifies (1.3).

Let f e L'(0, 00 ; 12(0,1)), uo€ L2(0,1) and let u(t,.) be the corres-
ponding (weak) solution of problem (0.1), (0.2), (0.3) on [0, + o [.
Then, there is a solution § of (5.4) such that

(5.5) u(t,.)>4g, as t— o, strongly in 12(0,1).

If in addition f € W' 1(0, 0 ; 12(0,1)) then (5.5) holds in the weak
topology of H*(0,1), so, in particular

(5.6) Diu(t,)—q4, as t— =, in C[0,1] (j=0,1,..,2n—1).

Proof. Let us first prove that for feWL1(0, e ; X), X =12(0,1),
and for any £ > 0 the set

(5.7 {u(t,.); t = ¢} is bounded in H7(0,1).

Indeed, by Theorem 4.2, for every € > 0 there is a § €]0,¢[ such
that u(3,.) e D(T2.). So, by Theorem 4.1, u(t,.),t=2¢eis a strong so-
lution of (0.1), (0.2) (see also Remark 4.2). Now, we recall the well-
known estimate (see, e.g., H. Brézis [3, p. 68])

+

Ilddtu (t,)|lx < Hanu(e,.)—f(e,.)llx+f:||‘;isf(s,.)||xds,t >¢.

Therefore the set
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d+u . .

(5.8) {-W (t,.); t =¢} is bounded in X.

On the other hand, as f € L'(0, «~ ; 12(0,1)), it follows by virtue of

(Hs):

(5.9) {u(t,.);t =0} is bounded in X,

because for any g verifying (5.4) we have

lu(t,.) = qllx < |luo—qllx+ Sillf(s,)||xds, t =0.

Now, by (4.2) we have
d+u
dt

Now, since {f(t,.); t =0} is bounded in X, we obtain by
(5.8) ~ (5.10) and Propositiion 5.1 the desired (5.7). So all we have to
prove is (5.5). Since Q. is a subdifferential (see Lemma 2 and Re-
mark 2.1), by virtue of a result of R. E. Bruck [4] we have for f: =0

(5.10)  u(t,.)= (I 4+ Qu)~'(u(t,.)— (t,.)+1(t,)), t=ce.

(5.11) u(t,.)—>qi, as t— « , weakly in X,

where ¢; satisfies (5.4). Taking into account (5.7) and (5.11) we de-
duce that, for f: =0, u(t,.)> q1 as t > ~, weakly in H*(0,1), ie,
in particular, strongly in X . Hence (5.5) is proved for f: = 0. Then,
according to G. Morosanu [6, Theorem 2.1] it follows that (5.5) holds
actually for f arbitrary in L!'(0, « ; X). This ends the proof.

THEOREM 5.2 - Assume (Hi), (Hz)', (Hs) and (Hs) are fulfiled.
Moreover, assume that for a.e. x €10, [ the function

(5.12) ri=>A(x,r) is strictly increasing on R.

Let fe€ L1(0, o ; X), uo € [2(0,1) and let u(t,.), t =0 be the corres-
ponding (weak) solution of problem (0.1), (0.2), (0.3). Then problem
(5.4) has a unique solution, say ¢, such that

(5.13) u(t,.)—>4qg, as t— o, strongly in 12(0,1).

If in addition fe W11(0, ;L?(0,1)) and uo€ D(T2,) (see (1.1))
then (5.13) holds in the weak topology of H*(0,1).

Proof. As in the proof of the preceding theorem we find for
feWt1(0,~ ;X), X =12(0,1), and uo € D(T2.)

(5.14) {u(t,.); t =0} is bounded in H*(0,1).

Let us now show that Q2. is strictly monotone. To this purpose let
q,4 € H"(0,1) verify (5.4). Then

(5.15)  (Twmq—Twg,q—4)x+{A(,q(-))—A(,4(-)),qa—q)x=0.

Since both terms in (5.15) are nonnegative we have
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(.16)  [A(x,q(x))—A(x,4(x))1-[q(x)— ¢(x)1=0, ae. x €] 0,1[.

From (5.12) and (5.16) we have g = ¢, i.e. indeed Qy, is strictly mo-
notone. Consequently (5.4) has a unique solution. To prove (5.13) we
may assume without loss of generality that f: =0 (see again G. Mo-
rosanu [6, Theorem 2.1]).

Now, since Q3. is strictly monotone we have
(G17)  (Qwmgqg —Qx§,q — §)x =0 implies g = ¢,
where § is the unique solution of (5.4). Note also that by (5.14) the set
(5.18) {u(t,.); t 2 0} is relatively compact in X,

provided that uy € D(Qz,). According to A. Haraux [5, Theorem 29, p.
218 and Corollary 31, p. 225], (5.13) follows by (5.17) and (5.18). The
second part of our theorem follows by (5.14). Q.E.D.

6. - Extensions

6.1. The above theory still works for the equation

0.1’ a(x) us+ Quu=f(t,x),

(to which we associate (0.2) and (0.3)) provided the following addi-
tional assumption holds:

a€L>(0,1) and a(x)=> ko> 0, ae. x€]0,1[.

Indeed, let us consider equation (0.1)’ divided by a(x) in the space
X.=17?(0,1;a(x)dx) (the a-weighted L? space, which coincides alge-
brically and topologically with X = 12(0,1)) and define the operator
Q20 D(T2) € Xo—> Xa by Q2u: =[a(-)]-1Qznu, for any u € D(T5n).
Then it is sufficient to observe that Q,, is maximal monotone in X if
and only if Q% is maximal monotone in X,.

6.2. We may investigate in a similar manner the same problem in
the case x €10, « [ or x € R, with appropriate modifications of BC

(0.2). So, in the case x €]0, o [ we replace (0.2) by
(02)"  col[(Mzn-1u)(t,0), (Man2u)(t,0),..,(Mau) (t,0)] €
€ Il(col[u(t,0), D u(t,0),..,D"u(t,0)]), t >0
u(t,.)e 12(0,), t >0,

where 1:D(l)c R* —-R" is assumed to be maximal monotone. In
the case x € R we replace (0.2) by the asymptotic condition

0.2)” wu(t,.)eI?*(R), t>0.



NONLINEAR MONOTONE BOUNDARY CONDITIONS etc. 155

As the basic spaces we take here X = [?(0, «) and X = L?(R)

respectively. We leave to the reader to reformulate the hypotheses
and all the results above for these cases.
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