SOLVABILITY OF BOUNDARY
VALUE PROBLEMS WITH HOMOGENEOUS
ORDINARY DIFFERENTIAL OPERATOR (*)

by PAVEL DRABEK (in Plzerl) (**)

SoMMARIO. - Si studia la risolubilita del problema di Dirichlet non
lineare

—(|w|2w)’ =f(t,u) +g in (O,m),
u(0) =u(n) =0,
dove f é assoggettata a vari tipi di accrescimento legato agli auto-
valori dell’operatore differenziale nel membro sinistro. I risultati
ottenuti vengono poi generalizzati agli operatori differenziali ordi-
nari quasi-omogenei. Alcuni problemi aperti vengono indicati alla
fine.

SUMMARY. - We study solvability of nonlinear Dirichlet boundary value
problem

—(|w|2w)’ =f(t,u) +g in 0,7),
u(0) =u(x) =0,
where the Carathéodory’s function f satisfies various types of
growth conditions in the second variable. The results are gene-

ralized for quasihomogeneous ordinary differential operators of
second order.

1. - Introduction

We discuss solvability of strongly nonlinear Dirichlet boundary
value problem

(*) Pervenuto in Redazione il 15 marzo 1984.
(**) Indirizzo dell’Autore: Department of Mathematics, Technical University of
Plzen, Nejedlého sady 14, 306 14 Plzen (Czechoslovakia).
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—(|u' |7 2u’)’ = f(t,u) + g in (0,T),
®ve) T w20

where f(¢,s) : [0,mn] X R—R is a Carathéodory’s function satisfying
various types of growth conditions depending on the eigenvalues
{)»,-};1 of the eigenvalue problem

— (| |7~2u’)’ = N|u|>-2u in (0,7),
u(0) =u(n) =0.

We shall prove that under certain growth assumptions on the func-
tion f(¢,s), (BVP) has at least one solution for each geLi(0,r).

(EVP) {

The method of the proof of this results is based on a shooting
argument and the Leray-Schauder degree theory. In the proofs we
refer to a recent results concerning (p-1)-homogeneous ordinary dif-
ferential operator of second order which are formulated in [2] and

[4].

In Section 2 we give some preliminary definitions, assumptions
and notations. There are also formulated some basic properties of
the differential operator in question, which are proved in already
mentioned works [2] and [4]. The main existence results are proved
in Sections 3 and 4. These results are generalized in Section 5 to the
quasihomogeneous ordinary differential operators. In Section 6 we
give some suggestions for further research in that direction.

2. - Preliminaries

Let us suppose that p=2 is a real number, ge Li(R) and
f:RXR—R is a Carathéodory’s function, i.e. measurable in ¢ for
all s € R and continuous in s for a.a. t € R. We are concerned with
the initial value problem

— (| |P2w) =f(t,u) + g,
AV { ) L ) e e

DEFINITION 2.1 - Let u be a real function of the real variable, sup-
pose u’ to be continuous and | u’ [?-2u’ absolutely continuous on each
compact interval in R. If the function u fulfils the initial conditions
in (IVP) (resp. the boundary conditions in (BVP)) and the equation
holds almost everywhere in R then u is called a solution of the initial
value problem (IVP) (resp. solution of the boundary value problem
(BVP)).

ReEMARK 2.1 - If we denote g(z) =|t|-21, T € R, (IVP) may be
rewritten into an equivalent vector form

, (u'(t) ,v'(t)) = (g~ (v(t)) ,f(t,u(t)) +g(t)),teR,
AVP) {1 () = (an, o |73,
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Let |f(t,s)| <m(t), (t,s) €I X R, where mf(t) is Lebesgue-integra-
ble function on the interval d c R, fH € J.

It is possible to show that the vector function

(7'(z2) ,f(t,2z1) + g(t))

satisfies the assumptions stated in [1,p.43] and we obtain the exi-
stence of the solution of (IVP) which is defined for a.a. t€ J.

REMARK 2.2 - Using a standard regularity argument for ordina-
ry differential equations it is possible to prove that if ge C(J),
f e C(d X R), for some interval J — R then {«’ |»-2u’ € C'(J) and the
equation (IVP) holds for each ¢ € J (for the precise proof see [2, Th.
3.3, Rem. 4.2]).

REMARK 2.3 - Let us suppose that x(t) € L..(R) ,x(t) = © > 0. Then
using the shooting argument (e.g. [5]) it is possible to prove that
the solution of the initial value problem

—(|w |2 w) = (1) u|o2u,
X N b A fd b

is determined uniquely.

REMARK 2.4 - It is proved in {2, Th. 4.4] the following assertion:
«The eigenvalues of (EVP) form a sequence

O<M<ha<...<M<...
with the property lim A, = oo. To the least eigenvalue M; there corre-

sponds one and onfy one eigenfunction u (we suppose that v'(0) = 1
for each eigenfunction v). Moreover, u{t) >0 for all te(0,n). If
M(n 2 2) is an eigenvalue of (EVP) and v, is the corresponding ei-
genfunction then there exist exactly (n — 1) equidistant zero points
of v, in (0,7). To each A, there corresponds one and only one eigen-
function v, and the following relation holds: A, = n? A».

REMARK 2.5 - The proof of the previous assertion is based on the
properties of the solution of (IVP) formulated in Remarks 2.1, 2.2
and 2.3 (see [2, p. 176]). Let us remark that from the proof of this
assertion it follows that the eigenfunction v.(n = 2) may be obtained
on the basis of the first eigenfunction u by the following way:

L um, e ™ 2141 5,
n n n

Vpilb——> i
+=umt),te[0,71\[21=, (21 + 1) =),
n n n
n . . n . .
where l=1,2,...,? if n is even, l=1,2,...,[—2-]+1 if n is an

odd number (see [2, p. 177]).
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Let us suppose that x(t) € L.(J) for sufficiently large interval
J <R, A>0 is a real number. We shall consider the following two
initial value problems

—(|W |2 w)’ = x (1) w o2 w,
2D {20, w(t) 2

— (@) = |uju,
(2.3) {u(to) =0,u'(t) =a,

toed,a > 0. Let us denote
ty=1inf{t > to; w(t) =0},
h=inf{t > to;u (t) =0},

and suppose that #, € J . The following assertion will be essential for
proving main existence results.

SHOOTING LEMMA. Let us suppose that
24) x(t) =\, for aa. ted.
Then t, < t.

Proof. There are ti€ (to, ty), t2€ (10, tn) such that w'(t1)) =u’(t2) = 0.
Since w and u are concave functions on (fy, ty), resp. (%o, ), these
t1,t; are determined uniquely and w’(t) <0, u'(t) <0, for t € (t1, t,),
resp. for te(t2, t,).

We shall define the function v(t) = u(t — t1 + t2) (the shift of u).
Then this function is the solution of initial value problem
i

V(tO + tl - tZ) = O) V,(to + tl b tZ) =,
and %, + t1 — t; is the first zero point of v in the interval (f, + t1 — 22,
+ o). Moreover t; € (to + t1 — t2, th + t1 — t2) is the unique point from
this interval such that v’(#;) = 0. Let us denote ts =t + t1 — t. We
shall prove that t; > t,.

(2.5)

b
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Suppose to the contrary that ¢, > ¢3. Then there exists T; € (11, t3)
that

26)  (—)'(w) <0.
w

Really, in the opposite case
v(t) _ v(t)

=
w(z) ~ w(t)

for all = €(t1,t3) and it is impossible because v(#;) = 0. From (2.6)
we obtain

(2.7) (v'w —vw’) (1) < 0.

The function z+>|z|?~27 is increasing on R. Hence (2.7) is the
same as F(7i1) < 0, where

=const. > 0

F:te>(|v' |2V (w)r-1 — (v)p-1| W' |P-2w) (1).

Since F(t;)) = 0 there exists the set & c (t;,11) of positive mea-
sure that

(2.8) F(t) <0,F(t) <0,w'(t) <0,v(t) <0

hold simultaneously for all ¢t € &. Since F is absolutely continuous
in J, the derivative F’(t) exists a.e. in J . By an elementary calculation
we obtain

F'(t) = Fi(t) + Fa(t),
where
Fi(t) = ((|v'|r=2v")" (w)?-t — (v)2=1(|w’ |P-20')’) (1),
Fa(t) =(p— ) v wW([v'|7=2(w)r-2 — | W' |p-2(v)?-2) (1).
According (2.8) it is also
(Vw—vw)(t)<0
for all ¢ € 8. Hence
(|v'|P-2(w)?=2 — (v)?-2| W' |7-2) (t) > O
for all t € & and that is why
(2.9) Fa(t)>0, ted.
Putting together (2.8) and (2.9) we conclude
(2.10) Fi(t)<0,ted.

On the other hand from the equations (2.2), (2.5) and from the
assumption (2.4) we obtain

Fi(t)=x(t) (w(t))?-1(v(2))>=1 = M(v(t))?>-1(w(t))»-1 20,
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for a.a. t € d. But this is a contradiction with (2.10). Analogously if
we put # =1tp+ &1 — 2, we prove using the same technique that
t4 < ty. Hence comming back to u (the solution of (2.3)) we obtain
that ¢, < . Q.E.D.

REMARK 2.6 - Let us suppose that x(t) <\, for a.a. t € . Then
either t, does not exist or t, = t,.

Let us suppose that t, € J exists. Then we obtain directly from
(2.2) (multiplying by w and integrating by parts in (%, t,)) that

WS | W ()7 dt

(2.11) 1= .
WS x| w(t)| dt

. - h—1
If t» > t,, then the function di(t) = u( > 2

(t — to) + to) is the
tX - t()

solution of

[~ o =T,

»— to

~ t
and u >0 in (%, t,), where )»:)»(t )7 >\
x — 0
According to [4] we have
t t
x|u’'(t)|? dt X&' (t)|? dt
(2.12) inf tf 1 | _ ~' @l :
wewl?om o fh|u(t)|rdt SN d(t)|7 dt

Obviously (2.11) and (2.12) cannot hold simultaneously. Hence ¢, = t..

REMARK 2.7 - Analogous results we obtain also for a < 0 in (2.2),
resp. in (2.3).

3. - First existence result

Suppose that f: [0,®] X R—R is a Carathéodory’s function such
that
(3.1) [f(t,s)|=m(t)+c|s|r-!

for all seR and a.a. te[0,r], where me L,(0,=), 1/p+1/g=1
and ¢ > 0 is a constant. We shall suppose that there exist limits

62 im Lo —x, tm Loy g,

for a.a. te[0,x].
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THEOREM 3.1 - Let us suppose that
(3.3) X+(t), X-(1) Spo <M or

(3.4) N <pi S X (1) < tiv1 < Mig1, i€N,

for aa. t € [0,~]. Then (BVP) has at least one solution for each
g€ Li(0,m).

Proof. Let us denote by Wi-?(0,n) the usual Sobolev space. It
is W‘l)»P(O,ﬁ)f—aceLp(O,ﬂ) and WIO'P(O,'n:) <> C([0,®]) (the symbol
<> <> denotes the compact imbedding). We shall define operators
J: Wé-P(O ,)—=>W-1.49(0,%) (dual space), F: Wé'P(O,n)—e W-1.4(0,x)
and an element G € W-1.9(0, ) by the following way:

(J(w),v) = g"l W (1)]|P-2u (1) V' (1) dt,
(F(u),v)= g“f(r,u(t))v(t)dt,

(G,v) = of"g(t)v(t) dt,

u,ve Wé'l’(O,ﬂ), where (.,.) is a pairing between W-1.9(0,n) and
w 3'1’(0 ,7). Then J is odd, positively (p — 1)-homogeneous, one-to-one
homeomorphism W(I)'I’(O,TC) onto its dual and F is completely conti-
nuous (see [2]).

In the first step we prove that there exists at least one
e Wi(0,m),

(3.5) J(uo) = F (1) + G .

We use the Leray-Schauder degree theory. Choose A < yg, resp.
M€ (pi,piy), if (3.3), resp. (3.4), is satisfied. Define an odd, com-
pletely continuous, (p — 1)-homogeneous operator S: wi?(0,rn)—>
— W-1.9(0,n) by the following way

(S(u),v) = Of"l u(t)|P-2u(t)v(t)de,

u,veWé»P(O,n). We shall prove the existence of the ball B,(0)

centred at the origin and with sufficiently large radius r > 0 such
that

(3.6) H(u,t)=0,

for all u € dB,(0) (the boundary of B,(0)), v € [0,1], where

3.7 H(u,t)=J(u)—<F(u)—1G —(1 —t)\S(u),
ueWlr0,n), te[0,1].

If (3.6) is not true, there exist sequences {un}>_ {7} _ such
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that t. € [0,1],]|| t4n]|[1,,—> + o and
H(u,,7.)=0.

Multiplying the last equality by 1/|| u, || f_pl’ we obtain with re-
spect to (3.7) '

F (un) G
(3.8) J (Vn) — n — T — (1 — =)
|| un ||2-) || n |7~}
AS(va) =0,
where v, = i uuTh . Hence || vu||1,, =1, for all n € N, and we may
n 4

suppose (after passing to suitable subsequence) that v,—v in
Wé'I’(O,'n), vo—>v in C([0,*]) and ©.—>7 € [0,1]. Let us denote by
M ={te[0,xn]; v(t)> 0}. Then it is | u.(t)| > o for t € M. According
to (3.2) it is

> X+ ()| v |P-2v — x_(t)| v |72y

a.e. in M. On the other hand we have (due to (3.1))

-1
7‘(t,u,1_)1|< m(t)_1 lun]p—l__: m(t)_1 + | valr-t.
Nunll20]  [[unl[?) Nunll?} |lun||?)

Hence

t, n i
[ir =0 ae. in [0,51\M
"Hi,p

and

l f(t) uﬂ)

l” T < const.
l,p

L
q

(with the constant independent of n). Using the Lebesque dominated
convergence theorem we obtain v

({n[ %g—"u;"_—);- — X+ (t)| v+ |P2v — x_(t)|v-|P-2v]edt—0.
n l,p

Passing to the limit for n— oo in (3.8) we obtain that v,—>v in
W;-P(O ,T) and

3.9 fnl v'|P-2v'w' dt —of“ [Tx+(t)+ (1 —<)N]|v+|P2vwdt +
0

+6f“['rx—(t)+(1 —)A]|v-|P2vwdt =0

holds for all we Wé'ﬂ(O,n). Denote
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X+ (1) =txe () + (1 — D)%,
Y- (t) = T%-(t) + (1 — T)%.

It is clear that x.(?#) and x-(t) satisfy the inequalities (3.3),
(3.4). Using a standard regularity procedure for ordinary differen-
tial equations it is possible to prove that if v satisfies (3.9) then
v' € C([0,=]), |v'|P-24’ is absolutely continuous, the equation

—(|V'|P20)" — % (1) | v* |72 + X_(2) | v~ [P-2v = 0
holds a.e. in [0,®] and v(0)=v(%)=0.

Let us consider, now, the initial value problem

— (|V[P720)" = X4 (1) | v* P20 4 3 (8) | v~ |20 = 0,
(3.10) { v(0)=0,v'(0) = a.

If (3.3) is satisfied then the same inequality is fulfiled also by

)Z+, resp ;(-. Shooting lemma and Remark 2.6 imply that nontrivial
solution of (3.10) has no zero point in (0, =]. Hence there is no such
a v = 0 satisfying (3.9) and this is the contradiction. If (3.4) is satis-

fied (i.e. it is satisfied also with )z+ and i_) then let us denote by v;,
resp. viy1, the eigenfunction corresponding to the eigenvalue \;, resp.
Air1. Remark 2.3 (unicity of the solution of (IVP)) implies that for
any zero point # of v (the solution of (3.10)) in [0, =] it is v'(to) = 0.
Then Shooting lemma and Remark 2.6 imply that the zero points of
the solution of (3.10) lie strictly between the zero points of v; and
Vit1.

V 3
= - i
N
\\‘ ,l/ \« < 1C
N
v
i+1
Fig. 2

Hence it is v(r) ¢ 0 and there is no v satisfying (3.9). We have
just proved that (3.6) is true. Let us recall that J is one-to-one homeo-
morphism Wé'P(O ,T) onto its dual and it satisfies

erllwllp < (17|t < c2 | |5

for all u e W(I,'P(O ,™) with some constants ¢; and ¢, (see [2, Lemma
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3.2]). Hence there exists sufficiently large ball B,(0) in W-1.¢(0,x)
that '

(3.6) H({J-Y(w),z)=0,
for all we dB,(0) and T € [0,1].

Now, we can use homotopy invariance property of the Leray-
Schauder degree, the fact that S is odd and the Borsuk theorem (see
e.g. [4]). On the basis of (3.6’) we can write deg [w — F(J-1(w)) + G;
B.(0),0] =deg[w—AS(J-1(w)); B,(0),0] =an odd number.

This implies the existence of at least one ug € Wé'I’(O,'n) such
that
(3.5) J (o) = F (o) + G, ie.

Cwolr2wtow dt = [ f(t,u)wdt + [ gwdt,
0 0 0

for all we Wé’P(O,w).

The second step of the proof consists of verifying the fact that
up is also the solution of (BVP) in the sense of Definition 2.1. But it
may be shown using standard regularity argument for ordinary dif-
ferential equations (see e.g. [2, Th. 3.3] for the proof of quite analo-

gous assertion).
Q.E.D.

ReEMARK 3.1 - The assertion of previous theorem can be generali-
zed in various directions. The case of nonexistence of the limits (3.2)
will be the subject of the next section. In this section we shall study
some other types of sufficient conditions than (3.3), resp. (3.4). We
use some results concerning solvability of boundary value problem

— (|22 w) = plur|PPu—v|u-|P2u+ g,
{ u(0)=u(n)=0,

which were proved in [2].

(3.11)

REMARK 3.2 - There was proved in [2, Th. 4.5] the following as-
sertion:

«Boundary value problem (3.11) with g = 0 has a nontrivial solu-
tion if and only if (n,v)€ A1, i.e. one of the following conditions
holds:

(i) =M, v arbitrary;
(ii) p arbitrary, v=11;;
(iii) p>M,v>M and

(v) Ve (v) Ve
(@7 + o) e € N




SOLVABILITY OF BOUNDARY VALUE PROBLEMS etc. 115

(W2 — (M)Yp) (v) Ve
(WP +(v)1/2) (M) 1P

((v)Ve — (M) Vo) () Ve
(WP + (v)V2) (\g) 1P

where N denotes the set of all positive integerss».

The following lines in Fig. 3 give the geometric illustration of the
previous classification of the couples (p.,v).

REMARK 3.3 - The plane (u,v) is then devided by A_; into an open
components. Let us denote by A; the union of such components which
contain some (A,A), A € R, as an interior point. Then using the ho-

V)

€ N,

€ N,

Fig. 3

motopy invariance property of the Leray-Schauder degree it is not
hard to see that

(3.12) deg[w —pS(T-Y(w))+ +vS(J-1(w))-; B,(0),0] 0,
for sufficiently large ball B,(0)c W-1.9(0,n) whenever (u,v)e 4;
(see [2] for details).

Using this result we can generalize the assertion of Theorem 3.1
in the following sense.
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THEOREM 3.2 - Let K be a rectangle contained in some component
of A;. Let

(3.13) (x+(x), x-(y)) e K,

for a.a. (x,y)e [0,n] X [0,x]. Then (BVP) has at least one solution
for each ge L1(0,T).

Proof. We shall modify the proof of Theorem 3.1. Take some
(n,v) € K. Then we show that
(3.14) H(u,t)=0,

for all ue€ dB,(0), =€ [0,1], where B,(0) is a ball with sufficiently
large radius and

(3.15) H(u,x)=J(u)—<F(u)—~G—(1—=)pS(u*)+(1—=)vS(u-),
ue Wé'l’(O,'n), t€[0,1].

If we suppose that (3.14) is not true using similar argu-
ment as in the proof of Theorem 3.1 we obtain the existence of
Ve Wé.p(o,ﬂ), l|v]|1,, =1 and 7€ [0,1] such that

(3.16) 6f“| v |22y w dt — 6]'1‘ [1: X+ (t)+ (1—x)p]| vt |P-2vwdt +

+of"['cx_(t)+(1 — )v]|v-|P2ewdt =0,

for all we W;'P(O,'rc). Denote

X+ (1) = Tx4(t) + (1 — 7)p,
X-(t)=Tx-(t) + (1 — 7)v.

It is clear that (Y+(x), X-(y)) € K for a.a. (x,y) e [0,r] X [0,=]
and that v is the solution of the boundary value problem

v(0)=v(r)=0

in the sense of Definition 2.1. Let us suppose at first that K is such
that p,v > M for all (u,v) € K. Since K is compact subset of some
component of A; there exist (pi,vi) € A-1 and (y2,Vv2) € A-1 such that
there exist nontrivial solutions v;, v of

(3.17) {‘(' V' |P=297)" — xu ()| v+ [P2v + X (1) v |2y = 0,

—(|vV'|P2V)" —pa| vt P2y 4 vi| v |P2v =0,
(3.18) { V(0) = v(x) = 0

and the number of zero points of vi, resp. 12, in (0,%) is k,
resp. k + 1. Since p., v; are chosen in such a way that u =p,w=v,
P2=u, »=v, for all (p,v)e K, using Shooting lemma we obtain
that the zero points of the nontrivial solutions of (3.17) lie strictly
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between the zero points of the solutions v;, i=1,2, of (3.18) which
is a contradiction with the fact that v(n)=0.

If K is a subset of a component where p,v < M for all couples
(n,v), the situation is the same as in Theorem 3.1 (when (3.3) is
satisfied).

By the same way as in the proof of Theorem 3.1 we use the
homotopy invariance property of the Leray-Schauder degree and the
fact that (3.12) is true whenever (p.,v) € Ax. The regularity result then
implies the existence of the solution of (BVP) for each ge Li(0,w)
in the sense of Definition 2.1. Q.E.D.

REMARK 3.4 - Let us remark that the assumptions (3.3), (3.4) are
the special case of the assumptions (3.13). Really, (3.3) is equivalent
to (%+(x), x-(y)) € K for aa. (x,y)€ [0,=] X [0,n], where

K={(n,vER*; pu,v=po< M}

The assumption (3.4) is equivalent to (x+(x),%-(y))€e K, for a.a.
(x,y)e[0,r] X [0,=], where

K——:{(U;V)GRZ; 7‘4i<ﬂi<”<”i+l<)ﬁ+1,
M< WSV <hial,i=1,2,....

4. - Second existence result

Let us suppose that a Carathéodory’s function f:[0,x] X R>R
satisfies (3.1). We shall suppose, now, that there exist finite

lim sup f(t,s)

mxw | S[PTES

= x*x=(t),

. t,
Jim inf LGS = e (1)

for a.a. te[0,x].
The assertion of Theorem 3.1 can be generalized also in the fol-
lowing way.
TuEOREM 4.1 - Let us suppose that
4.1) Yio (1), XE=(t) S o <M OF
4.2) N < i K Yo (1) < Bir1 < Mg,
o< S xE= () K pist < hig1, LEN,

for a.a. t € [0,r]. Then (BVP) has at least one solution for each
geL(0,mn).

Proof. We shall prove the assertion under the assumptions (4.2)
for some i € N. Then it will be clear how to proceed if (4.1) is satis-
fied. We use the same notation as in the proof of Theorem 3.1. Our
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aim, at first, is to prove the existence of at least one up € WénP(O,n)
such that

(3.5) J(uo) = F (uo) + G
is satisfied.
It is sufficient to show that the homotopy
H:Wé»l’(O,'n) X [0,1]->W-1.49(0,x)
defined by (3.7) satisfies (3.6). Let us suppose that this is not true.

Then there exist

{un} - < Wle(0,x), {tn} < [0,1], || ttn]|1,p—>c0 and H(u,, ) = 0.
If we denote vn = us/|| tx||1,, then after passing to subsequences we
can suppose that v,—v in Wéll’(O,'n:), ve—>v in C([0,%]), 1.—7€ [0,1]

and

(4.3) PV P20 — [V |P-2 0] W' dt =
0

:ojﬂ[-cnh,,(t)— T P () ] W dt +

+)".rﬂ[(1 - Tn)lvnlp_zvn —(1 - Tm)lelp—z‘Vm]Wdt,
0 _
for all we W:)'P(O,m:),n,m—> oo, where

hk(t)= f(t: ur(t)) .

[l ae |17

Let us put w=v,—v, in (4.3). Since (vi— vm)—>0 in
C([0,x]),n,m—> e and || h| s < const. for all k € N (f satisfies
condition (3.1)), we have

of" [ 7n(2) = T (1) T (Vs — vm)dt =0,

for n,m—> o. From this and from inequality
J(w)—JT(w),u—v= cllu—viz

for all u,ve W(l,'P(O,'n) with some constant ¢ > 0 (see [2, Lemma

3.2]) we obtain with respect to (4.3) that
s = vl , >0,

for n,m— «. Hence v,— v in Wi»(0,n) and v|1.,=1.

We may suppose that (at least for some subsequence)

he—hi,hie L(0,x).
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Taking into account L?(0 , 7)< W-1.4(0,7) and passing to the limit
(for n— o) in

44 | |2V W dt — Tu [ Hawdt — | —E—wdt —
4.4) 6flv |72 v w 'rg' w 'tof Tt 70

—(1- Tn)k6f“|vn|1"2vnwdt =0
we obtain that
(4.5) 0f“| v |P-2y’ w di — cof“hludt —(1- 'C))véfﬂ“vlp‘zvudt =0,
holds for all u € W(l)'P(O ,7). We shall show that

hi(t)=h(t)|v(t)[72v(1),

where h(t) € [wi,pis1] for aa. t €(0,x), v(t)# 0, and h(t) =0 for a.a.
t €(0,m),v(t) = 0. Let us suppose, at first, that there exists some set
AcNo={te€[0,r];v(x)=0}, meas A>0 such that hu(z) > 0,teA.
Then (3.1) implies that

(1) = J(L8a(D) o m(t)

~
lually) lunll?)

+ C|va(t)|?-1.

Since v,—>v in C([0,x]) we have h.(t)—0 a.e. in A, and
| n(1)| < m(t), for aa. t€(0,),m(t)e L'(0,m).

Take w(t) = xa(t), t € [0,n] (where x4 is the characteristic func-
tion of A). We may use the Lebesque convergence theorem to obtain
lim [ e (t)w(t)dt = § im ha(1) xa(t) dt =0.

0

n-»oco 0 n-> oo

On the ofher hand

of"hl(z) w(t) dt = | In(t) dt >0,

which contradicts to #,—>H; in L7(0, ). Hence A1 (t) = 0 for a.a. t€ No.
We show, now, that Ai(t)=w|v(t)|?-1v(t) for aa. teN,=
={z € [0,=]; v(t) > 0}. Let us suppose that this is not true, i.e. there
is Ac N, meas A >0, such that fu(t) <p:|v(t)|?-2v(t) for t€A.
For each t ¢ No we have |u.(t)|— + o . Hence laking into account
va,—>v in C([0,=]) we have

lim inf 7.(t) = lim inf 1% (D) _
2 o | o
RTINS f(t,uq(t))
=lim Inf — ()

for a.a. t € A according to (4.2). Take w(t)=xa(t), t € [0,=]. Using
Fatou’s lemma we obtain

| Va(t) |72 va(t) = Wi | v(2)|P720(2),
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liminf f 7.(2) w(2) dt >  lim inf ha(t) xa(t) dt > i |v(1)|7-2 v (1) dt.
0 0 A

N - oo

On the other hand

N> oo

0f"hl(t) wt)di = (1) dt <u: [ |v(t)|>2v(1) dt.

Hence hl(t)zu,-lv(t)lp—zv(t) for aa. teN,. Analogously we
prove that A:(t) < i | v(t)|?-2v(t) for a.a. t € N, and
Birt [V(2)[P72v(2) < hu(t) < | v (L) |P-2v (1),

for aa. te N_ ={t€[0,x]; v(t) < 0}. The function #(z) is, now, of
the following form

_ _ hi(t)
h(t)=0, t € No, h(t)= DRI t¢ Np.

The considerations made above imply that %(t) € [pi, pis1] for a.a.
te(0,n) and hence th(t) + (1—1)A=1y(t)e [pi, piz1] for a.a.
t €(0,w). Regularity result [2, Th. 3.3] implies that the solution of
(4.5) is also the solution of

—([V'[7=2v') = x(t)|v|r-2v,t€(0,T),
(4.6) {V(O) =v(x)=0

in the sense of Definition 2.1. Particularly, it is v € C!([0 ,T]).

The uniqueness result (Remark 2.3) then implies that the set
No={t€[0,r];v(t)=0} is finite and that v'(t)= 0 for all teN.
Let us consider, now, the initial value problem

— ([ V'a|P=20")" = (1) | va |[P~2 Vs,
(4'7) { Va.(o):O,v,a(O):a;ﬁO.

Applying Shooting lemma we obtain that the zero points of the
solution of (4.7) in (0,x] lie strictly between the zero points of v;
and viy1, where v;, resp. viy, is eigenfunction corresponding to \;,
resp. Aiy1. Hence it is v.(nw)= 0 for each & = 0. This implies that
(4.6) has only trivial solution which proves that the homotopy H
satisfies (3.6). The remainder of the proof is the same as in the case
of Theorem 3.1. Q.E.D.

REMARK 4.1 - Applying the results from [2] to the equation (3.11)
it is possible to generalize the assumptions (4.1), (4.2) of Theorem
4.1 in the following sense.

THEOREM 4.2 - Let K be a rectangle contained in some component
of Ai. Let

(4.8) (X (x), x==(y)) € K
for aa. (x,y)e [0,7] X [0,x]. Then (BVP) has at least one solution
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for each g€ Li(0,m).

The proof of this assertion is a modification of the proof of
Theorem 4.1. The only difference is that we consider the homotopy
defined by the relation (3.15) and then we use (3.12) (see Remark
3.3).

REMARK 4.2 - Similarly as in Remark 3.4 it is easy to see that the
assumptions (4.1), (4.2) are the special cases of the assumption (4.8).

5. - Quasihomogeneous operators

Let us keep the notation of operators J,S and F: W(l,:P(O,m:)-—>
—W-1.9(0,n) from Section 3.

DEerFINITION 5.1 - The operator A:W(I)-P(O , )= W-1.9(0,x) is said
to be (p — 1)-quasihomogeneous with respect to J if t,—0, un—> tlo

in W(l)'l’(O,n) and tﬁ-l A(%’-l-)—>G € W-19(0 , &) imply J(u) = G.

DEFINITION 5.2 - The operator A: W(IJ'P(O ,T)—>W-14(0,n) is said
to be a (K, L, p—1)-homeomorphism of W(‘)'P(O,'n) onto W-44(0,x) if
(i) A is a homeomorphism of Wéﬂ’(O ,7) onto W-14(0,x);
(ii) there exist real numbers K > 0,L > 0 such that
L|| ullf‘—p1 < ||Aw)]|-1e S K || u| ;”;1.

REMARK 5.1 - To the operators of the type mentioned above it is
devoted Chapter II in [4].

The assertion of Theorem 3.1 may be generalized also in the
following way.

THEOREM 5.1 - Let A be an odd (K, L, p—1)-homeomorphism which
is (p—1)-quasihomogeneous with respect to J. Let f:[0,=] X R—>R
satisfies (3.1), (4.1) and (4.2).

Then for each g € Li(0,w) there exists at least one u € W(l)'l’ (0,=)
such that

(5.1 A(u)=F(u)+ G
(for the definition of G see the proof of Theorem 3.1).

Proof. We shall consider the homotopy
H(u,t)=A(u)—vF(u)— G —(1—<) AS(u), u e Wi»(0,n), v € [0,1],
and we shall prove that
(5.2) H(u,<)=0,
for all u € 9 B,(0), = € [0,1], where B,(0) has sufficiently large radius
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r > 0. Then the assertion will follow from the fact that S is odd, A4 is
odd (K, L, p—1)-homeomorphism and from the Leray-Schauder degree
theory. Let us verify (5.2). Suppose to the contrary that there exist
{un}:=I {*l:n}";"=I such that 1, € [0,1],] ¢s][1,,—> e and H(u,,t,)=0.
Multiplying the last equality by 1/ [l un]]f:'; we obtain

F(un) G
At |fp) = L) G
(o[l T " Tl

—(1 =) AS(vs) =0,

where va =, /|| tn||1, (and v,—v after possibly passing to subse-
quence). Analogously as in the proof of Theorem 4.1 we obtain that

F n, jond
T"Wu(uT")“T + . TGT_T +(1 = 1) AS(ve)— G
n l,p

|| 2 |2~
in W-%4(0,x). Since

A(uy,)
— _>L,
|| [|7-1
it is G »= 0. Hence v0 and J(v)= G (according to Def. 5.1), i.e.
(4.5) is satisfied. But as it was shown in the proof of Theorem 3.1
on the basis of Shooting lemma the relation (4.5) together with v = 0
leads to the contradiction. That is why (5.2) is satisfied and the proof
is completed. Q.E.D.

REMARK 5.2 - It is easy to see (using the homotopy invariance pro-
perty of the Leray-Schauder degree) that if A is an odd (K, L, p—1)-
homeomorphism which is (p —1)-quasihomogeneous with respect to
J then :

(3.12) deg [w — uS(A-1(w))* + vS(A-'(w)) -; Bp(0),0] =0,

for sufficiently large ball Bp(0)c W-14(0,n), whenever (n,v) € A
(see Remark 3.3). Then using (3.12") instead of (3.12) we can prove
the generalization of Theorem 5.1 in the sense that the assumptions
(4.1) and (4.2) are replaced by the general assumption (4.8) (see [7]).

REMARK 5.3 - It is possible to verify that the operator A defined by
(Au,v) = fn(l + |u' |7~ wv' dt,
0

u,ve Wrr(0,n) is odd, (K, L, p—1)-homeomorphism Wi»(0,rn) onto
W-14(0,n) which is (p— 1)-quasihomogeneous with respect to J (to
verify it we can proceed by the same way as in [2, Lemma 32]). If
the function f:[0,n] X R—R is given by the relation

f(t,s): )\r(t) [CI»I st Ip—zs — czls-lp—zs + ,Slp-z]’
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where ci1M(t),c2M(t) € [Mi + &, hiy1 — 8] for aa. t€(0,n) with some
small § > 0.

Then there exists at least one u € W(‘;P (0,n) such that
F+ |w|py) wvdt = § ah(t)|ut [P-2uvdt —
0 0

— Feant)|u-|p2uvdt + M) u|p-2vdt + [ gvdt
0 0 0

holds for each v € W},‘P(O ,T).

6. - Final remarks

REMARK 6.1 - It would be probably interesting to check if the si-
milar results it is possible to prove also for strongly nonlinear Dirich-
let boundary value problem

[ (ut | = f(t,u) + g,
BVP) {,)(0) L u'(0) = u(m) = ' (m) = 0.

REMARK 6.2 - The studying of the similar nonlinear Dirichlet bo-
undary value problem with partial differential operator of the type

—V(|Vu|r2Vu)=f(x,u)+ g in Q c RN,
{ u=0 on dQ,

would be probably more difficult (see [7]).

It seems that for p =2, p is near 2 (ie. for pe[2,2 +3) for
some small § > 0) we may prove analogous result as in Theorem 3.1
using the properties of the linearized partial differential operator of
second order which we obtain for p = 2.

But it is not clear how to proceed in the case of general p = 2.

REMARK 6.3 - It would be interesting to study the case when x+
and x- crosses an eigenvalue of (EVP), e.g. x«(t)=\; in the set of
positive measure in [0, ] .

REMARK 6.4 - Solvability of (BVP) in more general setting will be
studied in prepared paper [7].
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