SOLUTION OF A BVP CONSTRAINED IN
AN INFINITELY DEEP POTENTIAL WELL (*)

by VirTorIO COTI ZELATI (**)

SOMMARIO. - Si dimostra Uesistenza di una soluzione per il problema
al contorno

—x=VU(x),x(0) = x(a) =0,
dove x:[0,a] >RN,U:Qc RN R, U convessa e U(x) > + o
quando x—>dQ. Il metodo usato si basa sul Principio di Azione
Duale di Clarke e Ekeland.

SUMMARY. - We prove existence of a solution for the boundary value
problem

—x = VU(x),x(0) = x(a) =0,
where x:[0,a] >RN, U:Q c R¥—R, U convex and U(x)>+ o
as x—>9Q. The method employed is based on the use of the
Dual Action Principle of Clarke and Ekeland.

Let Q be a bounded, open set in R¥ and U € C(Q; R) be such
that U(x) = 4 « as x—3Q. Denote by VU the gradient of U.

Here we will discuss the problem of existence of solutions of
the boundary value problem

W ~x=VU(x) Vtel0,al
{x(O) =x(a) =0.

(*) Comunicazione fatta al «Meeting on Variational Methods in Differential
Problems» (Trieste, 26-28 settembre 1985).

(**) Indirizzo dell’Autore: International School for Advanced Studies - Strada
Costiera, 11 - 1 34014 Trieste.
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The problem will be studied from a variational point of view
through the use of the Dual Action Principle. To do this we will
have to require U (and ) to be convex. The advantage of using
this tecnique is the fact that the functional (whose critical points
will be the solutions of (1)) will be defined on a whole Banach
space E, while a more direct approach forces one to work in a sub-
set of a Banach space, thus requiring a modification of the usual
tools employed in the search of the critical points.

This work is strictly related to [1], where the periodic bvp is
considered for equation (1), and where minimality of the period is
also proved. For other results on periodic bvp’s with infinitely deep
potential well, see also [3], [6], where ex1stence is proved working
in an open subset of a Banach space.

Let 2 < RY be a open, bounded, convex set such that 0 € Q. Let
I'=0dQ, T.={xeQ:d(x,T) <e} where

dist(x,T) =inf{|x—y|:y €T}

and | - | is the euclidean norm in RN corresponding to the scalar
product (-|-).

Let U:Q— R be given. We say that U satisfies assumption (A) if:
(Al) UeC(Q;R), U is stricly convex;
(A2) UQ) =0=minU;
(A3) U(x) > + o as x—T (uniformly);
(A4) de>0and 0€]0, %[ such that

U(x) =6(x|VU(x)).

We will prove:
THEOREM - Suppose U satisfies assumption (A) and

1
(1+c¢)a?

then problem (1) has at least one solution.

de,8>0: U(x) = x|?2 V|x|=8§;

Proof. The proof will be carried out in two steps:

Step 1: use of the Dual Action Principle [4,5] to transform (1) in
a critical point problem for a functional f in a Banach
space E.

Step 2: application of the Mountain Pass theorem [2] to f.

Step 1 (Dual Action Principle)
Let U* be the Legendre transform of U, defined as

2 Uy = sup {(x|y) —U(x)}.
XxXeEN

The properties of U* are collected in the following lemma:
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LEMMA 1 - U € C'(RN; R) and convex. Moreover 3ci,c2,c3 >0
such that Vy e RN, |y| large, one has:

B) aly|=U') Salyl;
@ |VU()|=cs;
5) Uy)=2(1-0)(y|VU(y)).
Proof. See [1, lemma 2.1].
Let E = L'(0,a;R¥) with norm ||u|| = f¢|u|dt. Define L:E—E
setting
Lu=v if and only if —v=u, v(0) =v(a) =0.

L is a linear selfadjoint operator from E into E; moreover, since
L(E) = Wg-l(O,a;RN), L is compact. It is easy to see that

©) |[Lull,. =(a/4)||u]|,-
Define f € C'(E ; R) setting
f(u) =fg (U (u) — Ya(u|Lu)]ldt.

It is well defined by (3) and (6). If u € E is such that f'(u) =0,
then — Lu 4+ VU"(u) = 0. Setting x = VU"(u), one has x = Lu, hence

—x=u and x(0) =x(a) =0. From x = VU'(u) follows, from the
properties of the Legendre transform, u = VU(x), and we finally get

—x=VU(x)
{x(O) =x(a) =0.

So we have proved that the critical points of f are solutions of (1).
We now go to:

Step 2 (The Mountain Pass Theorem).

To apply the Mountain Pass Theorem we begin showing that f
satisfies the Palais Smale (PS) condition, namely: V{u.} < E such
that f(u.) is bounded and f'(u.) -0 has a converging subsequence.
The proof of the (PS) condition works as in [1]; we repeat it here
for completeness. One has

f(un) [und = 20 (n| VU (un)) — (un|Lun)] dt.

From (5) and Holder’s inequality we get:

5 (tn| Lttn) =

L Lo U ) + (| ()] [ 2]l + .

From this inequality and f(u.) = cs, we get
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1 -
Sa=0 JeU'(un) +

JeU' (un) S s+ Y2 f§ (un| Lun) =
+ 2 || (un) || o | ttn ]| + 6.

1
2(1-19)

(7) Nunll, = cr + cs|| ' (un) ] | tan ], -

Since 1 — > 0 we get, using (3),

Since ||f'(us)||1=—>0, we get ||u.||1 = const.,, and, up to sub-
sequence, Lu,— ¥ in C°. Setting

Zn = Lu, — ]U (uy) ,

it follows z,—¥ in L=, with ¥ continuous function. Since z.(t) =
= VU'(ua(t)) € Q ae. (u, € L' implies |ua(t)| < 4+  a.e) we have

that ¥(t) € Q Vt € [0,a]. We now claim that:
8) v(t)eQ Vte[0,a].

Since 7(0) =0€ N2 and ¥ is continuous, exists 7 > 0 such that
7(t) e Vte[0,7]. Since z.(t) = ¥(t) in L=, then z.(t) € Q' a.e.
for t € [0,7] for n large, where Q' is a compact subset of O, and
hence u.(t) = VU(z.(t)) € L=(0,%). Since VU is bounded in ' and
continuous, we have

un(t) = VU(2a(t)) = ii(t) = VU(D(t)) in L=(0,1).
It follows from this fact and the definition of L that, weakly

—9(t) = VU(9(t)) in 10,7[
and from the usual regularity theorems we deduce that ¥ is a clas-
sical solution of —x = VU (x) Ytel0,7[. In particular the con-
servation of energy holds, i.e.
9)  1/2[9(1)|2+ U((t) =c =1/2|9(t/2)|2+ U((7/2))
Vte]0,7[.
Suppose exists ¢’ >7 such that v(t1) eQ Vie[r,t'[, ¥(t) € 5.
Since (9) holds, repeating the preeceding argument in [0,# — e[, ¢
small, one has that U(%(t)) =c Vte]0,t’ —e[; from the conti-
nuity of ¥ and of U in the region {x € Q:U(x) =¢} one has
U(v(t')) =c and ¥(t’) € Q, contradiction which proves claim (8).
By the claim it follows that 7(t) e Q Vte[0,a]; since z,—> v
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in L*, we have, as before, that u,— VU (¥) in L*(0,a) and, in par-
ticular, in L'. This proves (PS).

The behaviour of f at u = 0 and at infinity is described in the
following lemma:

LEmMmA 2 - 19 Exist v,b >0 such that f(u) Zb VY||ul|,=7;
2) Exist i€ E,||@l| > r such that f(d) <O0.
Proof. See [1, lemma 2.5].

We can now apply the Mountain Pass Theorem to find the
desidered solution.
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