MULTIPLICITY PROBLEMS
FOR ELLIPTIC EQUATIONS
WITH NONLINEARITIES AT CRITICAL GROWTH (*)

by G1ovaNNA CeErAMI and SERGIO SOLIMINI (**)

SOMMARIO. - Si comunicano i risultati di [4], in cui é dimostrato che
il problema (P), in seguito definito, ha infinite soluzioni radiali
su un dominio sferico in dimensione maggiore o uguale di 7.

SUMMARY. - The results in [4] are communicated, which show that
problem (P), defined below, has infinitely many radial solutions
on a ball in dimension bigger or equal than 1.

We communicate with some further comments the results of
[4], obtained jointly with M. Struwe, concerning the problem:

—Au=M+|u|r?u in Q
(P)
u=20 on 3

where Q is a bounded regular domain of R¥, N=3 and p = -N—ZN—

is the critical Sobolev exponent.

(*) Comunicazione fatta al «Meeting on Variational Methods in Differential
Problems» (Trieste, 26-28 settembre 1985).

(**) Indirizzi degli Autori: G. Cerami, Dipartimento di Matematica e Appl., Via
Archirafi, 34 - I 90123 Palermo — S. Solimini, International School for Ad-
vanced Studies, Strada Costiera, 11 - I 34014 Trieste.
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The fact that the injection of H o () in Lr(Q) is not compact
makes the study of (P) particularly difficult with respect to the

case: p < (subcritical case) and actually from the well-known

N-2
Pohozaev identity [6] one knows that (P) has no nontrivial solution
if =<0 and Q is star-shaped. In [1] H. Brezis and L. Nirenberg
have proved the following result:

THEOREM 1 - There exist a M € [0, M [ such that (P) has a po-
sitive solution if e ]\ ,M[. Moreover if N =4 then V' =0.

The case N = 4 is the case we are concerned with and that we
shall always consider in what follows. The condition A < is clearly
necessary for the existence of a positive solution to (P), however
one can expect a nontrivial solution for any given A\ > 0. Partial
answers to this question were given by the first A. with D. Fortu-
nato and M. Struwe in [3] and subsequently A. Capozzi, D. Fortu-
nato and G. Palmieri [2] proved the following:

THEOREM 2 - For any A >0 (P) has a nontrivial solution.

The results in Theorems 1-2 were substantially proved in the
following way. One defines on H é (2) the functional:

L(u) =-%—[fn|VuI2—k,fnu2] - %Inlu[”
and looks for critical points of I). For a given ¢ € R one considers
the local Palais-Smale condition in c:
[P.S.]c: For any sequence (u,), in Hé (©2) such that:

a) IL(u,) —>c

b) VIL(u,) -0

there exists a converging subsequence.

The «lack of compactness» of (P) is expressed by the fact that
the Palais-Smale condition does not hold «globally» namely [P.S.].
is false for some levels c € R.

Then one shows (see [3]) that, denoting by S the Sobolev
constant:

2 -
S=inf A2lVEE e jowest ¢ such that [P.S.], does not hold
ueHI(Q) (Ja|u|?)2r
u20

1
is WS N2, The above stated theorems are then proved by construct-
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. . . 1
ing a min-max class which works at a level ¢o < FSN/Z. In the case

M < M, co is the lowest nonzero critical level.

A similar approach does not look reasonable if one is looking
for multiple (pairs of) solutions to (P), in particular for infinitely
many ones since one expects in this case to find critical points at
larger and larger positive levels.

The fact that (P) has infinitely many solutions in some cases
has been shown by D. Fortunato and E. Jannelli [5] by considering
some domains  with suitable symmetries and working on suitable
subspaces of H!(£2). In such a way one can replace S by larger and
larger values, considering functions with many sign changes. A rough
explanation of the underlying idea, in the case that £ is a ball Bg,
is the following: for any integer k large enough one splits Q in 2k
equal sectors, puts in one of them the positive solution given by
Theorem 1 and replaces it in the other sectors by odd specular re-
production.

A different approach is needed if one works with a general Q
or if one looks for particular solutions which do not allow this use

of the symmetry, for instance if one looks for radial solutions on
a ball.

In [4] some contributions in this direction are given, in parti-
cular the following results are proved.

THEOREM 3 - Let N=6 and € ]0,M[. Then (P) has at least
two (pairs of) nontrivial solutions.

THEOREM 4 - Let Q@ =Br, N=7 and A€ ]0,M[. Then (P) has
infinitely many radial solutions.

The two results are closely related. One considers the class U
given by:

U={u(-:H(§|ui =0, (VL(ut),u*) =0 for both the + signs}.

It is easily seen that to look for a minimum of I, on U is equivalent
to looking for a two-dimensional min-max surface. Therefore, by
using a suitable version of the Rabinowitz saddle point Theorem,
see [7], [4], one gets a sequence (u,) such that:

(1) d(u.,U)—0

2) IL(u,) —c:= igf I,

3) Vh(u,) —0.

Moreover in the same way one sees that if u# is any point of
minimum of I, on U, then u is a critical point for I,. Collecting
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these informations one sees that if [P.S.]. holds for ¢ = ¢; then one
immediately gets a solution to (P) in U. Unfortunately there is no
reason to expect this. However, using the result by M. Struwe in [8]
one also has the following information:

(i) The lowest level ¢ > %SN/Z such that [P.S.]. does not hold is
Co + _1- SN/Z .
N ’

1
(ii) if (u.). satisfies (a) and (b) in [P.S.]., for cz—ﬁSN/Z, and
(un)» has no converging subsequences then one has in H (1) (Q):

ut—>0
n

4)

or u;—aO,

(ii) follows from the fact that (u,), must be approximated by a se-
quence of rescaled one instanton solutions cut off at infinity, and
those have a constant sign. The assumption N =6 produces the
estimates:

1
(5) CI<C0+ﬁSN/2.

Moreover u € U implies:
fnluilp
Ja|Vu= |2 — A fa(ux)?

+|p)P=2 _ fﬂlvutlz—)".’.ﬂ(ui)2>s - — inf ntV‘VIZ—)\.fn‘VZ
(fﬂ'u l) P (fnlui-lp)Z/p = ). lvriH;(Q) (fﬂlvlp)Z/p

va0

=1 and therefore:

>0

since A < M.

From this last estimate, since the L? norm is a monotone norm,
one sees that (4) cannot hold if (u.). verifies (1)-(2)-(3). Therefore
from (5), (i) and (ii) the fact that (u.). has a converging subse-
quence follows and Theorem 3 is proved.

Finally we shortly indicate how one can derive Theorem 4 from
Theorem 3. First we need a radial version of the first result.

Assume Q is a ball or an annulus and let E denote the radial
functions in H +(Q). By using the same variational approach than in
Theorem 1 on E one proves:

THEOREM 3’ - Let N > 7 and ) € [0,M[. Then (P) has two (pairs
of) nontrivial radial solutions. Moreover if u is any point of mini-
mum for L. in UNE, then u is a solution to (P).

The fact that we ask one dimension more than in Theorem 3
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is due to the bigger difficulty in deriving (5) without the possibility
of testing nonradial functions of H (1, ().

Now one assumes Q = B(0,R) and defines for any k€ N :
Uir={u€eE|30=rn<r-1<r-2<...<r=R such that
u(ri) =0, 0<i<k, (—1)iu(x) =0 in S;, u=0 in S; and

Jsi(|Vu|* — M2 — |u|?p) =0 fori=1,...,k}
where Si={xeB(0,r)|ri<|x|<ra} fori=1,...,k.

From Theorem 3’ we deduce:

PROPOSITION 5 - If u is a minimum for I on Uy, then u is a radial
solution to (P).

The proof of Proposition 5 is immediate. If k¥ = 2 it is just the
last part of Theorem 3’ since to find a minimum in UNE is equi-

valent to finding a minimum in U,. For k > 2 one can use the pre-
0

~—
ceding case by restricting oneself to the subdomains Q;: = S;USis
for i=1,...,k— 1. Of course the restriction of # on £; is in the

class U of € and minimizes I, on it. Since (Qi)1<i<%-1 is an open
covering of Q and u solves (P) on Q;, then u is a solution to (P)
on .

In this way the proof of Theorem 4 is complete if we construct
a minimum in every U:. To this aim one first looks for the optimal
position of the nodal values 0 < rr_1<...r1 < r =R by taking a
minimizing sequence (u.). on Ui and considering the corresponding
nodal points 7;,». Then one takes as 7; a limit point for the sequence
(ti,n)n. The fact that riy<ri<rigfor 1<i<k—1 is then a con-
sequence of the assumption N = 7. By easy computations one can
observe that if one defines u on S; as a radial solution at minimum
level for I, fori=1,...,k, then u minimizes I, on U.

We now make a few remarks about the difference with respect
to the subcritical case. Let

cr = inf Ir(u)
ueU’c

and let ux € Ui, I(ur) = cx. Then one has
- -1
VkeN:ci1 <cr+ .ﬁlez

and
1

lim (Cks1 — Ck) = = SM
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(while in the subcritical case:
lim (cr41 — Cr) = + ) .
k

As a consequence one sees that the nodal lines of u; can only accu-
mulate at the centre of the ball Q as k— + .

More precisely, if we fix r € J0; R] then e > 0 such that for
every k € N there exists at most one 7’ € [r —e,inf (R,7 + ¢)] such
that ux(x) =0 if |x| =#'. In the subcritical case the number of the
values 7’ increases to + o as k—> 4 oo .

This fact also allows us to pass to the limit with respect to k
and to find a radial solution u.. of the equation

6) —Au=ru+|u|r2u

on the open set Br\{0} which has infinitely many oscillations in 0.

Such a solution does not exist in the subcritical case. In fact if

R=r>r>...>r,>... denotes an infinite sequence of positive

real numbers such that u(x) =0 if |x| = r;,S; is defined as above

and a;=1:f Ixler |Vu.. |? then the Pohozaev identity implies

N N-2
2

(7) di—l—aiZ[ ](fs;‘uml"+7vfs‘u?,)20

for i>1,p< 2N
N4 N

5 Therefore (a;); is a decreasing sequence of

positive real numbers and then: lim (a;-1—a;) = 0. On the other hand

. N N-2
N3 then € = min (1, P -3

one has

if p<

) >0 and from (6) - (7)

Gi-1—ai>¢fs (|u.|?+M2) =¢fs |V |2

and therefore: lim [s,|Vu.|2=0, which is a contradiction since u..
i

is a nontrivial solution to (P) for © = S; and |Si|—0.
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