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by KrzYSZTOF P. RYBAKOWSKI (**)

SOMMARIO. - Si fornisce un criterio di ammissibilita nell’ambito della

teoria dell'indice di omotopia in spazi metrici e si confronta la
condizione di ammissibilita con la condizione di Palais-Smale.
Nel caso di problemi variazionali, si collega l'indice di omotopia
alla nozione di gruppi critici di un punto critico. Infine, si ap-
plica la teoria dell'indice di omotopia per stabilire un «princi-
pio di perequazione» per soluzioni periodiche di sistemi del se-
condo ordine di tipo gradiente.

SUMMARY. - In this note we give a criterion for admissibility in the

homotopy index theory on metric spaces and compare admissi-
bility with the Palais-Smale condition. For variational problems,
we relate the homotopy index to the concept of critical groups
of a critical point. Finally, we use the homotopy index to esta-
blish an «averaging principle» for periodic solutions of second
order gradient systems.

Introduction

The homotopy or Conley index was defined by C. Conley [1]

for (two-sided) flows on compact spaces. Thus the applicability of
the original Conley’s theory is restricted to problems definable by or
reducible to finite-dimensional ordinary differential equations.

In the papers [9]-[11] the homotopy index theory was exten-
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ded to certain classes of (one-sided) semiflows on nonnecessarily
locally compact metric spaces. This theory was further developed
and applications to functional and partial differential equations
were given in the works [12]-[21].

The key assumption in this extended homotopy index theory is
the so-called admissibility condition.

It is the aim of this note to give a general criterion for admis-
sibility and to examine the connection between the admissibility
and the Palais-Smale conditions.

We also review some recent results relating the homotopy index
to the well-known critical groups in Morse theory.

Finally we state a useful continuation principle for the homo-
topy index in the spirit of the coincidence degree and indicate how
this principle can be applied to prove the existence of periodic
solutions for second-order gradient systems.

2. Admissibility and the Palais-Smale condition

Let X be a metric space and = be a local semiflow on X. We
write xmt: = r(t,x), i.e. xxt is the value at time ¢ of the solution
with initial value x; w, denotes the endpoint of this solution.

We say that a closed set N c X is Astrongly m-admissible if the
following conditions are satisfied:

(1) = does not explode in N, i.e. whenever x€ X and xr [0, w:) ©N,
then w; = oo .

(2) N is m-admissible, i.e. whenever {x,} = X and {t.} c R+ are
sequence with x,m[0,7,] c N for all ne N and #,— « for
n—> o, then the sequence {x, nt.|n € N} has a convergent
subsequence.

If K is an isolated invariant set (relative to ) which has a
strongly m-admissible isolating neighborhood, then the homotopy in-
dex h(m,K) is defined and, by definition, equal to the homotopy
type of the quotient space (B/B-,[B-]), where B is any strongly
m-admissible isolating block for K and B- is the set of all striot
egress and bounce-off points of B. Instead of the pair (B, B-), one
can take, more generally, any «admissible» index or quasi-index pair
(N1, N2) (see [9], [10]).

Suppose the pair (n,K) is varied in an admissible continuous
way, i.e. assume there is a «continuous» parametrized family
A= (m,, Ky) of pairs consisting of a local semiflow 7, on X and an
isolated invariant set K, (relative to m). A is in a metric parameter
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space A and all sets K, are isolated by the same isolating neighbor-
hood N which satisfies a «collective» admissibility assumption. Then
h(m.,K,) is constant for A lying in connected components of A.
This is the important homotopy invariance property of the index
making it a useful instrument in global perturbation problems (see

[9D).

We will now give a useful criterion of strong w-admissibility.
Let X be a Banach space and A be a sectorial operator on X gene-
rating the family X®, @ > 0 of fractional power spaces. Fix 0 < a < 1
and let f: X*— X be a locally Lipschitzian operator. Then the strong
solutions of the equation

u=—Au+ f(u) (1)
generate a local semiflow 7y on X* (see [3], [12]).

We now have the following

THEOREM 1 - Suppose that there is a direct sum decomposition
X=X1®X, with A(D(A)NX;) cXi, Ai:=A|D(A)NX;, i=1,2,
such that dim X; < o, A; is sectorial on X;, i=1,2 and re
(A1) > 6 >0 for some §.

Let N be closed and bounded in X* and f(N) c C where C is
compact in X .

Then N is strongly m-admissible.

Proof. That =y does not explode in N follows (under much more
general hypotheses) from Theorem 3.3.4 in [3].

Let t,— « as n—> « and for n € N u, be a solution of (1) de-
fined on [0,?,] and such that u,(t) e N for ¢t € [0,t,]. We have to
show that the sequence {u.(#,)|n € N} has a convergent subsequence.

Using Theorem 1.4.3 in [3] and our hypotheses we obtain an
h>0 and 0 < k <1 such that

le-*"ulle < k|l ula 2)
for all u e X2
Let P; be the projector on X;, i = 1,2 in the above direct sum.

Then using our assumption on f we obtain the existence of
a compact set Dc X such that for every continuous function
u:[0,h]—>N

ze-"lsplf(u(s)) dseD. 3)

Write ”i (t) = P;u,(t), and let § be the Kuratowski-measure of non-
compactness on X¢ Since dim X2 < « and N is bounded we only
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have to show
B{u! (t))ineN}=0 4)

Since t,—> o as n—> o we get from the variation-of-constants
formula

B{u! (t.)|n € N} = B{u! (1)| tn = h} =

B{e-4ul (t,— h) + f” e~Mtn=s) Py f(u,ms) ds | t, > h}
n ta—h

=< B{e-Al"uL (to — h)|t. = h}+ B(D) < kB{u! (t. — h)| ta = h}
Repeating this argument we get for any m € N,

B{ul (tn)|neN} = k- B(N) &)

Since k < 1, we obtain (4) by letting #m1— o in (5). The theorem is
proved.

REMARK - Theorem 1 is, in particular, applicable if (1) is an
ordinary differential equation on X, ie. if A: X — X is linear and
bounded, X* = X and the above direct sum decomposition exists.

We will now look into the relation between the admissibility
assumption and the Palais-Smale condition.

Let X be a Banach space and g: X — X be a locally Lipschitzian
mapping. Let =, be the local flow on X generated by the ordinary
differential equation

u=_g(u) 6

By the same symbol &, we also denote the local semiflow con-
sisting of solutions of (6) defined for nonnegative times.

Let N be a subset of X. We say that g satisfies a Palais-Smale
condition on N if every sequence {x,} c N with g(x,) — 0 has a con-
vergent subsequence. Usually X is a Hilbert space and g= — V&
for some functional ® : X - R. Then we say that ® satisfies a Palais-
Smale condition on N if g does.

Now we have

THEOREM 2 - Let N, N be subsets of X with N < N and N closed.
Suppose that dist (1:1", ON) = :¢ >0 and g is Lipschitzian on N. If N
is wn-admissible, then g satisfies the Palais-Smale condition on N.

Proof. Let L be the Lipschitz constant of g on N, and
u:[0,%]— N be any solution of (6), to > 0. We claim that

| 2(2) — x(0)|| < ||f(x(0))]| - L-! - ekt ()
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for all t € [0,12].

In fact

%) = 2O = Fll£(x(5)) = £(x(0))l| ds + 1| £(x(0))]] ds <

0
< Lf||x(s) = x(0)| ds + | (x(0))]| ®

Now (8) and simple differential inequality arguments easily
imply (7).

Now let {x.} © N be a sequence with g(x,) -0 as n— . Let
T = my. Define

s~ (xn) =sup{t =0|x,m[—1¢,0] is defined and < N}.

Set u.(t) = x,m(—t) as long as defined. Then Un(t) = — g(un(t))
as long as defined.

From (7) we obtain
” un(t) — un(O)” = Hg(xn)ll - L-1elt (9)
for t < oo, t€[0,s (x)].

This implies that either s-(x,) = + o or else u,(s~(x»)) is de-
fined and € dN. In the latter case we obtain from (9)

€ = || tn(s=(%n)) — xn|| < || g(xn)|| - L1 &2~ (3 (10)

Now (10) and the fact that g(x,) >0 as n— o imply that
S (x4) > oo for n— o .

Define t,=n if s (x,) = » and t,=s(x,) otherwise and
in = un('— tn)-

Then z,n[0,t.] € N as t,— o. The admissibility of N implies
that {z.wt.|n € N} has a convergent subsequence. Since z,Tt, = X,
the theorem follows.

REMARK - There is no converse of Theorem 2: In fact let X be a
Hilbert space with X; and X,: = X! two infinite dimensional sub-
spaces. For ue X let uie X;, i = 1,2 be such that u = u! + u2 De-
fine ®: X >R by ®(u) = va(]|ul||2-|| 2|2).

Then g(u) = — VO (u) = u? — ul.

If {u.} < X is such that g(u,) =0, then u,— 0, so that the Pa-
lais-Smale condition holds on any set N — X. However, if N is the
closed unit ball and {e.} is an orthonormal sequence in X, then
enTgt =exp(t) - e, € N for all t 0. Therefore if N were n-admis-
sible, {e.} would contain a (strongly) convergent subsequence, a
contradiction.



88 KRZYSZTOF P. RYBAKOWSKI
3. Critical groups and the homotopy index

Let X be a Hilbert space and u be an isolated equilibrium of
equation (6). Suppose that, locally around u,, g = — V®, where
®: X >R is some functional.

For ¢ € R write
O ={ueX|du) <c}.

Let H;,, geZ by any (unreduced) homology or cohomology
theory. Let B be any closed neighborhood of uy, such that there is
no other equilibrium of (6) in B.

The critical groups C,(®,us) are defined as
Cq(®,up) = Hy(®°NB, 0N B\{wo}), g€ Z (11)

The excision axiom of (co)homology easily implies that C,(®, 1)
are independent (up to an isomorphism) of the choice of B.

The concept of critical groups is due to Rothe [8]. It provides
an extension of the classical Morse-index to degenerate equilibria.

We will now see how critical groups relate to the homotopy
index. Since g is gradient around uy, it follows that K = {u,} is an
isolated invariant set relative to w;. If K admits a strongly =;admis-
sible isolating neighborhood, then the homotopy index h(x,,{u})
is defined and equal to the homotopy type of pointed spaces
(N1/ N2, [N:]), (N1, N;) being any «admissible» (quasi-)index pair
for {uo}. Consequently the groups H,(N:/N,,{[N:1}), g€ Z are
independent of the choice of (Ni, N;) and, therefore, the (co)homo-
logy groups Hy(h(wg,{us})) are well-defined (up to an isomorphism,
of course). .

Now the following result holds:

THEOREM 3 - Let uy be as above and assume that K = {u,} ad-
mits a strongly wadmissible isolating neighborhood.

Then
Hq(h(mg,{uo})) = Cy(®, uo), (12)
for all qeZ.

In other words, the critical groups of u are nothing else but
the (co)homology groups of the homotopy index of K = {uo}.

For the proof of Theorem 1, we refer the reader to [19]. The
critical groups are defined even if {u} does not admit a strongly
ng-admissible neighborhood. However, under some additional hypo-
theses, they are all trivial in this case:
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THEOREM 4 - Suppose uy is as above. Moreover, assume that ®
is of class C? in a neighborhood of uy, with L: = ®” (1) = — g’(u0)
being a Fredholm operator.

Then either {u} admits a strongly rpadmissible isolating neigh-
borhood or else all critical groups Cq(®,uo) are zero.

This theorem is proved in [19]. The proof uses, among other
arguments, a generalized Morse-Lemma due to Mawhin and Wil-
lem [7].

4. A continuation principle

The homotopy invariance property of the homotopy index men-
tioned above enables us to formulate a useful continuation principle
similar, in spirit, to the coincidence degree of Mawhin [5].

THEOREM 5 - Let A and f be as in equation (1). Assume the fol-
lowing hypotheses:

(1) Equation (1) is gradient-like with respect to some function
V:X*>R.

(2) A has compact resolvent. Moreover, there is a § > 0 such that
oc(A) ={0}U¢’, re c’> 3.
Let X1 =ker A and P: X — X be the projector onto X, associated
with this spectral decomposition.

(3) There is a set T < X* open in X* bounded in X and {(T) is bo-
unded in X. We write N for the closure of T in X.

(4) For every A€(0,1), if u:R— X is a (strong) solution of

u=—Au+NMI—P)f(u) + Pf(u) (13,)
with u(R) < N, then u(R) cT.

R ‘
(5) Let T1=TNX;, and = be the local flow on X generated by the
ODE

ui = Pf () (14)

Let K be the largest invariant set in the closure of T relative
A A
to X1. Then K c T and the Conley index h(n,K) = 0.

Under the above hypotheses, there exists a solution us€ N of the
equation "

—Au+f(u) =0 (15)
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REMARKS - Hypothesis (1) means, essentially, that (1) has va-
riational structure.

The proof of Theorem 5 is an application of the homotopy
invariance of our (extended) homotopy index. For details, see [17].

Theorem 5 is applicable to periodic boundary value problems:

Let f:R X R"— R™ be a continuous mapping. Assume that for
some T and all (x,u) e RXR™ f(x+T,u) =f(x,u).

Moreover, let f be locally Lipschitzian in #, uniformly in x.
We are looking for T-periodic solutions of
u’(x) +f(x,u(x)) =0 (16)
Let X = L*([0,T],R™) and
D ={ueH*[0,T],R")|u(0) = u(t),u'(0) =u'(T)}.
Define A:D—> X by Au = — u”. Then A is sectorial on X. Moreover
X2 ={ueH([0,T],R")|u(0) =u(T),u'(0) = u'(T)}.

Define the Nemitski operator 7: X'2— X by f(u) (x) = f(x, u(x)).

Dropping the hat « A » we then see that equation (16) has the form

: oF
of equation (15). Moreover, if f(x,u) = T (x,u) for some func-

tion F, i.e. if f is gradient, then the resulting equation (1) is gradient-
like. '

Now an application of Theorem 5 to the system (16) yields the
following extension of the averaging method:

THEOREM 6 - Assume that f:R X R"—R™ is gradient and satis-
fies the above assumptions. Let G+ (respt. G-) be a finite (possibly
empty) set of Cl-functions V :R”—R such that the set

G={ueR"|V(u) <0 forall Veb+tUT-}

is nonempty, connected and such that for every u € dG and V € G+
(resp. Ve G-) with V(u) =0,

Vv aV
(W(x,u),f(x,u)) <0 (resp. (—5-u—(x,u), f(x,u)) >0 for all x € R.
Let B-={u€dG|V(u) =0 for some V € G-}.
Suppose that B- is disconnected.

Then there exists an M >0 and an € < 0 such that whenever
0 <e<ce, then there exists a T-periodic solution u = u. of

u’(x) +ef(x,u(x)) =0 17



SOME RECENT RESULTS IN THE HOMOTOPY etc. 91
satisfying
" 1 I
ii=-—fu(x)dxeG
T o

and ||u(x) — a|| <eM for all xeR.

The proof of Theorem 6 is a verification of the hypotheses of
Theorem 5. In particular, hypothesis (5) of that theorem is a con-
sequence of our connectedness assumptions on G and B-. For de-
tails, see [17].

T
Now let g(u) = —Zl;—ff(x, u(x)) dx for ue R™. Our assumption on
0

G implies that the degree d(g, G,0) is defined. If d( g2,G,0) = 0, then
Theorem 6 is valid even without the gradient assumption on f (I4]).

However, in the gradient case, the homotopy index yields better
results. In fact, one can easily construct examples satisfying the as-
sumptions of Theorem 6 with d(g,G,0) =0 (see [17]).

On the other hand, the following general fact is true: Suppose
g:Rm"—R™ is locally Lipschitzian and gradient, G is open and bo-
unded and N = CIG is an isolating neighborhood with respect to
the flow = generated by

u=g(u (18)
Then

d(g,G,0) = (— 1)'"qi:=°0 (—1)9B,(h(n,K)) (19)

where K is the largest m-invariant set in CIG and

B¢(h(m,K)) = rank Hy(h(r,K)).

In particular, (19) implies that whenever % (w,K) = 0, then also
d(g,G,0) = 0. This means that, for gradient systems, the continua-
tion principle in Theorem 5 yields better results than the Leray-
Schauder degree.
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