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by MArIo GIrRARDI and MICHELE MATZEU (**)

SOMMARIO. - Vengono presentate alcune tecniche basate sulla teoria
dell'indice di Morse e su un’opportuna versione del principio di
dualita di Clarke ed Ekeland per dare alcuni risultati sull’esi-
stenza di soluzioni di periodo minimo prefissato di sistemi Ha-
miltoniani del tipo
. 9 A . 3 2 .
Xi=wi¥i+—-——H(x,y), —yi=wixi+——H(x,y) (i=1,...,N),

ax; N ay,-
dove 0 <w <...<wy e He C}(RW;R) é strettamente convessa
ed ha un comportamento superquadratico.

SUMMARY. - Some techniques based on the Morse index theory and
a suitable version of the duality principle by Clarke and Ekeland
are presented here in order to give some results about the exis-
tence of periodic solutions with prescribed minimal period to
Hamiltonian systems of the type
fo= iy kA (x,3), —5 = wxi b5 H(x,3) (i=1,...,N),

A
where 0 <w <...S<wy and H e C}(R¥N;R) is strictly convex
and has a superquadratic behaviour.

Introduction

Recently many authors have dealt with the problem of periodic
solutions of prescribed minimal period for Hamiltonian systems (see,

eg., [1], [3], [6], etc..).
A very remarkable result has been obtained by Ekeland and

(*) Conferenza tenuta al «Meeting on Variational Methods in Differential Pro-
blems» (Trieste, 26-28 settembre 1985).

(**) Indirizzo degli Autori: Dipartimento di Matematica «G. Castelnuovo» - Uni-
versita degli Studi «La Sapienza» - Roma.
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Hofer in [5], for the case where the Hamiltonian function is convex
and has a «superquadratic» behaviour at the origin and at infinity.
In this framework, Ekeland and Hofer show the existence of a pe-
riodic solution of minimal period T for every positive 7. The proof
relies on the appropriate use of the Morse index theory (see [4])
and the complete analysis of the neighbourhood of a critical point
of Mountain Pass type (see [7]).

In this paper, we are able to extend their results, showing a
more general theorem for convex Hamiltonian systems where the
Hamiltonian function has a quadratic growth at the origin. We use
the same general arguments introduced by Ekeland and Hofer, but
in our case the proofs present many differences, mainly in the com-
putation of the Morse index of a solution.

In the first section we present our results. The proofs of the
theorems are outlined in sections 2,3.

1. Main results

Let the following Hamiltonian system be given

(H) Jz=H'(z)
with J(x,y) = (y,—x) V(x,y) e RN X RN,
We consider the function H of the form

A
H(z) = %2(Qz,z) + H(z)
verifying the following conditions:

(H)) Q is the 2N x 2N matrix

o= (0" o]

where Q, is the diagonal N X N matrix

W
Q =
. won

with positive eigenvalues, 0 < w1 < ... < wn;
A A A
(H) HeCYR¥;R), H(0) =0, H is strictly convex;
A .
(Hs) a1|z|*<H(z) <a|z|® VzeR¥, a1,a2>0, §>2;

(Ho) BH(z) <(H'(z),2) VzeRN.
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Then we can the state the following
THEOREM 1 - Let H satisfy (Hi),..., (Hs). Then, for any positive

T <2 [ww, there exists a solution zr of (H) having minimal period
T. Moreover, one has:

|zz]le—> e as T—0+, [|zr||-—0 as T— (2n/wn)-.

REMARK 1 - In general, it is impossible, without adding some
other hypotheses, to find solutions of minimal period greater
than 27/ w;.

For example, let H(z) = V2 |z |2 + |z|* (in this case wi=...=
= wy = 1): then it is easy to show that any solution has minimal
period T < 2n (For more general examples see [7]).

An open question is the existence of solutions of minimal pe-
riod between 2n/wy and 2n/w;. In this direction, we are able to
prove the following partial result: <

THEOREM 2 - Let H satisfy (Hi),..., (Hy) and let je{l,...,N}
be such that

(+) w,-/wi¢& ViE{l,...,N} with Wi ¥ W;.

Then, there exists an € >0 such that, for any T belonging to
(2n /w; —¢;, 2r / w;), there is a solution zr of minimal period T.
Moreover one has

|zr ]|« =0 as T— (2n/w;)~.

2. An outline of the proof of Theorem 1

The proof is broken in many steps.

Step 1. We state an appropriate dual principle for this case,
which allows to find solutions of Mountain Pass type.

Let the operator £r:Hu.= (R/TZ;R¥)— [«(0,T; R%?) be defi-
ned as

Lr(v) =Jv — Qv
A
and let us consider the Legendre transform of H, defined as

A A
G(v) =sup{{(v,w) — H(w) : w e RN},
Then, setting

T A
Fr(v) =f G(v) — l/sz(Q;’v,v) VvelL(0,T;R¥N),
0 0

it is easy to show the following
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Duality principle. F'r(d) =0 if and only if 2= £'a is a T-periodic
solution of (H).

Moreover one can show that Fr satisfies the following properties:

(a) Fr verifies the Palais-Smale condition,
(b) Fr(v) >0 for v=0,||v|.<ep,

(c) There exists e € L* such that Fr(e) < 0.

Then, applying the well known theorem by Ambrosetti and Rabino-
witz (see [2]), one gets the following

PrROPOSITION 1 - Let H verify (Hi) ,..., (Hs). Then, for every po-
sitive T # 2kn /wj (ke N,j=1,...,N), there exists a T-periodic so-
lution zr of (H) of Mountain Pass type. Moreover one has

”ZT”«;")O as T— (2k1€/00,')",”21”,.,—)oo as T — 0+,

REMARK 2 - An analogous theorem was already stated by Rabi-
nowitz [9] in a more general case (without convexity hypothesis),
but without energy estimates.

Step 2: The Morse index of a critical point of Mountain Pass
type. Let dar a given critical point of Fr and let us consider the qua-
dratic form

Qr(v) = (F'r(iir) v,v) =
= (G (an) v,v) — § (£:1v,v) Vvel0,T;RM).
0 0

Let E- the maximal subspace of L? on which Qr is negative de-
finite. Since dim E- is finite, it makes sense to define, as the Morse
index of dr, the following nonnegative integer number

m(ir) = dim E-.

PROPOSITION 2 - Let iir be a critical point of Fr of Mountain Pass
tyje. Then one has

(1) m(ar) <1.

Moreover, if m(ir) =1, then there exists an open neighbour-
hood W of #ir such that the set

W (ir) ={ueW:Fr(u) < Fr(iir) }
has exactly two path components, Py and P, say, and, if M denotes
the (unique) negative eigenvalue of Qr and vi an associated eigen-
vector, then, for all n > 0, with n sufficiently small, one has
2) dar+mvi€e Py, dr—mnn€EP;.

The proof of Proposition 2 is obtained, firstly, by a finite di-



80 MARIO GIRARDI and MICHELE MATZEU

mensional reduction (the so called «broken geodesics» method), se-
condly, by a generalized version of the Morse Lemma (see Hofer [7]).

Step 3: The Morse index of a solution and the order of its iso-
tropy group.

Let a T-periodic solution zr of (H) be given. The order of its
isotropy group for the S'-action, denoted by O (zz), is defined as the
greatest integer number k such that zr is 7/ k-periodic.»

Given zr and given any s €(0,T), one says that zr(s) is conju-
gate to zr(0) if the linear problem

3) {J}’ =H"(zr(t)) y
y(0) =y(s)

has a non-zero solution; the multiplicity of zr(s) is the defined as
the dimension of the space of solutions to (3).

PRroOPOSITION 3 - For any T-periodic solution zr of (H), there
exists only a finite number of points zr(s:) conjugate to

zr(0) (i=1,...,7).
Denoting by m; the relative mulitiplicity, the following relation holds:

L, N
4) m(zr) = Z mi—2 Zl [Tw;/ 27]
'=1 i=

1

(where [ ] denotes the integer part).

By taking into account that the points
zr(T/k) ,...,zr ((k — 1) T/k),

with k = Q(zr), are obviously conjugate to zr(0), then one easily
gets the following

CoROLLARY. If T < 2nn / wn, then one has

(5) m(zr) 2 O(zr) — 1.

Step. 3. Conclusion. Let zr a T-periodic solution of (H) of Moun-
tain Pass type, and let T < 2r / wy, then, by (1) and (5), it follows

6 O(zr) <2.

Now we have only to exclude the case m(zr) =1 and © (z7) = 2.
By contradiction, let us suppose that m(zr) = 1 and that T/2 is the
minimal period of zr.

Let M and v1 be as in Proposition 2. By the variational charac-
terization of v;, one can show that

vi(t +T/2) = —wi(t) .

Taking into account Proposition 2, we can show that the sets
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W (ir), (where ér = £rzr),, P1 and P; can be assumed to be Slinva-
riant (i.e., if v € P;, then v(t 4+ 0) € P; for any 6 e R/TZ).

Then, if we consider the orbit
c(®) =dr(t+90) +nui(t+6),
one has
c(0) =dr+nmwie€P; ¢(T/2) =idar—nv:€ P,

which is an absurde, as it contradicts (2).

3. An outline of the proof of Theorem 1

Let zr a T-periodic solution of (H) of Mountain Pass type: we
show that, under the assumptions of Theorem 2, T/n cannot be a
period of zr, for any ne€ N, n = 2, that is T must be the minimal
period of zr.

One considers two possible cases: T/n< % 2r/wy and
T/n= Vv22n/wN.

Case T/n < Y2 2r [ wy - One shows that the quadratic form Qr,
defined at Step 2 of Section 2, is positive definite on L?(0,s) for
any s€ (0,T/n], so T/n is not a period of zr. This fact is easily
deduced from the estimates

7 F(esv,v)< (1/ww) [ |v]? VvelI0,s)
0

0

and, putting ur = £rzr,

8) (a”(ur) w,w)2c(T)|wl|? VweR¥
where

9 lim c(T) = + .
T— (2n [ wj) -

Case T/n= Yv22n/wy - Firstly one defines h;,h,e N and
i1,i2€{l,...,N} as follows:

2hi/wi, = max {2hrn/w;: h e NU{0}, ie{l,...,N}, 2hn/w; < 2n/nw;}
2hy/wi, = min {2hn/w;: h e NU{0}, ie{1,...,N}, 2hr/w; > 2n/nw;}.

Then (4) implies
(10) 2rn/nwje (2hin/wi,2hm/w;) .

At this point, it is possible to show that, if one chooses £ > 0
small enough, the form Qs related to zr for T € (2n/w; — ¢, 2n/w;)
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is definite positive if s € {24 /w;,2r/nw;}, so T/n still cannot be
a period of zr. This fact is a consequence of the following estimate
on the maximum eigenvalue As of £ s-l (deduced from (10)),

As < wi, / w1 (nhy wj — w;,)

and, again, of the relations (8), (9).
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