APPLICATIONS OF THE CONLEY INDEX
TO REACTION-DIFFUSION SYSTEMS (*)

by ROBERT GARDNER (**)

SoMMARIO. - Si discute l'applicazione dell'indice di Conley all’esisten-
za di onde viaggianti in sistemi del tipo reazione-diffusione. La

teoria generale é illustrata con talune equazioni-modello che si
incontrano in ecologia matematica.

SUMMARY. - The application of the Conley index to the existence of
travelling wave solutions of reaction-diffusion systems is discuss-
ed. We illustrate the general theory with some model equations
arising in mathematical ecology.

0. Introduction

The Conley index is a topological invariant for flows which is
particularly useful in determining when an orbit exists which con-
nects two Morse sets in a Morse decomposition of an isolated inva-
riant set. These methods have recently been applied to reaction-dif-
fusion systems, where a frequently encountered problem is to find
an orbit which connects distinct rest points. Such questions arise in
several different contexts. For example, the system can be viewed
as generating a (semi-) flow on a suitable function space. A natural
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problem is to then determine when an orbit runs from one steady
state to another (see e.g. [3, 6]). This is an inherently infinite di-
mensional problem; typically, the index methods are quite effective
if there is a globally defined Liapunov function.

Another source of such problems, with which we shall princi-
pally be concerned here, is the existence of travelling wave solutions
of the system

(1) ut=Duxx+f(u), ueR",

Such solutions are functions of the single variable E=x-— 0t and
so, they satisfy the 2n-dimensional system

u=v
(2) ' =
DV = — v — f(u)

4
de

The first step in determining the transient behavior of solutions
of (1) is to specify the bounded solutions of (2); the simplest non-
trivial solutions of the latter system are those which connect distinct
rest points. The rest points of (2) are of the form (u,v) = (u1,0)
where # is a critical point of f(u). We shall focus on the case where
i is a stable rest point of (1). In this case the two relevant critical
points of (2) are saddles, each with n-dimensional stable and un-
stable manifolds, and the connection will occur only for distinguished
values of the wave velocity 0. The manner in which 0 enters into
the equations evidently plays a crucial role in the geometry of the
flow generated by (2). We therefore need to employ a construction
called the comnection index, which is basically the Conley index
applied to the (2n + 1)-dimensional system obtained from (2) by
augmenting the flow with the additional equation ¢’ = 0.

In the next section we shall describe the index-theoretic preli-
minaries and illustrate the constructions with a canonical example.
In Section 2 we describe some applications to some two-component
systems arising in mathematical ecology. We conclude in Section 3
with an example which illustrates how these fethods can be exten-
ded to several space dimensions.

1. Index theory

A. The Conley Index. Suppose there is given a flow on R”.
Given a compact neighborhood N — R we denote by S(N) the set
of points on solution curves which remain in N for all time. The
maximal invariant set S(N) is isolated if S(N) is interior to N ; is
then called an isolating neighborhood.
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Given an isolated invariant set S(I) we say that (N, N;) is an
index pair if N, is a compact subset of N\S(N) which is poistively
invariant relative to N and if solution curves which exit N in the
positive time direction enter the set N; before leaving N. It can be
shown that if N is isolating then index pairs exists. The Conley index
is defined to be [N/N:], the homotopy type of the space obtained
by collapsing N, to a point. The index depends only on S = S(N)
and is invariant under continuation. The precise statement and the
proofs of these theorems can be found in [1]. Thus we use the
notation #(S) = [N/N-].

B. Examples. If S is a hyperbolic critical point with a k-dimen-
sional unstable manifold, then %(S) = X¥, a pointed k-sphere (see

e.g. Figure 1).
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Fig. 1

Next, consider a collection of flows in the plane parametrized
by 0 with the aspect indicated in Figure 2.

Fig. 2

In each case the exit set N, (indicated by the heavy lines)
consists of three distinct components which continue for all 9. When
0= 0, S(N) consists of the union of the two critical points S! and
S?, and by the sum formula and the continuation theorem
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h(S(N)) =%tV 2t

for all 0 (see [1]). Thus the existence of the connecting solution at
0 = 0 is not reflected in the index. In order to define an algebraic
invariant which can «see» the connection, it us useful to consider
the behavior of the unstable manifold 91* of the lower critical
point S'. For all 0 = 0, 9L represents homology in H;(#(S)). This
is a free group with two generators, and 9I* represents different
homology classes at 8 = + 1. The behavior of 9K evidently plays
a crucial role.

C. The Connection Index. Next consider the parametrized flow
generated by

x'=f(x,8) (xeRn
00=0.

Given a set M — R"*! we denote by M; the slice of M with
® = constant. ‘Suppose that there is given a set N =N x I with
NcR® and I =[—#0;,6;] such that S(Ne) is an isolated invariant
set for each 0 € I. Moreover, suppose that there exist subsets of

S(N), Si = S x I such that 3’;: St is an isolated invariant set for
eachbel,i=1,2.

DEFINITION 1 - Suppose that S = S(N), that S! and $2 satisfy
the above conditions, and that

Se=S1US? at 0= +0,.

Then (S,S!,S?) is called a connection triple.

In the following we give a definition of the connection index
which for technical reasons, is not strictly correct; hwoever it gives
the correct qualitative picture. The modifications needed to make
the general index theory available in the present situation are de-
scribed in [2]. These aspects of the construction are not important
in computations and we shall therefore suppress them.

DEFINITION 2 - Let 'Q)TC“(S'; ) be the set of all points on solution
curves which tend to S é in backward time (the unstable manifold

of 3; ). Let N; be such that (Np,(N)s) is an index pair for each
0 € I and define

Nz = N>U9I# (31, ) UORs (S} ).
The connection index is defined to be

fz(g'gl’.sz) = [NI/NZ] .
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It can be shown that % depends only on the connection triple

(§,S!,5?2) and that it is invariant under continuation (see 2D.

D. An Example. 1t is evident that N X I, where N is the indi-
cated rectangle in Figure 2, can be used to define a connection
triple for the parametrized flow provided that 0 ¢ d/. We will com-
pute 7 in two cases.

Case 1. Suppose that I = [— 0;,0;] for some 0; > 0. The sets N
and N, are depicted in Figure 3a, from which it can be seen that
N3 is

Fig. 3

contractible to a point. Hence in this case

R(S,St,S?) = [3 cell/point] = [point].

Case 2. Suppose that 0 ¢ I, the case depicted in Figure 3. The
set N? is homotopically equivalent to the disjoint union of a circle
and a point. The connection index # can be seen to equal X!V X2
through the sequence of identifications in Figure 4.

Z, /

Fig. 4
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From the above computation it follows that in Case 1 SSS1US?
=«

since if this were not the case we could replace the rectangle N
with the union of small neighborhoods of S! and S? because 7 de-
pends only on the connection triple. The problem could then be
continued to Case 2, yielding a contraction.

The solution in S\S'US? is easily seen to be a connecting orbit
running from $! to §% In more general settings this usually requi-

res some additional information about the flow in S such as the
existence of a Liapunov function.

The above example frequently appears as a canonical form em-
bedded in higher dimensional systems. In particular, such examples
can be continued to a product system consisting of the example
depicted in Figure 2 crossed with a linear system with a hyperbolic
critical point at the origin. The connection index in this case is
Z¥ A\ hm where im is the index of the model problem and k is the
dimension of the unstable subspace of the linear components.

We finally mention a general existence theorem whose proof is
similar to that of the special case just considered.

THEOREM 1 - Suppose h' is the Conley index of Si, i =1,2; (this
is independent of ). If h = h(S,S!,3) and
h= (ZtAR)V R

then S o> 3S1US2,
=

2. Predator-prey interactions

A. We next apply these methods to a system of two reaction-
diffusion equations arising in mathematical ecology modelling pre-
dator-prey interactions (see [4]). These techniques are also available
for competitive interactions (see [2]), however, the predator-prey
equations display more interesting phenomena due to a lact of mo-
notonicity usually found in competitive dynamics.

The equations assume the form
(3) uit=di<uixx+uifi(u), i=12,

where © = (u1,u;), di> 0 is a positive constant, and f; is the per-
capita growth rate of u;, i = 1,2. We assume that
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af1 daf2

—=—<0,=-=>0

dus < ouy >
so that u; is the density of the prey and u, is the density of the
predator. We further assume that the null-clines of fi and f, have
the aspect depicted in Figure 5 — the arrows indicate the reaction
flow for spatially homogeneous

N

Fig. 5
solutions. The system admits four critical points. The rest points
S! and §? are stable, while S® and S* are unstable.

Travelling wave solutions of (3) satisfy a four-dimensional system

ui=v;, i=1,2
(4) divi= —0v; — u,-fi(u) .

With a slight abuse of notation we denote the four critical points

of (4) also by Si. Thus we seek a solution (u(€),v(€)) of (4) which
satisfies

(5) (u,v) (=) =8, (u,v) (+) =8
To this end we impose the following hypotheses.

(Hi) There exists a family of contracting rectangles X., T €(0,1]
centered about the point S? in Figure 4.

(Hz) Let 0; be the velocity of the travelling wave connecting S! to
§? along which #; =v, =0, and let ¢ <0 be the maximal
velocity of all connections from S$* to S? along which the u-

components remain non-negative (see [4] for further discus-
sion). Assume ¢; < 0.

(Hs) Let f(u) = (uy fl(u),uzfz(u))kand let ¢ be defined by
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¢ = min arg (— f(u))
ueT

where T is the shaded region in Figure 4. (It is easily seen
that 0 < ¢ < w/2). Assume that

tana
tano

di > d;

We remark that (H;) implies the stability of S? relative to (3).
(H:) ensures that the critical point at S* does not split the connec-
tion into a stached family of waves. Finally, (H;) is used to force
the u-components of the connection to remain monotone increasing
while u(%) ¢ ;. While this condition is somewhat artificial, some
such criterion is needed to ensure that the connection is not inter-
rupted by a family of periodic wave trains. Further discussion of
the mathematical aspects of (H;-H;) together with an ecological
interpretation is provided in [4].

THEOREM 2 - Under (H;-H) there exists a solution (u,v) (&) of
(4) which satisfies (5).

B. Sketch of the Proof. We outline the main points of the
proof of Theorem 2. In order to apply the methods of Section 1
we first need a suitable candidate for an isolating region which
plays a role analogous to that of N in Section 1.D. To this end we
start with a region Ny defined by

No={(u,v):ueR 0<wv;,<L,i=1,2},

where R is the rectangle in Figure 4 with vertices at S! at the lower
left and P at the upper right, and L is a large positive constant de-
pending only on di,d,, and R.

Notice that the u#-components of solutions in S (No) are mono-
tone increasing. It follows that such solutions are either critical or
connecting orbits. If di = d; and $? is a spiral for the reaction flow,
then S? must also be a spiral as a solution of (4). Hence the region
Ny is too restrictive. Let

Ni={(u,v):ueZ, |vi| <L, i=1,2}

and define N. = NoUN;. It is easily seen with the aid of (H;) that
non-constant solutions in S(N.) must again connect distinct critical
points.

The final difficulty is that S!, S3, and S* lie in dN. so that N. is
not isolating. Let B; be a small neighborhood in R* of Si, i =1,3,4.
The final neighborhood is defined to be

N = N.UB;\(B;UB,).

The main estimate is to show that N is an isolating neighborhood.
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To this end, the flow through each point in dN must be shown to
(eventually) leave N in at least one time direction. The details can
be found in [4].

Finally, it must be shown that S(N) = S'US? when |0] is suf-
ficiently large. This follows from the observation that for large |0/,
solutions of (4), after suitable rescaling and changes of variables,
closely approximate solutions of the reaction flow,

i’ = i fi(ii)
crossed with a hyperbolic critical point. It then follows that

(5,81,8?) is a connection triple, where

S=8(NxI[—00]

S$i =S x[—-6,0], i=1,2.

In order to compute 72 the problem is continued to the example
discussed in Section 1.C, D. The homotopy begins by deforming the
set wzf(u) = 0 in the manner indicated in Figure 6. After some

Fig. 6

additional homotopies the problem can be continued to

u'=v; uh = v
Vi=—0v—uifi(u, k) va=u;

of course, the isolating region N must be modified as the equations
are deformed. The u;,v: components have a phase plane similar to
the standard example in Figure 2 while the u,,v, equations are li-
near with a saddle point at the origin. It follows from Case 1 of
Section 1.D that 7z = X! A [point] = [point]. Since »(S})) =22, i=1,2

it follows that # s 22\ 23, so that by Theorem 1, S contains a con-
nection running from S' to S; for some |8| < 0;.
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3. Multidimensional fronts

Consider the scalar equation

Ut = Uzx + Uyy + u(l —u) (u—a)
ulan=0
Q={(x,y):xeR,0<y< L}

We seek solutions of the form u = u(t,y) where £ = x — 6¢. Such
solutions satisfy an elliptic equation of the form

(6) —Oue = Uex + ugg + f(u), u=0 on 3Q.

We also require solutions to tend to limits at | x| = e ; the limiting
states are therefore solutions of

(7) Ozuyy+u(1—u)(u—a)
u(0) =u(L) =0.

If @ €(0, 2) there exists Ly such that (7) has exactly three solutions,
0 < ua(y) <ui(y), for L > Ly (see [6]).

THEOREM 3 - Suppose that a € (0,%) and that L> Ly; there
exists a solution u, © of (6) such that

lim u=20, Im u = u(y).

E-p—co Esdoo

The solution is monotone increasing in &.

The methods of the previous section cannot be applied directly
to this problem since the system

Ug = v
ve= —8v — [uyy + f(u) ]

is elliptic. The initial value problem is ill-posed and the equations
do not generate a flow. This problem is circumvented by discretiz-
ing the finite variable- y into a net, yi=ih, 0<i<n, nh=1L, and
introducing an approximate of 2n differential-difference equations

u’,— =9V;

(8) Vi= =0 — [(tis1 — 2ui + wig) B2 4+ f(w)], 1 <i<n.

The end state equation, (7), is also discretized; for sufficiently small
h, it admits exactly three solutions which approximate the conti-
nuous solutions.

An isolating neighborhood N (%) is constructed in a manner
analogous to that of N in the previous section. Connecting orbits
are obtained for each % > 0 by deforming the boundary conditions
to the Neumann problem. At the end of the homotopy we find that
(8) continues to the product of the standard example of Section 2.D.
with a linear hyperbolic system. The construction of N (%) is such
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that the set of approximate connecting solutions is in a suitable
sense compact. An exact connection solution of the continuous pro-
blem is obtained by passing to a subsequence as / tends to zero.
(The details of the proof can be found in [5]).
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