APPLICATIONS OF THE CONLEY INDEX TO REACTION-DIFFUSION SYSTEMS (*)

by Robert Gardner (**)

Sommario. - Si discute l'applicazione dell'indice di Conley all'esistenza di onde viaggianti in sistemi del tipo reazione-diffusione. La teoria generale è illustrata con talune equazioni-modello che si incontrano in ecologia matematica.

Summary. - The application of the Conley index to the existence of travelling wave solutions of reaction-diffusion systems is discussed. We illustrate the general theory with some model equations arising in mathematical ecology.

0. Introduction

The Conley index is a topological invariant for flows which is particularly useful in determining when an orbit exists which connects two Morse sets in a Morse decomposition of an isolated invariant set. These methods have recently been applied to reaction-diffusion systems, where a frequently encountered problem is to find an orbit which connects distinct rest points. Such questions arise in several different contexts. For example, the system can be viewed as generating a (semi-) flow on a suitable function space. A natural

^(*) Conferenza tenuta al Meeting on Variational Methods in Differential Problems (Trieste, 26-28 settembre 1985).

^(**) Indirizzo dell'Autore: Mathematics Department University of Massachusetts - Amherst - MA 01003 - U.S.A.

problem is to then determine when an orbit runs from one steady state to another (see e.g. [3, 6]). This is an inherently infinite dimensional problem; typically, the index methods are quite effective if there is a globally defined Liapunov function.

Another source of such problems, with which we shall principally be concerned here, is the existence of travelling wave solutions of the system

$$(1) u_t = Du_{xx} + f(u), \quad u \in \mathbf{R}^n.$$

Such solutions are functions of the single variable $\xi = x - \theta t$ and so, they satisfy the 2n-dimensional system

(2)
$$\begin{cases} u' = v \\ Dv' = -\theta v - f(u) \end{cases} = \frac{d}{d\xi}.$$

The first step in determining the transient behavior of solutions of (1) is to specify the bounded solutions of (2); the simplest nontrivial solutions of the latter system are those which connect distinct rest points. The rest points of (2) are of the form $(u,v)=(\bar{u},0)$ where \bar{u} is a critical point of f(u). We shall focus on the case where \bar{u} is a stable rest point of (1). In this case the two relevant critical points of (2) are saddles, each with n-dimensional stable and unstable manifolds, and the connection will occur only for distinguished values of the wave velocity θ . The manner in which θ enters into the equations evidently plays a crucial role in the geometry of the flow generated by (2). We therefore need to employ a construction called the connection index, which is basically the Conley index applied to the (2n+1)-dimensional system obtained from (2) by augmenting the flow with the additional equation $\theta' = 0$.

In the next section we shall describe the index-theoretic preliminaries and illustrate the constructions with a canonical example. In Section 2 we describe some applications to some two-component systems arising in mathematical ecology. We conclude in Section 3 with an example which illustrates how these fethods can be extended to several space dimensions.

1. Index theory

A. The Conley Index. Suppose there is given a flow on \mathbb{R}^n . Given a compact neighborhood $N \subset \mathbb{R}^n$ we denote by S(N) the set of points on solution curves which remain in N for all time. The maximal invariant set S(N) is isolated if S(N) is interior to N; is then called an isolating neighborhood.

Given an isolated invariant set S(I) we say that (N, N_2) is an index pair if N_2 is a compact subset of $N \setminus S(N)$ which is poistively invariant relative to N and if solution curves which exit N in the positive time direction enter the set N_2 before leaving N. It can be shown that if N is isolating then index pairs exists. The Conley index is defined to be $[N/N_2]$, the homotopy type of the space obtained by collapsing N_2 to a point. The index depends only on S = S(N) and is invariant under continuation. The precise statement and the proofs of these theorems can be found in [1]. Thus we use the notation $h(S) = \lceil N/N_2 \rceil$.

B. Examples. If S is a hyperbolic critical point with a k-dimensional unstable manifold, then $h(S) = \Sigma^k$, a pointed k-sphere (see e.g. Figure 1).

Fig. 1

Next, consider a collection of flows in the plane parametrized by θ with the aspect indicated in Figure 2.

Fig. 2

In each case the exit set N_2 (indicated by the heavy lines) consists of three distinct components which continue for all θ . When $\theta \neq 0$, S(N) consists of the union of the two critical points S^1 and S^2 , and by the sum formula and the continuation theorem

$$h(S(N)) = \Sigma^1 \vee \Sigma^1$$

for all θ (see [1]). Thus the existence of the connecting solution at $\theta=0$ is not reflected in the index. In order to define an algebraic invariant which can «see» the connection, it us useful to consider the behavior of the unstable manifold \mathfrak{M}^u of the lower critical point S^1 . For all $\theta \neq 0$, \mathfrak{M}^u represents homology in $H_1(h(S))$. This is a free group with two generators, and \mathfrak{M}^u represents different homology classes at $\theta=\pm 1$. The behavior of \mathfrak{M}^u evidently plays a crucial role.

C. The Connection Index. Next consider the parametrized flow generated by

$$x' = f(x, \theta)$$
 $(x \in \mathbb{R}^n)$
 $\theta' = 0$.

Given a set $M \subset \mathbb{R}^{n+1}$ we denote by M_{θ} the slice of M with $\theta = \text{constant}$. Suppose that there is given a set $\bar{N} = N \times I$ with $N \subset \mathbb{R}^n$ and $I = [-\theta_1, \theta_1]$ such that $S(\bar{N}_{\theta})$ is an isolated invariant set for each $\theta \in I$. Moreover, suppose that there exist subsets of $S(\bar{N})$, $\bar{S}^i = S^i \times I$ such that $\bar{S}^i_{\theta} = S^i$ is an isolated invariant set for each $\theta \in I$, i = 1, 2.

DEFINITION 1 - Suppose that $\overline{S} = S(\overline{N})$, that \overline{S}^1 and \overline{S}^2 satisfy the above conditions, and that

$$\overline{S}_{\theta} = S^1 \cup S^2 \text{ at } \theta = \pm \theta_1.$$

Then $(\overline{S}, \overline{S}^1, \overline{S}^2)$ is called a connection triple.

In the following we give a definition of the connection index which for technical reasons, is not strictly correct; hwoever it gives the correct qualitative picture. The modifications needed to make the general index theory available in the present situation are described in [2]. These aspects of the construction are not important in computations and we shall therefore suppress them.

DEFINITION 2 - Let $\mathfrak{M}^u(\overline{S}^1_{\theta})$ be the set of all points on solution curves which tend to \overline{S}^1_{θ} in backward time (the unstable manifold of \overline{S}^1_{θ}). Let N_2 be such that $(\bar{N}_{\theta},(N_2)_{\theta})$ is an index pair for each $\theta \in I$ and define

$$\bar{N}_2 = N_2 \cup \mathfrak{M}^u(\overline{S}^1_{-\theta_1}) \cup \mathfrak{M}^u(\overline{S}^1_{\theta_1}).$$

The connection index is defined to be

$$\bar{h}(\bar{S}, \bar{S}^1, \bar{S}^2) = [\bar{N}/\bar{N}_2].$$

It can be shown that \bar{h} depends only on the connection triple $(\bar{S}, \bar{S}^1, \bar{S}^2)$ and that it is invariant under continuation (see [2]).

D. An Example. It is evident that $N \times I$, where N is the indicated rectangle in Figure 2, can be used to define a connection triple for the parametrized flow provided that $0 \notin \partial I$. We will compute \bar{h} in two cases.

Case 1. Suppose that $I = [-\theta_1, \theta_1]$ for some $\theta_1 > 0$. The sets \bar{N} and \bar{N}_2 are depicted in Figure 3a, from which it can be seen that \bar{N}_2 is

Fig. 3

contractible to a point. Hence in this case

$$\bar{h}(\overline{S}, \overline{S}^1, \overline{S}^2) = [3 \text{ cell/point}] = [\text{point}].$$

Case 2. Suppose that $0 \notin I$, the case depicted in Figure 3. The set \bar{N}^2 is homotopically equivalent to the disjoint union of a circle and a point. The connection index \bar{h} can be seen to equal $\Sigma^1 \vee \Sigma^2$ through the sequence of identifications in Figure 4.

Fig. 4

From the above computation it follows that in Case $1 \ \overline{S} \supset \overline{S}^1 \cup \overline{S}^2$ since if this were not the case we could replace the rectangle N with the union of small neighborhoods of S^1 and S^2 because \overline{h} depends only on the connection triple. The problem could then be continued to Case 2, yielding a contraction.

The solution in $\overline{S}\setminus \overline{S}^1 \cup \overline{S}^2$ is easily seen to be a connecting orbit running from \overline{S}^1 to \overline{S}^2 . In more general settings this usually requires some additional information about the flow in \overline{S} such as the existence of a Liapunov function.

The above example frequently appears as a canonical form embedded in higher dimensional systems. In particular, such examples can be continued to a product system consisting of the example depicted in Figure 2 crossed with a linear system with a hyperbolic critical point at the origin. The connection index in this case is $\Sigma^k \wedge \bar{h}_m$ where \bar{h}_m is the index of the model problem and k is the dimension of the unstable subspace of the linear components.

We finally mention a general existence theorem whose proof is similar to that of the special case just considered.

THEOREM 1 - Suppose h^i is the Conley index of S^i , i = 1, 2; (this is independent of θ). If $\bar{h} = \bar{h}(\bar{S}, \bar{S}^1, \bar{S}^2)$ and

$$h \neq (\Sigma^1 \wedge h^1) \vee h^2$$

then $\overline{S} \supset \overline{S}^1 \cup \overline{S}^2$.

2. Predator-prey interactions

A. We next apply these methods to a system of two reaction-diffusion equations arising in mathematical ecology modelling predator-prey interactions (see [4]). These techniques are also available for competitive interactions (see [2]), however, the predator-prey equations display more interesting phenomena due to a lact of monotonicity usually found in competitive dynamics.

The equations assume the form

(3)
$$u_{i_t} = d_i u_{i_{xx}} + u_i f_i(u), \quad i = 1, 2,$$

where $u = (u_1, u_2)$, $d_i > 0$ is a positive constant, and f_i is the percapita growth rate of u_i , i = 1, 2. We assume that

$$\frac{\partial f_1}{\partial u_2} < 0$$
, $\frac{\partial f_2}{\partial u_1} > 0$

so that u_1 is the density of the prey and u_2 is the density of the predator. We further assume that the null-clines of f_1 and f_2 have the aspect depicted in Figure 5 — the arrows indicate the reaction flow for spatially homogeneous

Fig. 5

solutions. The system admits four critical points. The rest points S^1 and S^2 are stable, while S^3 and S^4 are unstable.

Travelling wave solutions of (3) satisfy a four-dimensional system

(4)
$$u'_{i} = v_{i}, i = 1, 2$$

 $d_{i}v'_{i} = -\theta v_{i} - u_{i}f_{i}(u)$.

With a slight abuse of notation we denote the four critical points of (4) also by S^i . Thus we seek a solution $(u(\xi), v(\xi))$ of (4) which satisfies

(5)
$$(u,v)(-\infty) = S^1, (u,v)(+\infty) = S^2.$$

To this end we impose the following hypotheses.

- (H₁) There exists a family of contracting rectangles Σ_{τ} , $\tau \in (0,1]$ centered about the point S^2 in Figure 4.
- (H₂) Let θ_1 be the velocity of the travelling wave connecting S^1 to S^3 along which $u_2 \equiv v_2 \equiv 0$, and let $c_1 < 0$ be the maximal velocity of all connections from S^3 to S^2 along which the ucomponents remain non-negative (see [4] for further discussion). Assume $c_1 < \theta_1$.
- (H₃) Let $f(u) = (u_1 f_1(u), u_2 f_2(u))$ and let φ be defined by

$$\varphi = \min_{u \in T} \arg(-f(u))$$

where T is the shaded region in Figure 4. (It is easily seen that $0 < \varphi \le \pi/2$). Assume that

$$d_1 > d_2 \frac{\tan \alpha}{\tan \varphi}.$$

We remark that (H_1) implies the stability of S^2 relative to (3). (H_2) ensures that the critical point at S^3 does not split the connection into a stached family of waves. Finally, (H_3) is used to force the u-components of the connection to remain monotone increasing while $u(\xi) \notin \Sigma_1$. While this condition is somewhat artificial, some such criterion is needed to ensure that the connection is not interrupted by a family of periodic wave trains. Further discussion of the mathematical aspects of $(H_1 - H_3)$ together with an ecological interpretation is provided in [4].

Theorem 2 - Under (H_1-H_3) there exists a solution $(u,v)(\xi)$ of (4) which satisfies (5).

B. Sketch of the Proof. We outline the main points of the proof of Theorem 2. In order to apply the methods of Section 1 we first need a suitable candidate for an isolating region which plays a role analogous to that of N in Section 1. D. To this end we start with a region N_0 defined by

$$N_0 = \{ (u, v) : u \in R, \ 0 \le v_i \le L, \ i = 1, 2 \},$$

where R is the rectangle in Figure 4 with vertices at S^1 at the lower left and P at the upper right, and L is a large positive constant depending only on d_1 , d_2 , and R.

Notice that the *u*-components of solutions in $S(N_0)$ are monotone increasing. It follows that such solutions are either critical or connecting orbits. If $d_1 = d_2$ and S^2 is a spiral for the reaction flow, then S^2 must also be a spiral as a solution of (4). Hence the region N_0 is too restrictive. Let

$$N_1 = \{ (u, v) : u \in \Sigma_1, |v_i| \leq L, i = 1, 2 \},$$

and define $N_* = N_0 \cup N_1$. It is easily seen with the aid of (H_1) that non-constant solutions in $S(N_*)$ must again connect distinct critical points.

The final difficulty is that S^1 , S^3 , and S^4 lie in ∂N_* so that N_* is not isolating. Let B_i be a small neighborhood in \mathbb{R}^4 of S^i , i = 1, 3, 4. The final neighborhood is defined to be

$$N = N_* \cup B_1 \setminus (B_3 \cup B_4).$$

The main estimate is to show that N is an isolating neighborhood.

To this end, the flow through each point in ∂N must be shown to (eventually) leave N in at least one time direction. The details can be found in [4].

Finally, it must be shown that $S(N) = S^1 \cup S^2$ when $|\theta|$ is sufficiently large. This follows from the observation that for large $|\theta|$, solutions of (4), after suitable rescaling and changes of variables, closely approximate solutions of the reaction flow,

$$\tilde{u}'_i = \tilde{u}_i f_i(\tilde{u})$$

crossed with a hyperbolic critical point. It then follows that $(\overline{S}, \overline{S}^1, \overline{S}^2)$ is a connection triple, where

$$\overline{S} = S(N \times [-\theta_1, \theta_1])$$

$$\overline{S}_i = S^i \times [-\theta_1, \theta_1], \quad i = 1, 2.$$

In order to compute \bar{h} the problem is continued to the example discussed in Section 1.C, D. The homotopy begins by deforming the set $u_2 f_2(u) = 0$ in the manner indicated in Figure 6. After some

Fig. 6

additional homotopies the problem can be continued to

$$u'_2 = v_2$$
 $u'_2 = v_2$
 $v'_1 = -\theta v_1 - u_1 f_1(u_1, k)$ $v'_2 = u_2$;

of course, the isolating region N must be modified as the equations are deformed. The u_1, v_1 components have a phase plane similar to the standard example in Figure 2 while the u_2, v_2 equations are linear with a saddle point at the origin. It follows from Case 1 of Section 1.D that $\bar{h} = \Sigma^1 \wedge [\text{point}] = [\text{point}]$. Since $h(S^i) = \Sigma^2$, i = 1, 2

it follows that $\bar{h} \neq \Sigma^2 \vee \Sigma^3$, so that by Theorem 1, \bar{S} contains a connection running from S^1 to S_2 for some $|\theta| < \theta_1$.

3. Multidimensional fronts

Consider the scalar equation

$$u_t = u_{xx} + u_{yy} + u(1 - u) (u - \alpha)$$

 $u \mid_{\partial\Omega} = 0$
 $\Omega = \{ (x, y) : x \in \mathbb{R}^1, 0 < y < L \}.$

We seek solutions of the form $u = u(\xi, y)$ where $\xi = x - \theta t$. Such solutions satisfy an elliptic equation of the form

(6)
$$-\theta u_{\xi} = u_{xx} + u_{\xi\xi} + f(u), \quad u = 0 \text{ on } \partial\Omega.$$

We also require solutions to tend to limits at $|x| = \infty$; the limiting states are therefore solutions of

(7)
$$0 = u_{yy} + u(1-u)(u-\alpha) u(0) = u(L) = 0.$$

If $\alpha \in (0, \frac{1}{2})$ there exists L_0 such that (7) has exactly three solutions, $0 < u_{\alpha}(y) < u_1(y)$, for $L > L_0$ (see [6]).

THEOREM 3 - Suppose that $\alpha \in (0, \frac{1}{2})$ and that $L > L_0$; there exists a solution u, θ of (6) such that

$$\lim_{\xi\to-\infty}u=0\,,\qquad \lim_{\xi\to+\infty}u=u_1(y)\,.$$

The solution is monotone increasing in ξ .

The methods of the previous section cannot be applied directly to this problem since the system

$$u_{\xi} = v$$

$$v_{\xi} = -\theta v - [u_{yy} + f(u)]$$

is elliptic. The initial value problem is ill-posed and the equations do not generate a flow. This problem is circumvented by discretizing the finite variable y into a net, $y_i = ih$, 0 < i < n, nh = L, and introducing an approximate of 2n differential-difference equations

(8)
$$u'_{i} = v_{i}$$

$$v'_{i} = -\theta v_{i} - [(u_{i+1} - 2u_{i} + u_{i-1}) h^{-2} + f(u_{i})], 1 \leq i \leq n.$$

The end state equation, (7), is also discretized; for sufficiently small h, it admits exactly three solutions which approximate the continuous solutions.

An isolating neighborhood N(h) is constructed in a manner analogous to that of N in the previous section. Connecting orbits are obtained for each h>0 by deforming the boundary conditions to the Neumann problem. At the end of the homotopy we find that (8) continues to the product of the standard example of Section 2.D. with a linear hyperbolic system. The construction of N(h) is such

that the set of approximate connecting solutions is in a suitable sense compact. An exact connection solution of the continuous problem is obtained by passing to a subsequence as h tends to zero. (The details of the proof can be found in [5]).

REFERENCES

- [1] C. CONLEY, Isolated invariant sets and the generalized Morse index, CBMS Conference Series in Appl. Math., 38, AMS, Providence R.I., 1978.
- [2] C. CONLEY and R. GARDNER, An application of the generalized Morse index to travelling wave solutions of a competitive reaction-diffusion model, Indiana Univ. Math. J. 33 (1984), 319-342.
- [3] C. CONLEY and J. SMOLLER, Bifurcation and stability of stationary solutions of the Fitz-Hugh Nagumo equations, preprint.
- [4] R. GARDNER, Existence of multidimensional travelling wave solutions of an initial-boundary value problem, to appear: J.D.E.
- [5] R. GARDNER, Existence of travelling wave solutions of predator-prey systems via the connection index, SIAM J. Appl. Math. 44 (1984), 56-79.
- [6] J. SMOLLER, Reaction-Diffusion Equations and Shock Waves, Springer, New York, 1984.