SYSTEMS OF REACTION - DIFFUSION TYPE
WITH UNILATERAL BOUNDARY CONDITIONS.
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by PAVEL DRABEK (**)
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SOMMARIO. - In questo lavoro si considerano alcune condizioni al con-
torno di tipo universale relative a sistemi del tipo reazione-diffu-
sione e se ne esamina l'influenza sulla stabilita della soluzione
stazionaria e spazialmente omogenea. Simultaneamente viene pre-
sa in esame linfluenza delle condizioni al contorno sul punto di
biforcazione del relativo sistema stazionario.

SUMMARY. - This paper deals with certain unilateral boundary con-
ditions for systems of reaction-diffusion type and their influence
on the stability of the stationary and spatialy homogeneous so-
lution. The influence of unilateral boundary conditions on the
bifurcation points of the corresponding stationary system is also
considered.

0. Introduction

Let us consider a reaction-diffusion system of the type

=diAu+ f(u,v),

(RD)

ou
ot

in Q
v

57 = d2Av + g(u,v),

(*) Conferenza tenuta al «Meeting on Variational Methods in Differential Pro-
blems» (Trieste, 26-28 settembre 1985).

(**) Indirizzo dell’Autore: Katedra matematiky VSSE - Nejedlého sady 14 - 30614
Plzen - Cecoslovacchia.
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with the boundary conditions
du v

(NC) a—n=—a—ﬁ-=00naﬂ,

or

(BC) Ou _ % onTyu=a.v=5on Iy
on on ! ’

Suppose that Q is a bounded domain in R" with boundary
dQ =TnUTp,f, g are real valued functions defined on R?,d;,d, are
positive parameters (diffusion coefficients) and i,V are constants
such that f(a,v) =g(i,v) =0, ie. [4,7] is a stationary and spa-
tialy homogeneous (constant) solution of (RD), (NC) (resp. (RD),
(BC)). In some mathematical models arising in biochemistry, mor-
phogenesis, population dynamics etc. the following situation occurs:
for some fixed d; (we shall suppose d, =1, d; = d) there is a critical

value do > 0 such that U = [a, #] is stable if d > dy and unstable if
d < do; moreover this do is the greatest bifurcation point of the cor-
responding stationary system

dAu+ f(u,v) =0, .
(RDs) { Av+g(u,v) =0, B

with (NC) (resp. (BC)), i.e. the branch of the spatialy nonhomo-
geneous stationary solutions of (RDs), (NC) (resp. (RDs), (BC))

bifurcates at [do, U] from the trivial branch

{[d,U]l:deR,U =T}

Such a situation for (RD), (NC) in the case n = 1 (ie. 2= (0,1,

Au = txx, Av = vs:) is described in detail for instance in [11] (see
also [10]).

The aim of the previous works [2,3,4,8,9] was to study how
this situation changes if we consider some unilateral boundary con-
ditions instead of (NC), resp. (BC). In this paper we give a survey
of the results in that direction obtained by the author, Milan Kude-
ra and Marta Mikova in [2,3,4].

In Section 1 we present an abstract formulation of the problems
in question. Section 2 is devoted to the modification of a global
bifurcation theorem due to E.N. Dancer [1] which is the tool in
the proofs of our main results. An abstract result about the greatest
bifurcation point for the associated variational inequality is contai-
ned in Section 3 and destabilizing effect of unilateral conditions
for linearized reaction-diffusion system is explained in Section 4.
More general result concerning linearized reaction-diffusion systems
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is presented in Section 5. The last Section contains some final re-
marks and comments.

As it was already pointed out the proofs are based on the ap-
plication of the Dancer’s bifurcation result and they come from a
modification of the argument developed by Milan Kucera in [5, 6, 7].

AcCkNOWLEDGEMENT. This lecture was prepared during the aut-
hor's stay at the University of Trieste supported by C.N.R. The
author is grateful to the organizers of the meeting «Variational
Methods in Differential Problems» for their pleasant hospitality
and to C.N.R. for the support.

1. Abstract formulation of the problems

We shall denote by V and H two Hilbert spaces equipped with
the inner products (.,.) and (.,.) respectively, and such that

(VVH) Voo H

algebraically and topologically with completely continuous embedd-
ing. The corresponding norms will be denoted by || u|| = (u,u)”
and |v|=(v,v)"? respectively. Let K < V be a closed convex cone

in V with its vertex at the origin. We shall denote by V and H the

Hilbert spaces V X V and H X H with the inner products given by
(U, W)_=(u,w)+(v,2), (U, W) _=(u,w+ (v,2),

where U = [u,v], W = [w,z], and with the corresponding norms

NU||.=(U,U)2,|V|_= (V,V)2, respectively. The identity mapp-

ings in V(H) and {/'(ITI) will be denoted by I and 1. We shall sup-
pose that K = V,K° = ¢ (the interior of K is nonempty). The sym-
bols — and — will denote the strong and the weak convergence in
the corresponding spaces, R and R+ will be the set of all reals and
of all positive reals, respectively. Throughout the paper we suppose
that

(A) A is a linear completely continuous symmetric positive (i.e.
(Au,u) > 0, for all u > 0) operator in V.

Particularly, this is fulfilled for the operator defined by

(1.1) (Au,9)= (u,o), for all u,9eV,

by the assumption (V,H). Let further N;: V-V be nonlinear com-
pletely continuous mapping such that
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(N) lim
jujj=o0 VI

Let di,b;;eR (i,j=1,2) be given and define

s =(it). o= (82). pw=(1),

AU = [Au,Av], for all U = [u,v] € V. Then we have

BAU = [bu Au + bz Av, by Au + bn Av], DU = [dyu, dyv].

‘Further, introduce a cone K in V by K= {Ue V: [u,v],ve K} and
N: VoV by N(U) = [Ni(u,v),N2(u,v)], U = [z, v] e V.

We shall study the bifurcation problem for the stationary ine-
quality

(§I) UeI~(, _ )
(D(d)U —-BAU+N(U), ®—-U)_=0, VO eK.

Simultaneously the system of stationary equations (written in the
vector form) will be considered

(SE) D(d)U — BAU + N(U) =0.

REMARK 1.1 - Consider the reaction-diffusion system (RDs) from
Introduction and suppose that f, g are twice continuously differenti-
able and f(d, %) = g(ii,v) = 0 with some constants & > 0, % > 0. Set

_f o o, _Of o dg . ag .
bu—-——-au (a,v), blz—--——av (a,v), bZI-——au (a,v), b22—'—“"av (#,9),

and let us suppose, for simplicity that n =1, Q = 0,1, Tr =0,
I'v = 1. Define the space V={ue W;(O,l) :u(0) =0} with inner
product

(12) (u,9)=fluso.dx, Yu,peV,

and with the corresponding norm || - || which is equivalent in V to
the usual norm of the Sobolev space W; (0,1). Further, denote by

H the Lebesgue space 1,(0,1) with the usual inner product (.,.) and
the corresponding norm |- |. Introduce the operators A, Ny, N, by

(Au,0) = fluodx,
(Nl(u)v):tp) =

=fllf(a+u,v+v) — %(ﬂ,ﬁ) u-— g—z-(ﬂ,fz) vlieodx,



SYSTEMS OF REACTION-DIFFUSION TYPE WITH etc. 53

(Nz(u,V),qJ) -
—fllg(u_l_u ‘V-I_V).--.__...g(u v)u_.__g(u ‘V)vlq/dx
0 ’ al/l ’ 8V ’ ’

for all u,v,9, ¥ € V. It is easy to see that if u,v satisfy (Si?.) then
the couple u 4 @, v + ¥ is the classical solution of (RDs), (BC). If

we choose K ={veV:v(l) Z0}, then if u,v satisfy (§I), u-+a,
v + ¥ is the classical solution of (RDs) with unilateral boundary
conditions

u(0) =a,u(1) =0,
{V(O) =9,v(1) Z29,v:(1) 20, (v(1) — D) vx(1) =0.

We shall investigate also the stability of the trivial solution of
the abstract inequality

. |U@Mek
b (%ff— (1),® = U(1)) _+(D(d) U(t) - BAU(1),®~U(1))_Z0,

for all ® € I~{, a.a. ¢t € R*. Simultaneously the corresponding system
of equations will be considered

~ aU ~
(AE) (57 (1),®) .+ (D(d) U(t) — BAU(1),®) =0,
for all @ € {f, aa. teR™,
The following eigenvalue problems
(EI) Uek, _ . .
(D(d) U— BAU + MU, ®—-U) =0, V€K,

and
(EE) D(d) U— BAU + MU = 0
will play the key role in the investigation of (EI), (Z&E). ,

REMARK 1.2 - We shall not discuss thé existence and the smooth-
ness of the solutions to (7&1). Our aim will be to show the exist-
ence of a solution of the type U(t) = exp(\t) Wy of (XI) with A >0

U ~
(for a suitable parameter d only) such that 37 (t) e H, for any

t e R+, and (AHI) is fulfilled for all t € R*. If we wanted to give a
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general correct definitio'n of the solution on (0,T) we could consi-

du 9
der for instance u,v € L,(0,T;V) such that -a—L; ,—51—;— € L,(0,T; V")

and (AE) (or (AI)) is fulfilled for aa. te (0,7).

REMARK 1.3 - Consider the linearized reaction-diffusion system

_865;_ =diAu+ bnu+ buv,
(RDy) 9
—aT =dAv +bau+ buv.

Suppose n=1, Q= (0,1), Tp=0, Tn=1, A V,H K, bi(i,j=1,2)
are defined as in Remark 1.1. Let dy: =1, di: =d. Then (A-iZ) is an
abstract formulation of (RDp), (BCo), where (BCo) is nothing but

(BC) with a=v=0®, and (KI) represents (RD.) with unilateral
boundary conditions

(1.3) u(0) =0, u(1) =0,
) {v(O)=0,v(l)éO,vx(l)éo,v(l)vx(l):0.

Analogously (E~E) and (E~I) are weak formulations of

dAu + buu + b12v=7»u,
(RD») { Av 4+ bau + b22v=7»1/,

with boundary conditions (BCy) and (1.3), respectively.

We shall also investigate the stability of the trivial solution of
the more general linearized systems with unilateral boundary con-
ditions:

U(t) e K
A au ..
(AI) (—é't—(t),‘D_U(t)L+

+(DU(t) — B(di, ds) AU(1),® — U(1)) 20,

for all ® € I?, a.a. t € R+, using the properties of the corresponding
homogeneous problem

(AE) (—aa% (1), ®) + (DU(1) — B(ds, dy) AU(1), @) = 0,

for all ® e V (see Remark 1.4 below for the definition of B(d:,d,)).
The stationary eigenvalue problems

(1) The solution #,7 is automatically transformed to zero, ie. we
write u,v instead of u — @, v — ¥, in the linearized problem.
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A UGIZ,
(EI) ~ ~ -
(DU — B(dy,d;) AU+ VAU, ©—-U)=0, VdeK,

(EE) DU — B(di,ds) AU+ AU =0,
will play the key role in our considerations.

REMARK 1.4 - Suppose again n=1, Q= (0,1), and consider
(RDL) from Remark 1.3, b;j(i,j=1,2), A, K, H defined as in Remark
1.1. If we require (NC) instead of (BCy) then (1.2) does not define
any inner product on V=W}(0,1) and so it is necessary to use

the usual inner product
(u,9) = [ilu:9: + tugl dx,

with some T > 0. Then (AE) becomes an abstract formulation of
(RDp), (NC) if we put

_ ( bu+ vdi, b2
B(di, d) = [ ba, bn + d; ) )

Analogously (AI) is an abstract formulation of (RDy) with unilateral

boundary conditions

ux(0) = ux(1) =v:(0) =0
{v(l) =0, (1) 20, v(1) vx(1) =0.

DEeFINITION 1.1 - Let dy,d>> 0 (resp. d > 0) be given. If A >0
is such that there exists a nontrivial solution U of (EAI) or of (E?:’.)
(resp. of (EI) or of (F:E) then A and U are said to be an eigen-
value and an eigenvector of (]::5\1) or of (EAE) (resp. of (}§I) or of
(EE)) with the parameters di, dz (resp. with parameter d). The sets

of all solutions of (EI) and (EE) (resp. (EI) and (EE)) will be
denoted by E;(di,d;,\) and Eg(di,d:,\) (resp Ei(d,\) and

Eg(d,N\)). We say that an eigenvalue A of (EE) (resp. of (EE)) is
simple if dim Eg(di,d>,\) =1 (resp. Eg(d,\) = 1).

DerFINITION 1.2 - A couple [di,d.] e R* X R+ (resp. a point
d € R+) is called a critical couple of (EAI) or (E/ii) (resp a critical
point of (EI) or (EE)) if A =0 is an eigenvalue of (EI) or (EE)
(resp. (EI) or (EE)) A critical couple [d;,d;] of (EE) (resp. a
critical point d of (EE)) is simple if N =0 is a simple eigenvalue
of (EE) (resp. of (EE)).
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DEFINITION 1.3 - A point do > 0 is called a bifurcation point of
(SI) or of (SE) if any neighbourhood of [do,0] in R X V contains
a solution [d, U] of (SI) or (SE), respectively, satisfying ||U|| = 0.

2. Modification of the global bifurcation result due to E.N. Dancer
Consider a general bifurcation equation of the type
(BE) x—LWx+G(n,x) =0

in a real Hilbert space X with the inner product (.,.), and with the
corresponding norm ||| - ||| . Let us suppose that

rator on X; the mapping p—L(n) of R into the space

for any p € R, L(p) is a linear completely continuous ope-
(L)
£(X,X) of linear continuous operators on X is continuous;

(LG) the mapping M:R X X — X defined by M(p,x) =
{ = L(p) x + G(p, x) is completely continuous;
(G) lim -G—ﬂi-’—x—)— = 0 uniformly on bounded subsets of R.
flafj—o M=l

Denote by C the closure (in R X X) of the set of all nontrivial
solutions of (BE), ie. C={[u,vlIe R X X :|||x]||| =0, (BE) is ful-
filled}. Suppose that po is a simple critical point of
(BEr) x—-L(p)x=0,

i.e. there is a nontrivial solution xy of (BEL) with p = and dim

U ker(I — L(po))*=1. Let Co be the component of C containing

k[;;,O]. Further suppose that
(Ind) ind(I — L(m+¢€)) = ind(I — L(po —¢)),

for all € € (0,e), with some & > 0 (by «ind» we mean the Leray-
Schauder index with respect to the origin).

THEOREM 2.1 - (cf. [1, Theorem 2]). Let uy be a simple critical
point of (BEL) and let (L), (LG), (G), (Ind) be fulfilled. Then there
are Cg", CO* connected subsets of Co containing the point [po, 0]
with the following property: either both C; and C are unbounded

or CJﬂCO—;é{[.po,O]}.

REMARK 2.1 - Let us remark that [1, Theorem 2] deals with
more special case L(p) =pL but, using hypothesis (Ind), the proof of
Theorem 2.1 can be performed in the same way as that of [1, Theo-
rem 2].
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REMARK 2.2 - Both C 5 and C , are «starting» from [po, 0] in the
direction x and — xo, respectively.

3. Bifurcation points of variational inequality

Throughout Sections 3 and 4 we shall suppose that b;;(i,j = 1,2)
satisfy

(SIGN) bu>0, bi2<0, b21>0, b<0, bu+ bn<0.

We can now formulate the result concerning the bifurcaticn points

of the variational inequality (§I).

THEOREM 3.1 - (cf. [2, Theorem 2.1]). Let do > 0 be the greatest

critical point of (E~E). Suppose that do is simple, Ep(do,0) NKO = ¢
and (A), (N), (SIGN) are fulfilled. Then there exists a bifurcation

point d; of the inequality (§I) satisfying d; > do. More precisely,
there is 8 > 0 such that for any & € (0,8,) there exist [d(8) ,U(S)]

satisfying (§I), U(d) € 3[%, |U(@)|*=28, d(8) > do and all the limit
points d; (there is at least one) of d(8) for 8— 0, are greater than

do; d(5), U(s) do not satisfy (SE).

REMARK 3.1 - According to the assertion of Theorem 3.1 there

are spatialy nonconstant stationary solutions of (IfI) bifurcating
from the point [dr,0] lying in the domain of stability of the trivial

solution of (A~E) (because d; is the greatest critical point of (E~E)).

Main ideas of the proof of Theorem 3.1. Using the projection

P onto the convex cone K in V we can write (§I) in the operator
form

(3.1) D(d) U— P(BAU — N(U)) =0
(see [2,12] for details).

For each & > 0 fixed we shall denote by Z; the closure (in
R X VX R) of the set of all [d,U,t] e R* X V X (0,1) such that
(a) ||U]|:=8~c,

(b) D(d)U— BAU + <(I — P) BAU + tR(U) =0,
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where R(U) = PBAU — P(BAU — N(U)), for U=[u,v]. Put p = 1/d,

T=¢/(1+¢), X = \Y X R (with points [U,€]) and define the opera-
tors L(p) : X—>X, Gs:RX X—>X by

(L(w x=L(w [U,e] = [D(w) BAU, 0],

® 1 Gs(,x) =G U,e) =[5 is (I — P) D(n) BAU +

£ 1+¢ 2
= D RU), - = U|*].

It is possible to show that these operators satisfy (L), (LG),
(G) (for any & > 0). The assumption (SIGN) also implies that
to = 1/dy is algebraically simple critical point of (BEL) (see [3, Re-
mark 2.2]) and that (Ind) is fulfilled (see [3, Lemma 2.1]). Hence
the system of equations (a), (b) can be thought as an abstract
bifurcation equation (BE) with operators L,G defined by (). It
follows from Theorem 2.1 that for each § > 0 there exist closed con-
nected subsets Z;O and Z 50 of Zs starting from [dy,0,0] in the di-

4

rection Wy e K and — Wo € Kon Egp(dy,0), respectively, and either
(i) Z;o contains a point of the type [d(8),U(S), 1]

or
i) Z 8+0 is unbounded in d
or

(iii) Z ;O,Z 5o Mmeet each other at a point different from [do,0,0].

It is possible to show that the cases (ii) and (iii) cannot occur
for & small enough. The boundedness of Z 3o follows from the ele-
mentary considerations about the equation (b) (see [2, Lemma 4.1,
Remark 4.3]) which excludes the case (ii). In order to exclude also
the case (iii) we need the following.

LEMMA 3.1 - For each & € (0, 30) (with 8 > 0 fixed and sufficiently
small) the following assertion are true for all [d,U,x] € Z Tt

(3.2) if [d,U,<] = [do,0,0] then BAU ¢ K,

(33) if [d, U, <] = [dy,0,0] then do<d < d, for some d> 0 inde-
pendent of &.
The proof of (3.2), (3.3) is based on the following principles:

(34) for an arbitrary & >0, the values d are locally increasing
along Z;o near d = do, || U || _=0,7=0 (see [2,Lemma 2.2]);
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(3.5) for any & > 0 small enough, BAU cannot intersect 9 K with
©>0 as long as d = dy for [d,U, <] € Z;O; at the same time

Z 5+0 cannot intersect the line d = do as long as BAU ¢ K (see
[2, Lemmas 2.1, 4.2, 4.3]);

(3.6) the sets Z ; are uniformly bounded with respect to & € (0, &)
with & sufficiently small.

The assertion of Lemma 3.1 together with the fact that BAU € K°
for all [d,U,x] € Z 5o excludes (iii).

REMARK 3.2 - The equation (b) represents the homotopy joining
the equation (EE) with A =0 (for © =0) and the variational ine-
quality (3.1), i.e. (§I) (for = =1). We obtain from (i), (a) and (b)
that d(8) ,U(8) satisfy (SI), ||U(8)|? =& and D(d(5)) U(3) €K, i.e.
UGs) eK. )

It is possible to show that U (§) eal%, for all & € (0,8, with
8 > 0 small. In the opposite case there are d, = d(8,), U, = U(s,),

satisfying (SI) and ||U.|P=8,—0, U,e K°. It follows from (b)
(putting © = 1) that P(BAU, — N(U)) € K® i.e. BAU.— N(U,) € K°.
Using (3.3) we can suppose that d,—d Z dy, W, = U,/|| U, ||— W. It
follows from (b) that W,— W and D(d) W — BAW = 0. Hence d is
a critical point of (E~E), i.e. d = dp because dp is assumed to be the
greatest one. Simultaneously we have BAW, — N (U,)/ || Ul € K° and
BAW, ¢ K by (3.2). Using assumption (N) we obtain from here that
D(dy) W = BAW € 6[2, ie. We dK. This contradicts the assumption
that do is simple and Ep(do,0) NK°® = &.

The existence of a limit point d; of d(5) for §— 0, follows from

(3.3). Suppose that d(8,) = dy for some 3.—>0,. We obtain (by the
limiting process) from (b) the existence of W € 9K, [|W]| =1 such

that D(do) W — PBAU = 0 which contradicts the simplicity of dp and
the assumption Ep(dp,0) NK® = ¢ . Henced; > do.

Suppose that d(5.), U(S,) satisfy also (S.E) for some §,—0,
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d(8.) > do, U(8,) € dK. This implies the existence of a bifurcation

point of (S~E) which is greater than do. This contradiction proves
the last assertion of Theorem 3.1.

4. Destabilizing effect of unilateral boundary conditions for linea-
rized systems ‘

In this Section we shall deal with the influence of unilateral
boundary conditions on the stability of the trivial solution of the

linearized system (KI).

THEOREM 4.1 - (cf. [3, Theorem 1.2]). Assume the same as in
Theorem 3.1 and (V,H). Then there are di>dys, A>0 and
Wi € 8K \ {0} such that the function U(t) = exp (M) W satisfies (AI).

RemARK 4.1 - We have U(0) =W and ||U(t)||— + o, for
t—> 4+ oo . It implies the unstability of the trivial solution of (AD)
in an arbitrary reasonable sense. On the other hand the trivial solu-

tion of (A~E) is stable for any d> dy under our assumptions. Hence
unilateral conditions of the type considered have a destabilizing
effect.

Main ideas of the proof of Theorem 4.1. It is sufficient to show

that W; satisfies (ﬁI) (see e.g. [9], cf. [3, Theorem 1.1]). The as-

sumption (SIGN) and elementary investigation of the equation (E~E)
yield the existence of p > 0 such that: for any di € (do — p, do) there

is simple eigenvalue \(dy) >0 of (EE) (with d = d;) and

Es(di,Md)) NKO = & .

Moreover, replacing B by Byaq,) = B — M(d1) E (E is the unit matrix),
d; satisfies the assumptions of Theorem 3.1 (see [3, Lemmas 2.1,
2.2, 2.3]). We can repeat the same procedure as in the proof of
Theorem 3.1 replacing do by di, B by Bya,), setting N =0, 8 =1 and
using the fact that By, satisfies (SIGN) provided p > 0 is suffi-
ciently small. We obtain that for each di € (do — p,do) there exist

di.1>di and ) = M(di) such that (EI) with d =di; and A = \(dy)
is fulfilled and E;(di.1,\) < oK.
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It remains to show that di,1 > do if p > 0 is small enough. If
this were not true we should have sequences {d.}, {d.,1} such that

dn < dﬂ,lé dﬂpdn-édo:

with corresponding eigenvalues A, = A(d.) and eigenvectors

Wa € 0K NEi(da,1, M), ||Wal =1.

Using the compactness of A and a suitable limiting process in (EI)
(with d =d,,1,U =W,,A =2\, we derive

(D(do) W — BAW, & —W) =0,
for all @ € K, with some |W| =1, W € Ei(do,0) N3K. But

Es(ds,0) NK = Ey(d,0)
(this holds in general under the assumption Eg(do,0) NKO = ¢, see

[2, Lemma 2.1]). Hence W e 9K NEg(dy,0) which contradicts the
simplicity of do and the assumption Eg(dy,0) NKO = 6.

5. More general result concerning linearized systems

In this Section we shall deal with the destabilizing effect of

unilateral boundary conditions for more general linearized problem
A

(AE). The main tool is the same as that in proving the results in
Sections 3, 4 (i.e. Theorem 2.1). The difference is in it's application.
Roughly speaking the situation in the previous Sections was the
following: we had only one diffusion coefficient d (we supposed
di =d,d, = 1) which played the role of «moving» parameter p (see
Theorem 2.1, p = 1/d) and the proofs were based on the existence
of certain branches in d. To prove the results of this Section (we
shall consider two diffusion coefficients di,d> > 0) we use again
A

Theorem 2.1. But the corresponding eigenvalue A of (EE) will play
the role of the «moving» parameter .

We need to add a further condition on b;(i,j=1,2):
(5.1) bubn — bbby >0.



62 PAVEL DRABEK

It is possible to show that the assumptions (A), (SIGN), (5.1) imply
the existence of a continuous function d, = £(d;), defined for all

die (0,c), lim §(d;)) =0, lim &E(d)) = + o, E is increasing on
d1—>0+ dl-)C_

(0,c) and such that

(5.2) if d.=E&(dy) then [d;,d.] is a critical couple of (EE);
(5.3) if either d; < &(di), di€ (0,c) or [di,d.] € R+ X R+, d>c
A
then [d,,d,] is not a critical couple of (EE) (c is some

constant).

REMARK 5.1 - The illustration of (5.2), (5.3) is the following: the
graph of € (we shall denote it by G:) is the set of the «greatest cri-
tical couples with respect to di». Simultaneously G: divides the first
quadrant into two domains: the first one G— = {[d,,d:] € R+ X R+:

d,>¥%(d),die (0,c)} and the second one G+ is the complement of

G-EUGE The trivial solution of (AE) is stable whenever [d,, d;] eG+
and unstable if [d,,d.] € G- (see [4]).

THEOREM 5.1 - Let the assumptions (A), (V,H), (SIGN), (5.1) be
fulfilled, [d° dO]GGg is a simple critical couple. Suppose that
E)g(d0 d° 0) NK®s ¢. Then there is a neighbourhood & (d“,d") of
the pomt [d° d] such that for any [di,d] ec‘i.’a(do dy) there are

=M(di,d;) >0 and W;=Wi(d:,d,) € 8K\{0} such that the ab-
stract function U (t) = exp(ht) Wi satisfies (AI)

Main ideas of the proof of Theorem 5.1 (see [4] for the details).
Similarly as in the proof of Theorem 4.1 it is sufficient to show

that for any [di,d.] € éB(d?,dg) the eigenvalue problem (EI) has
positive eigenvalue M = Ar(di1,dz) > 0. Let us define the set Z (di,d,)

as a closure of all [A, U,e] in R X \ X R such that
(5.4) [|U||j=s/(1 + ¢€)

(55) DU — (B(di,ds) AU — MAU) + ¢B(U) =0,
with some fixed [di, d:.] € R+ X R+, where § is usual penalty ope-

rator corresponding to K (see eg. [5,6,7]). Put X = % X R (with
the points x =[U,e]) and define the operators L(A) : X - X,
G:RXX—X by
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L) x=L(\) [U,e] = [D-'B(di, ds) AU — \D-1 AU, 0],
G(\,x) =G\ U,e) = [eD-1B(U), — (1 + ¢)|| U |21,
where D-! is the inverse of D. These operators satisfy the assump-

tions (L), (LG), (G) and so it is possible to prove the existence of
a neighbourhood c‘B(d‘l’,d‘z’) such that for any [di,d.] € &(d?,d))

there is a A = A(di,d2) which is a simple critical point of (BEL)
(with operators L, G defined above). Moreover (Ind) is fulfilled
with p = A. Furthermore the neighbourhood 53(d‘1’, d‘z’) can be taken

so small that Eg(di,d,, M(d1,d;)) ﬂIEO % ¢ . Application of Theorem
2.1 (for each fixed [di,d:] € 55(d‘1’, dg) ) yields the existence of con-

nected sets Z+(di,d,), Z-(d1, d2) (starting in the directions

W (di,ds) € Ep(ds,ds,Mds,dy)) N (— K)

and

— W(di,d;) € Eg(dy,d>,Nd1,d>)) ﬂl?o
both containing the point [A(di,d>) ,0,0] and such that either
(5.6) both Z+(di,d,), Z-(d:, d2) are unbounded

or
(5.7) Z+(dy,d)) NZ-(dy,ds) # [N(d1,d>),0,0].

‘The case (5.7) can be excluded in a similar way as (iii) in Sec-
tion 3. The proof is based on the fact that

U¢ K if [\U,cleZ+(d,ds)

and

UeKOif [MU,el€Z-(di,ds).

Simultaneously it can be proved that Z+(d:,d,) is bounded in the
first component A and A > A(di,d:) whenever [\, U, ] € Z+(d:, d>),
[MU, €] = [N(di1,d2),0,0]. Hence Z+(di,d2) (and also Z-(di,d2))
is unbounded in € and (5.4) implies that ¢ must be positive. Passing
to the limit for e— o« in (5.5) we obtain (using the properties of
the penalty operator f) the existence of Ar = M(di,dz2) > Ndi,d3)

and W; = Wi(d:, d,) which satisfy (EI).

Using the limiting procedure similar to that in the proof of
di,r> dy in Theorem 4.1 it is possible to show that for any
[di,d:] € B(d?,dS) it is M(di,ds) > 0 if the neighbourhood is suffi-
ciently small.
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6. Final remarks

REMARK 6.1 - The assertion of Theorem 5.1 can be proved also
without the assumption that [di,d;] is a simple critical couple
(see [4]).

REMARK 6.2 - Unilateral boundary conditions considered in this
paper concern always the second function v and they have destabi-
lizing effect with respect to the spatialy homogeneous solution. On
the other hand it is possible to study an opposite effect (some kind
of stabilization) putting certain unilateral conditions on the first
function u (see [8]).

REMARK 6.3 - Using an abstract approach explained in Section 5
it is also possible to deal with (RD.), (BGCo). In this case we put
©=0 and B(d:,d;) = B for any [d;, d;] € R+ X R+.

REMARK 6.4 - If we wanted to use the abstract approach from
Sections 3, 4 in the case of Neumann boundary conditions (NC),
we should consider the matrix B(d,1) instead of B. The problem
which arizes here is the «moving parameter d» in the coefficients
of B(d,1) (see [2,3]).
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