A REMARK ON
ALEXANDER DUALITY AND THOM CLASSES (*)

by DANIELE STRUPPA and CRISTINA TURRINI (in Milano) (**)

SOMMARIO. - Sia M una n-varieta differenziabile orientata e compatta,
AcC M un chiuso, U= M\A. Ad ogni (n — k)varietda a bordo
(S,9S) < (M, U) si associa, per dualita di Alexander, una «k-for-
ma» <(S) € H*(A). Il teorema di isomorfismo di Thom permette
poi di fornire una costruzione esplicita di <. Si discutono infine
alcuni esempi concreti. ‘

SUMMARY. - Let M be an n-dimensional compact oriented differenti-
able manifold, Ac M a closed subset, U= M\A. We associate
to each (n — k)-submanifold with boundary (S,9S) c(M,U) a
«k-form» <(S) € AH*(A), via Alexander duality. Thom isomorphism
theorem enables us to provide an explicit construction of =(S).
Finally we discuss some concrete examples.

1. Let M be an n-dimensional compact oriented differentiable

manifold and S<> M a closed (n — k)-dimensional submanifold of it.
The well known Poincaré duality theorem associates to S a k-form
mns on M, its Poincaré dual, which satisfies

Jsw= fuw Ans for any w e HII;R(M),
i.e. ms represents the functional on H no¥(M) defined by
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w—>fsw.

The explicit construction of ns is usually achieved via Thom isomor-
phism theorem.

In this paper we extend this construction to the Alexander
duality theorem which can be thought of as the analogue of Poin-
caré duality for relative (de Rham) cohomology groups H g (X,Y).

More specifically, let A be a closed subset of M, U = M\4, and
(S,8S) c(M,U) be an (n — k)-dimensional manifold with boundary.
Under reasonable hypotheses on A we show that Alexander duality
theorem associates to (S,dS) a «k-form» <(5) € H*(A) (see section 2
for notation) representing the functional Fs on H ';J;k (M,U) defined
by

Fs: (w,e)—>fsw——J'as9
(proposition 2.2); we will call </®) the Alexander dual of S.

The use of Thom isomorphism theorem enables us to show that
7(5), the dual Alexander form of S, can be identified with a limit of
the Thom classes of the normal bundles of (S\dS)NV, for V in an
inductive family of open neighborhoods of A (theorem 3.1). Finally
we apply theorem 3.1 to some simple examples (M = §? or S! X §!),
for which we actually produce the form =fS).

We are grateful to professor A. Heller for many useful convers-
ations.

2. Let }X be an n-dimensional oriented differentiable manifold
and denote by (Q'(X),d) ((,(X),d) resp.) the graded complex of
C~-differential forms with real coefficients (and compact supports

resp.) and by Hgn(X ) (H f,uR(X ) resp.) its de Rham cohomology
vector spaces (with compact support resp.). Poincaré duality the-
orem states that

(H (X))'=H3XMX) k=0,...,n,
where (—)* denotes the dual vector space and where the pairing
Hk (X)X Hizk(X) >R
is induced by
(w,e)ﬁfxm A 0.

Provided X is of finite type, its cohomology vector spaces are finite
dimensional, so one also has isomorphism

@.1) HY (X)= (H=*(X))' k=0,...,n.

c¢,DR
- ReEMARK 2.1 - For M an n-dimensional compact oriented differenti-
able manifold, isomorphism 2.1 can be used to associate to each
(n — k)-dimensional closed oriented submanifold
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2.2) i:SoM
a cohomology class {ns} e H z’gn( M) which is called Poincaré dual of
S,[1]: indeed integration over S defines a linear functional
Js— H*(M)—>R

which, in view of (2.1), is represented by a unique cohomology class
{ns} in H n=¥(M) which satisfies

fsi*w = fuw Ans for any w in Hix(M),
where i*: H lI§R (M)—->H SR(S ) is the restrictioh map induced by (2.2)

(in the sequel we will often write w for i'w).

It is our aim, in this section, to show how this construction
extends to Alexander duality; to this purpose we need to interpretate
it in terms of differential forms.

Let us state the usual Alexander duality theorem for singular
cohomology with real coefficients, [2]:

PROPOSITION 2.1 - Let M be a compact oriented n-manifold, A a
closed subset of M, U= M\A its complement. Then the Cech - Alex-
ander - Spanier cohomology group H*(A) is dual to the relative co-
homology group Hr-*(M,U).

In order to interpretate proposition 2.1 in terms of differential
forms we will always assume A to admit an inductive family of open
neighborhoods {V'}, cofinal with the family of all open neighborhoods
of A, which are manifolds with smooth boundaries dV. Under this
hypothesis we can define

Ak (A) = ind lim H (V).
V 5 Aopen

On the other hand the relative cohomology too can be described
in terms of differential forms as follows [1]: define

Hr»x(M,U) = H=*(Q"(M,U))
where the complex Q*(M, U) is defined by

VM, U) = Q1(M) @Qs-1(U)

d(w,0) = (dw,j'w — de),
forj: U M.

Now proposition 2.1 can be restated for de Rham cohomology
as follows:
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PROPOSITION 2.2 - Let M be a compact oriented differentiable

n-manifold, A a closed subset of M such that U=M\A~'—’->M is of finite
type, = {V} an inductive family of open neighborhoods of A as
above. Then there is an isomorphism

23) Puu: A (A) - (Hk (M, U))"
which can be described as follows: let
v=ind lim {<v} € A% (A),{w} e HE (V)

D)
and n={(w,0)} e H2-¥(M,U), ie. {w} e Huok(M) and
24) jTw=de,
then |
(25) Pu,u(z) (n) =lim{fvw A v — fw® A v}

DY
(notice that, since < is defined by an inductive limit, tv can be
thought of as defined in an open set properly containing V itself).

Proof. The existence of isomorphism (2.3) follows as in the
standard proof of proposition 2.1. We only need to show (2.5). As
usual consider the following diagram (in which we suppress the
subscripts DR)

- HYU) - H¥M) - H*(A) - H*4(U) - HYY(M) -

Py J Pu 0] L Pu,v 2] Py { Pu
— (H**(U))* = (H-*(M))* - (H-*M,U))* - (H"-*Y(U))" - (H**1(M)})" -

where all Py ’s and Py 's are Poincaré isomorphisms as in (2.1). By
(2.4) and Stokes’ theorem it easily follows that Pu,v in (2.5) is well
defined. Moreover both squares [1] and [2] sign-commute, so that the
thesis is achieved by a standard application of Five Lemma. O

- From now on, since we only deal with de Rham cohomology,
we will write H¥(—) instead of Hl’;R(—).

We now apply proposition 2.2 to extend remark 2.1 to Alexander
duality: a more precise version of this will be dealt with in section
3 with the use of Thom isomorphism.

For (M,U) as above, let Sc M be a closed (n — k)-manifold
with boundary 8S < U. The pair (S,9S) defines a linear functional
Fs on H*-*(M,U) by

Fs: (0,0) = fsw — [0,
Indeed if (w,0) is a coboundary, i.e.
(w,8) = (do,j" o —dy), for {(¢,¥)} in H»-*1(M,U),
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it is, since p = j*@ in S c U,
- Jsdo — Jasj o+ fosdY = fos @ — fas@ + fasY =0,
Hence, by proposition 2.2, there exists a unique «form»
7(5) € H*(A),

defined by an inductive family {1:](/5)} € H*(V) such that
26)  Fs{(w,8)} = fsw— fis0 = lim {frwATs — fw0ATE}.
)]

In analogy with remark 2.1 we will call 1(S) the Alexander dual
of the pair (S,dS); notice that, in case U= @, this construction
reduces to the one in remark 2.1.

3. In this section we use Thom isomorphism to explicitely
describe the Alexander dual ') introduced in section 2.

Let X be an n-dimensional oriented differentiable manifold and
3.1) n:E—>X

a rank g oriented vector bundle on X. Denote by Q° (E) the com-
plex of forms on E with compact support in the vertical direction,
and with H? (E) its cohomology which is usually called compact
vertical cohomology. Thom isomorphism theorem shows that there
exists an isomorphism

Th:H (X) —>H’*(E);

under this isomorphism the image of 1€ H°(X) =R determines a
cohomology class ® in H 2 (E) called the Thom class of the orient-

ed vector bundle E, [1]. Notice that T4 is the inverse of isomorphism
T . HC‘;“I(E) —> H*(X)

induced by integration of forms along fibers. Finally, let us recall
the well known projection formula: for w in Q? (E) and o in

Qma-r(X), it is fe(m"' o) Aw = f[x o AT.w, where =* is the map induc-
ed in cohomology by (3.1). ‘

Let (M,U) be a pair as in proposition 2.2 and (S,dS) as in
section 2; since both S and A are compact, SNA only has finitely
many connected components: for the sake of simplicity we will as-
sume, throughout the sequel, SNA to be connected (it is easy to
modify our reasonings for the general case). Denote by S° = S\3S
and by N = Ns° 4 the normal bundle of S° in M. Consider an induc-
tive family @ = {V} of open neighborhoods of A such that 9V is
smooth, VN3dS = &, and VNS is connected. The restriction N |s%v
is still a bundle of rank k = codim S



84 DANIELE STRUPPA and CRISTINA TURRINI

3.2) vt N|sPav—>S°NV

over S°NV; hence we can apply Thom isomorphism theorem to (3.2)
to get a k — form

Oy € Hoy(N|s°0v),
the Thom class of (3.2).

Now consider a suitably small tubular neighborhood T of S° in
M, and suppose A to satisfy the following condition:

the family © can be chosen such that the intersection Ty=TNV
is still a tubular neighborhood of S°NV in V, with the same fibers
as T.

The examples which we will provide in the sequel show that
this hypothesis is easily verified; actually, at least when A has di-
mension n, it reduces to regularity conditions on dANS.

Now identify H fv(le"nv) with H ;(T v) and consider the map
e:H* (Tv)—>H*V)

defined as extension by zero. Under this identification, ®v defines
an element

e(®v) = v e H¥(V);

notice that, because of the assumptions on 9, each v is the Thom
class of the bundle N|s°nv and the family {{v} defines an element
Y e H*(A).

THEOREM 3.1 - § is the Alexander dual <S) of the pair (S,93S),
with respect to (M,U).

Proof. In view of (2.6) it is enough to show that, for any { (w,0)}
in H*(M,U), it is

fsw — fos8= 1ga{fvm/\¢v — fwOAdY}

Indeed one has, for V e &
fsw — fas0 = fsavw + fsnoanv)© — fasnav 0 — fasamv) 0 =
= [sav + fsaonv) dO — fas0 = fsavw + Sasamnv) 0 — fas0 =

= fsnvw + fas0 + fsnamnv)0 — fos 0 = fsav — fsnav 0.

On the other hand, if one denotes by i:S°< T, the inclusion
regarded as the zero section of the bundle m:7T —S°, the induced
maps n* and {* are inverse isomorphisms in cohomology, so that

w=T7"i"w+ dp, for some p.
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Hence
froAdy — fwbAby = fym' i oAby + frdo A by — S 8 Ay =
=1, %" 0Abr + fr,do Ay — f1 v OALY.

By projection formula, the last expression becomes:

Jsavw + J'arvp/\\PVA- Jr, 0w 0AYY =

= fsavw + fr nav e Ay — 1, nav 0 ALy =
= fsavw + favasp — Savas 0 = fsnvw + favns)p — favns 0 =
= [savw + fvasdp — favns 8 = fsavw — favns,
since w =7"i"w on S, so that, on S, dp = 0. O

We conclude the paper by supplying some examples in which
the Alexander dual v is explicitely constructed. -

ExaMPLE 1 - Let M be the two-dimensional torus, represerited
on the (x,y) plane by the square with identified edges:

0<x<2r,0<y<2x.
Define A={(x,y) e M:x ==}, U= M\A, and
S={(x,y) eM:y== and /2 < x < 3r/2},
so that S = {(n/2,%), (3n/2,n)}.

The family 9 can be chosen, accordingly with the previous
assumptions, to be W = {V,}s=1,2,... where

Va={(x,y) eEM:t—n/dn < x <7+ =/4n}.

Following the procedure employed in the proof of theorem 3.1,
one sees that the Alexander dual <5’ € A*(A) of the pair (S,dS) is

2(S) = lim Y,

where

‘-pn=)~nfn (x:y) dy !
for
f(xy) = exp(1/(y—3n/2) —1/(y—=/2)) y€(x/2,3r/2)
"= y € [0,7/2]U[3n/2, 2x]
and

A= f=f.(x,y)dy.

It 'is. now easy to verify that such a <5 satisfies (2;6), for any
{(w,0)} in H'(M,U) =R.
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EXAMPLE 1’ - A quite similar reasoning applies if in example 1
we substitute A with the annulus

A={(x,y) e M:4n/5 < x < 6%/5}.

EXAMPLE 2 - Let M be S? and suppose Ac M to be a closed
2-disk. In such a case, since H4(S?,D?) is non trivial but for qg=2,
we will take S to be two-dimensional, in which case, due to the
assumptions, either SNA= @, or SS A. If SNA = @, one can sup-
pose Tv to be empty, Yy =0, and therefore «(S) =0, which agrees
with

FS{‘(w,e)}=.fsw—;fase = fsdb — f550 = 0.

If S © A, each V is eventually contained in S; moreover, the bundle
N|s°av = N |v has rank zero, so that Yy is the zero form constantly
equal to one, and its limit is </ =1 on A.

EXAMPLE 3 - Let M = S2 < R? be the unit sphere in ‘polar coor-
dinates

p=1, 0<o9<2r, —x/2<0< /2,
A be the annulus (— n/4 <0 <x/4) and S be the arc
(p=7,—-7n/3<0</3).
Reasoning as above, one gets 1fS) = lim{., where ¢, is defined on
Ve={(p,9,0): -~/ —e<0<nfd+e,p=1}

by
0:(0,9,0) = A felp, 0,0) do
for
exp(1/(p—3n/2) —1/(9p—=/2)) ¢ €(n/2,3n/2)
fu(e,0,0) = {o o € [0,1/2]U3%/2, 21]
and

A= [2f(p,,0) do.

It is not difficult to generalize both examples 2 and 3 to higher
dimensional cases.
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