ON FUNCTIONAL CONVERGENCES (*)

by JAN PocHciAL (in Gliwice) (**)

SoMMARIO. - Partendo dalla ricerca di condizioni affinché una con-
vergenza di successioni possa essere individuata da una funzione
a valori reali, U'introduzione di due condizioni di tipo diagonale
consente di caratterizzare le convergenze quasi-normabili, quindi
quelle esistenti nelle topologie di spazio lineare. Dal risultato
principale (Teorema 3) si traggono risultati riguardanti la me-
trizzabilita e diversi tipi di convergenze.

SUMMARY. - Starting with the research of conditions allowing a se-
quential convergence to be determined by a real-valued function,
the introduction of two diagonal conditions leads to a characte-
rization of quasi-normable spaces, like these of linear topologies.
The main result (Theorem 3) is a source of new statements
concerning metrizability and different kind of convergences.

1. - The paper deals with sequential convergences on an arbi-
trary set X. The following question is taken as the starting point:
under what conditions a given convergence G can be determined by
a real-valued function? This leads to the question of a description
of a convergence determined by a function satisfying the triangle
inequality and, finally, by a metric.

Characterizations of those three cases of convergences G are
given in terms of conditions for convergences Gy such that G =G
(Theorems 1-3); the convergence G, is the smallest convergence
containing Go and satisfying the Urysohn condition. For the purpose
of the characterizations, two simple diagonal conditions (D;, D)
are introduced. These conditions (assumed for Go), which express
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a kind of uniformity, play a basic role in the theorems of the paper.
For X being a linear space, a characterization of quasi-normable
convergences is given (Theorem 4). This implies a characterization
of convergences generated by a linear topology (Theorem 5).

The principal aim of the paper is to show that one can find
relatively simple, sequential (countable) conditions that describe
metric convergences, in particular. However, in some cases, the re-
sults of the paper may be applied. Especially, Theorem 4 is a useful
criterion of metrizability. For example, from Theorem 4 it imme-
diately follows that convergence in measure and A-convergence of
Boehmians (see [3]) are metric convergences.

2. - Assume that X is an arbitrary set and G is a convergence
on X, ie. G is a subset of XN x X. Consequently, intersection or
inclusion of convergences denote intersection or inclusion of the
respective subsets of XN X X. If ((x.),x) € G, then we say that the
sequence (x,) is convergent to x in G and write x,—> x(G) or, simply,
x.—>x. We shall also write a,—>a (or f(x,x.)—>0) to denote the
ordinary convergence of real numbers. It will not lead to misunder-
standings.

In further considerations, we shall use the followfng conditions:
F. If x,—x, then y.— x for each subsequence (y.) of (x.);

U. If each subsequence (y.) of (x.) contains a subsequence (z.)
such that Zn—> X, then x,— x;

»

If xo,=x forn=1,2,..., then x,—x;
If x,—x and x,—>y, then x = y.

Given a convergence G, we define the convergence G* in the
following way:

xn—> x(G*) iff each subsequence (y.) of (x.) contains a' subsequence
(z») such that z.— x(G).

Evidently, if G fulfils condition F, then G* is the smallest con-
vergence containing G and fulfilling condition U. Moreover, G fulfils
conditions S and H iff G* does.

We shall say that a convergence G is a functional convergence
if there exists a function f: X X X— R such that

xn—>x(G) iff f(x,x.)—> 0.

In this case, we shall also say that the function f generates the
convergence G. Note that each functional convergence fulfils con-
ditions F and U. Moreover, f(x,x) =0 iff G fulfils condition S. If
G fulfils conditions S and H, then f(x,y) =0 iff x = y.
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Without loss of generality, we shall assume that all functional
convergences are generated by non-negative functions.

3. - Consider the following diagonal condition:
Di. If xswu—>x as n—> = -for m=1,2,..., then x.,— x.

THEOREM 1. - A convergence G is a functional convergence iff
there exists a convergence G, fulfilling conditions F and D; such
that G; = G.

Proof. Suppose that x,—> x(G) iff f(x,x:,) >0. We define the
convergence Gy as follows:

(1) %= x(Go) iff f(x,x.) < V4" for each n=1,2,... .

Evidently, the convergence Gy fulfils conditions F and D; and
Go < G, so G; < G' = G. On the other hand, each subsequence of a

sequence (x»), x»—>x(G) contains a subsequence (y») such that
f(x,y.) € Y2 and thus G c G,. Hence G =G;.

Now, let Gy fulfil conditions F and D; and let G; = G. Moreover,
let {(x;) ta € d} be the family of all sequences tending to x in Gy.
We define the function f: X X X — R in the following way:

@) f(x,y) = 1 if y = x® for any natural » and a € &
V)= {inf {'a":y = x> for some a € d} if the set is non-
empty.

Let x.— x(Gy) iff f(x,x,) > 0. We shall show that Gs = G. Since
Gy fulfils condition U and Gyc Gy, we have G,c G; = Gy. Let
xn—>x(Gy), ie. f(x,x,) = 0. Then each subsequence of (x,) contains
a subsequence (y.) such that f(x,y.) < %" Since the convergence Gy
fulfils condition F we can find, by (2), a matrix (xmm) (m,n=1,2,...)
such that xu,—x(Go) as n—> oo for m = 1,2,... and Xun =y, for
n=1,2,... Therefore, by condition Di, y,— x(Go) and, consequently,
xn—>x(G;). Hence Gy c G; = G and the proof is over.

It is easy to see that there are functional convergences which
are not generated by any function satisfying the triangle inequality:
(A) f(x,2) <f(x,9) +f(y,2).

Let us introduce the following diagonal condition:

D;. If Xmn—>xm as n—>o for m=1,2,... and Xn—>x, then xXn41,ne1 = x.

THEOREM 2. - A convergence G fulfilling condition S is generated
by a function satisfying the triangle inequality iff there exists a
convergence Gy fulfilling conditions F and D, such that G, =G

Proof. Let G be a convergence generated by a function f satisfy-
ing inequality (A). Then the convergence G, defined by formula (1)
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fulfils conditions F and D;, in view of inequality (A). As in Theo-
rem 1, one can check that G = G.

Conversely, suppose that a convergence Gy fulfils conditions F
and D, and G; = G. Let {(x:) ;o € 8} be the family of all sequences

converging to x in Goy.
We define the function g:X X X— R in the following way:

1 if y s x° for any natural n» and a € &

Q) g(x,y) = {

inf {—-_— y = x* for some a € & }1f the set is non-
v2r empty.

Define the convergence G, : x,—> x(Gg) iff g(x,x.)—>0. We shall
show that Gg= G, = G. Since Gy G, and the convergence G, ful-

fils condition U, we have G; c G,.

Now, let x,—> x(G,). Then each subsequence of (x.) contains a

subsequence (y.) such that g(x, y»)< '§1n+1 . Since the convergence

G, fulfils condition F, we can find, by (3), amatrix (xm) (m,n=1,2,...)
such that Xmn—>x(Go) as n—> o for m=1,2,... and Xui1,n41 = Yn
for n=1,2,... . Therefore, by conditions S and Dz, y.—>x(Go)
and, consequently, x.—>x(G;). Hence G,c G  and the identity
Gg = G, =G is proved.

We shall show that for each x,y,z€ X

' (4) g(x:Z) < '\/-Z_maX[g(x,y):g(y:Z)]'

In fact. We shall consider three cases.

The first case: max [g(x,v),g(y,2)] = 1.
Then, evidently, (4) holds.

The second case: max[g(x,y),g(y,2)] =0.

Then, by (3), the sequences y,9,... and z,2,... are convergent in Go
to x and y, respectively. Hence, by condition D, the sequence
z,2,... is convergent to x in Go and, consequently, g(x,z) =0.

The third case: max[g(x,y),g(y,2)]1 = for some natural k.

1
V2K
Then, by (3) and condition F for Go, there is a matrix (Xmn)
(m,n=1,2,...) such that Xmun—>xm(Go) as n— o for m=1,2,.

Xm—> X (Go) and xix = 2. Therefore, by condition D;, we have

g(x,z) < —\/_31"7' which implies (4), as desired.

In view of (4), we obtain
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(5) g(x,z) < 2max|[g(x,t), g(t,v),g(y,z)] for eas:h x,ty2€X.

Inequality (5) implies, by induction (see similar proofs in [1]
p. 300 and [2]) that for each natural k¥ and t;€ X (i=1,2,...,k)

6) g(xy) S2(g(x,t1) + gt t2) + ... + glte, y)).

Let
f(x,y) =inf{g(x,t1) + g(t1,t2) +...4+ g(tx,y) : t1,...,tr € X, k € N}.
Of course, the function f fulfils inequality (A).

In view of (6), we have

Vaig(x,y) <f(x,y) < glx,y).

Thus, defining x,— x(G;y) iff f(x,x.) =0, we have G, = G; and,
consequently, Gy = G, which completes the proof.

The following simple example proves that there are functional
convergences generated by functions satisfying inequality (A) that
are not generated by any symmetric function.

ExAMPLE 1. - Let X = R and let the convergence G be defined
as follows:

(7) xn—>x(G) iff x,—>x and x, = x for n> N,

where x,—> x denotes the usual convergence in R.
Then the function

_(y—xify>x

generates G and satisfies inequality (A).

On the other hand, no symmetric function generates the con-
vergence G.

In fact. Suppose, on the contrary, that there is a function
g:X X X - R such that x,—x(G) iff g(x, x,)—>0 and gy, x)=g(x,v).

In view of (7), for each x we have inf g(x,y) > 0. Denoting
y<x

X ={x:inf g(x,y) > 1/k} we have ol.le;c:X, so there is K such
y<x k=

that Xk is uncountable. Therefore there is a sequence (x.) contained
in Xx such that XxN(x,x,) is uncountable and x, < xn41 < x» for
n=1,2,... . Hence there is x such that x,— x(G), i.e. g(x,x,) = 0.
But g(x,x.,) = g(x.,x) > 1/K. We get a contradiction.

However, a characterization of convergences generated by sym-
metric functions is possible. Suppose that a symmetric function f
generates a convergence G such that for each x there is a sequence
(x.) which is convergent to x (in particular, G satisfies condition S).
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Then the convergence Gy defined by formula (1) satisfies the follow-

ing condition:

(*) xp—>x(Go) iff there is a matrix (xm) (m,n=1,2,...) such that
for each n xmn—> x, as m—  and x., = x. |

On the other hand, if a convergence G, fulfils condition (*) and
function f is given by formula (2) (or (3)), then

f(x,x.) >0 iff f(x,,x)—0

and, consequently, f can be replaced by a symmetric function gene-
rating the same convergence.

In particular, we obtain

THEOREM 3. - A convergence G is metrizable (i.e. generated by a
metric) iff there is a convergence Gy fulfilling conditions F,S,H,D,,
(*) such that G; = G.

4. - Now, let X be a linear space. We shall additionally consider
the following condition of linearity:

L. If x.>x, yn—>y, an—>a, b,— b, then a.x, 4+ b, y.— ax + by.

If a convergence G fulfils conditions S and L and a function f
generates G, then defining g(x) = f(0,x) we have gq(x, — x)—0 iff
xn—x=>0(G), i.e.

qg(x. — x) =0 iff x,—> x(G).

In this case, we shall also say that the function g generates the
convergence G.

In [2], it is shown that if a convergence G fulfils conditions S
and L and G is generated by a function g : X — R, then there is an
equivalent quasi-norm on X, i.e. a non-negative function p: X—>R
with properties:

xn—>x(G) iff p(x, —x)—0,
p(0) = 0,
(®) p(x) = p(—x),
p(x+y) < p(x)+p@),
an—>a, p(xn — x) = 0 implies p(anx., — ax)—>0.

Hence, by virtue of Theorem 1, we obtain

THEOREM 4. - A convergence G on a linear space is generated by
a quasi-norm iff G fulfils conditions S and L and there is a con-
vergence Go satisfying conditions ¥ and D; such that G, = G.

REMARK - The above considerations remain true in an adequately
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reduced form in commutative group. In particular, condition L is
reduced to the following condition:

If x,—x and y,—y, then x, — y.—>x — y and the quasi-norm p
does not possess the last of properties (8).

Evidently, convergences in topological vector, Hausdorff spaces
fulfil all the conditions F,U,S,H,L. On the other hand, there are
convergences fulfilling conditions F,U,S,H,L which are not gene-
rated by any linear topology (see example in [4]). A natural question
arises: under what conditions a directly given convergence fulfilling
all the conditions F,U,S,H,L is generated by a linear topology?
Applying Theorem 4, we shall obtain the following result:

THEOREM 5. - A convergence G on a linear space is generated by
a linear topology iff there exists a family of convergences {Gg}
(B € B) such that the convergences Gg fulfil conditions F,S,D;, the

convergences G"; fulfil condition L and G =B ngBG;.
€

Proof. It is well known (see [1] p. 302 or [2]) that the con-
vergence G in a topological vector space can be generated by a fam-
ily P of quasi-norms, i.e. x» — x(G) iff p(x» — x)— 0 for each p € P.
Then for every convergence G, such that x,— x(Gp) iff p(x. — x)—0
there is, by Theorem 4, a convergence G, fulfilling conditions F, S,

D; such that G = G,. Since G, fulfils condition L, we obtain the
required form of G.

To prove the converse implication, note that for each § € & the
convergence G; fulfils condition S. Thus, by Theorem 4, for each f

there is a quasi-norm pp which generates the convergence Gg. Then
the topology generated by the family of quasi-norms {ps}, (B € &)
possesses the properties we need.

Now, we shall produce an example which gives the negative
answer to the following problem posed by J. Burzyk:

Suppose that a convergence G fulfils conditions F,U, S, H,L and,
additionally, the following one:

B. For each sequence (x,) there are real numbers an# 0
(n=1,2,...), such that a,x,—0.

Must the convergence G be generated by a linear topology?

ExaAMPLE 2. . Let a set {e;i,eij:i,j=1,2,...} be the base of a
linear space X, i.e.

x€eX iff x=ZXaie; + X ajjeij,
i i,j

(1) Another example (not published) was independently given by J. Burzyk.
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where only a finite number of real a; and a; (i,j =1,2,...) is dif-
ferent from zero.

We introduce a convergence G on X.
Let x, = Zainei+ X aijnej forn=1,2,... . We adopt x,—0(G) iff
the follov:zing thr.eel'éonditions are satisfied:
1 aij,»—>0 for each i,j,
20 ?a,-,-,n — ai,n—>0 for each i,

3% there is a positive number K such that |ai,»| < K for each i,n.
Moreover, we define
Xn—=>x(G) iff x, — x—>0(G).
One can easily verify that the convergence G fulfils all the con-
ditions F,U,S,H,L, B.

We shall show that the convergence G is not generated by any
linear topology.

Consider the following matrix:

€1, én, €13,...
2621, Zezz, 2623,...

(9)

kek1, kekz, keks, e

By the definition of G, for each k =1,2,... the sequence (x”;)
where x* = kewn — kex, tends to zero. In other words, k—th row of
the matrix (9) is convergent to ke: in G. Moreover, each diagonal
of the matrix (9) (i.e. a sequence (ne,,,,n ), where (p.) is an increas-
ing sequence of natural numbers) tends to zero, whereas the se-

quence of limits (ne.) does not tend to zero in G, because it does
not fulfil condition 3° of the definition.

On the other hand, it is easy to prove that such a situation is
impossible in any topology satisfying condition T;.

Therefore no linear topology generates the convergence G.
I wish to thank Dr. A. Kaminiski for his valuable remarks.
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