THEOREMS ON THE FIXED POINT
FOR MULTIVALUED MAPPINGS
IN TOPOLOGICAL VECTOR SPACES (*)

by OrLca HapZi¢ (in Novi Sad) (**)

SoMMARIO. - Si dimostra una generalizzazione del teorema di punto
fisso di Kakutani in un TV spazio.

SUMMARY. - A generalization of the fixed point theorem of Kakutani
in TV space is given.

In the recent time there are many fixed point theorems in not
necessarily locally convex topological vector spaces. Such theorems
are proved, for example, in [3], [4], [5], [61, [8], [91, [101, [11],
[12], [13], [14], [15], [16], [19], [21], [22], [23], [25], [27] and [28].

A bibliography of papers from this field of the fixed point
theory can be found in [10].

Since’ many important topological vector spaces are not locally
convex

(L?,0<p<1, the Hardy spaces H?,0<p<1, (S(X,A m),d) [22])

it is of interest to translate the fixed point theory on such spaces.
Some useful results in this direction are obtained in [22] with many
applications on Hammerstein’s equations and in the paper [16] (an
application on integral equations). For multivalued mappings some
results are obtained in [3], [5], [81, [9], [11], [12], [13], [14], [15].

(*) Pervenuto in Redazione il 14 dicembre 1981.
(**) Indirizzo dell’Autore: Department of Mathematics - University of Novi Sad -
21000 Novi Sad (Yugoslavia).
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An application on sets with convex section (related to minimax
problem) is given in [10]. Theorems on almost continuous selection
property are proved in [3] and [9].

The aim of this paper is to prove a generalization of a result
of Ch.W.Ha, which is in fact a generalization of Kakutani’s fixed
point theorem.

LemMMa: Let M be an n-simplex and K be a compact, convex
subset of a Hausdorff topological vector space. If q is an upper
semicontinuous set valued mapping defined on M such that q(x)
is a nonempty closed, convex subset of K, for each x € M and if
p:K—M is a continuous mapping, then there exists xo € M so that

X0 € p(q(x0)).

Remark: If p is a nonlinear mapping then from the convexity of
g(x) does not follow the convexily of p(q(x)) in general. So this
generalization of Kakutani’s fixed point theorem can be applied in
these cases when the multivalued mapping is not with convex values.

First, we shall give some definitions and notations. In the fol-
lowing text we shall suppose that all topological vector spaces are
Hausdorff.

DEFINITION 1: Let X be a topological vector space, Ok the family
of neighbourhoods of zero 0 € X and M S X. We say that the set
M is of Z type if and only if for every V € O there exists U e %
so that the convex hull co(UN (M —M)) is in V.

An example of such a subset in the space S(0,1) of classes of
real measurable finite functions on the interval [0,1] will be given
here.

Let us remark that every subset M of a locally convex space X
is of Z type since we can suppose that V =coV, for every V € @
and so we can take for a neighbourhood U from the Definition 1
the neighbourhood V.

Now we shall give the definition of a paranormed space which is
in general a non locally convex topological vector space. Some fixed
point theorems for singlevalued and multivalued mappings in para-
normed spaces are proved in [11], [28].

Let E be a linear space over the real or complex number field.
The function || ||': E— [0, «) will be called a paranorm if:

. ||x|"=0©x=0,
|| —x|I" = || x|[", for every x € E.

lx+ 3" <||%]"+ |||, for every x,y € E.
If || xa — 20|'=>0 and hx—> 2 then || Aaxa — Moxo||—>0.

S ow N
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DEFINITION 2: The paranormed space (E,|| ||') is a topological
vector space in which the topology is defined by the family {V,},>o
where:

Vi={x|x€E,||x|'<r}

In [28] Zima has proved a generalization of Schauder’s fixed
point theorem in paranormed spaces for mapping f: K — K, where
K is a convex, closed and bounded subset of a paranormed space
such that:

|tx||" < Ct||x|", for every t € [0,1] and every x € fK — fK and
f is completely continuous.

So we shall introduce the following definition.

DeFINITION 3: Let (E,|| ||') be a paranormed space, K € E and
there exists C(K) > 0 such that for every t€[0,1] and xe K — K

| x| < C(K) t|| x|

Then we say that the set K satisfies the Zima condition.

*
.

If (E,|| |I') is a paranormed space and K is a subset of E which
satisfies the Zima condition then for every r > 0

co(VerecxwyN(K—-K)) SV,

which can be easily verified. So K is of Z type in the sense of
Definition 1.

In [28] an example is given of E and K where C(K) = 3. Let
(5(0,1),|| |I') be the paranormed space with the paranorme || ||
defined by:

1
2] = 0 T—I_;Jfl(—;)?lzﬁ-(dt) {x(t)}e£€S(0,1)

and for every t > 0 let:

K:={%|£€S(0,1) and |x(u)| <t for every ue [0,1]}.
It is easy to prove that C(K;) = 142t, and so the set K is for every
t >0 of Z type.

The second example is the following. Let E be a vector space
over i (real or complex number field), Ra be the set of all mapp-
ings from A into R with the Tihonov product topology and the
operations + and scalar multiplication as usual.

If f,g € Ra we say that f < g if and only if
f(t) < g(t), for every t € A.

By P. we shall denote the cone of nonnegative elements in Ra. In
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[20] Kasahara introduced the notion of a paranormed space (we shall
say @ paranormed space).

DErFINITION 4: The triplet (E,|| ||, ®) is a ® paranormed space
if and only if || ||: E—>Pa,® is a linear, continuous and positive
mapping from R, into R, such that the following conditions are
satisfied:

1. ||[x||=0ex=0.
2. ||tx||=|t|]||x||, for every x € E and every t € .
3. ||lx+ || <®(x|]) +@(|y|l), for every x,y€E.

The topology in (E,|| |, ®) is introduced in the following way. Let
us denote by 9f the family of neighbourhoods of zero in Ra and
for every U €  we shall denote the set

{x|x€eE,|lx||eU}
by Vu.

Then E is a topological vector space in which the family
{Vu} U e o is the fundamental family of neighbourhoods of zero

in E. In [20] Kasahara has proved that every Hausdorff topological
vector space E is a ® paranormed space (E,|| ||, ®) over a topolo-
gical semifield Rs. In [4] the following definition is given.

DEFINITION 4: Let (E,|| ||, ®) be a ® paranormed space over a
topological semifield Ra and K C E. If for every me€N, every

weK—K(@Gi=12..n) and (sis2,...,5.) €[0,11" £ si=1 the
i=1
inequality

n n
1% sl < £ s )
1= =

is satisfied we say that the set K is of ® type.

Some fixed point theorems for singlevalued and multivalued

mappings which are defined on a subset of @ type are proved in
[3] and [4].

Let us show that every subset K € E which is of @ type is also
of Z type.

Let %'= {VU}U c oy be the family of neighbourhoods of zero
in E. If V € 9’ then there exists a subset p={t1,%,...,tx} of A
and 7 > 0 so that ||u]|| € Uy,,= u €V where:

U,-={x|x€E,|| x||(t) <r, for every t eu}.

Since @ is linear and continuous mapping there exists V’ € @' such
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that ue V'=0(||ul]) € Uy, ,.

Then it is easy to see that
co(V'N(K—-K))cV

which means that the set K is of Z type.

- In the next Theorem we shall denote by & (K) the family of
all closed and convex subsets of K, and coM is the convex hull of M.

THEOREM 1: Let X a metrisable topological vector space, Y be
a topological vector space, K = co K, K be compact and sequentially
compact, K S Y,M be a compact and convex subset of X,f be an
upper semicontinuous mapping from M into R(K) and p be a con-
tinuous mapping from K into M. If f(M) and p(cof(M)) be of Z
type then there exists xo € M such that xo € p(f(x0)).

Proof: Since X is metrisable let x = {Un.}nen be the funda-
mental system of neighbourhoods of zero in X and suppose that
the family {Un}nen is monotone decreasing. For every n € N let B,

be such finite set that M S U{x, s 4+ U.} and let {pns}sen, be the
beB

partition of the unity subordinated to the covering {x.» + U.}ses,.
We suppose that for every n € N the set U, is -open and balanced.
Let, for every ne N and b € By, ¥n5 € f(xn,5) and for every xe M:

fn(x) = X pn,b(x)yn,b.
beBn

If C.=co{yns|b € By} then fn.: M—>C,, for every ne€ N and the
mapping f. is continuous. Now, let us show that for every ne N
there exists x, € M such that x. = p.fn(x.). We shall apply Rzepecki’s
fixed point theorem on the mapping p.f.: M~ M [27]. The mapping
pofn is continuous and p.f.(M) is of Z type. In order to apply
Rzepecki's fixed point theorem we must prove that for every
x € p(cof(M)) and every V € 9%x there exists U € ™x such that:

1) co((x+U)Np(cof(M))) cx+ V.

Let V € ®x. Since the set p(cof(M)) is of Z type there exists
U € ®x such that

co(UN (p(cof(M)) — p(cof(M)))) S V.

Let us show that (1) holds. If yeco((x+ U)Np(cof(M))) it foll-
ows that

Il

y=3% tiw, t;>0(i=1,2,...,n), % ti=1
i=1 i=1

where u; € (x + U) Np(cof(M)). Then u; = x + v; € p(cof(M)), where
veU(i=1,2,...,n). From this it follows that
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y:

i

1 M:

n n
Z (x+v,-)=x+2‘.t,-v,-
l i=1 i=

and since vi=u; — x€ p(cof(M)) — p(cof(M)) we conclude that
22.1 tivie co(UN (p(cof(M)) — p(cof(M)))). So yex + V.

The mapping p.f. satisfies all the conditions of Rzepecki’s fixed
point theorem and for every n € N there exists x., € M such that
Xn = pPofn(xn). Let for every n € N, u, = fu(x.). The set K is comp-
act and so let up€ K be the limit point of the set {u.|n e N}. If
xo = p(uo) we shall prove that uo € f(x0). From the relation p(u.) =
= pofa(xs) = x., since the mapping p is continuous, it follows that
there exists a subsequence {x.}ren of the sequence {x.}nen such
that lim x., = x. Here we suppose that limu, = uo.

k= o

Let us denote by 9y the fundamental system of neighbourhoods
of zero in Y. Let V be an arbitrary element from 9y and Gy =

= f(x) + V. We shall prove that u € Gv, for every V € 9fy.

Let V € ®fy. Since the set f(M) is of Z type there exists U € 9y
such that

co(UN(f(M) —f(M))) V.

The mapping f is upper semicontinuous and so there exists
Uire U%Ux such that f(xo+ U;)) S Gy. Let U,e®x be such that
U+ U, € Uy and ko€ N such that for every k = ko we have:

Un € Uz, X, € 20 + Us.
Then we have the following implication:
k= ko, b € Buy, P b(xm) > 0= Xy, 5 — x0 € Uy
since pu, »(xn) > 0 implies that x,, € Xn., 5 + Un, S X, » + Uz and so:
Xnkyb— X0 = Xne, b — Xn + Xm — %0 € U2 + U2 € Uy
Now, let k = ko. From u, = f.(xs) for every n € N we obtain:

Un, =b EB Doxs b(Xne) Yy b = x pnk s 6(Xm) Vres .
€

ne beBnk e’ b(x )>

Here ym,» € Gu since xu,s € %o+ Ut, Yuc, 6 € f (%m.,5) and
f(xo + U1) € Gy. From y..,» € Gy for pm,b(xnk) > 0 it can be easily
shown that:

Un, € f(x0) + co (UN (f(M) — f(M))) S f(x%) +V

for every k = ko. From this it follows that u € f(x) + V and since
V is an arbitrary element from 9%y we conclude that uo € f(xo).

Remark: If X and Y are locally convex topological linear space
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WcX,G:W—Y is a continuous set-valued function and f:G(W)—>X
is a continuous function, under some additional conditions, in [6]
Halpern has proved the existence of an element x € W such that
x€F(x), where F=f.G: W—X.

CorOLLARY: Let X and Y be topological vector spaces and X
be metrisable, K = coK,K be compact and sequentially compact,
KcCY,M be a compact and convex subset of X,G:X—>X be a
linear one to one mapping such that G and G-' be continuous, f be
an upper semicontinuous mapping from M into &(K),p: K—>M be
a continuous mapping such that p(K) € G(M) and the sets f(M)
and p(cof(M)) be of Z type. Then there exists x € M such that

G(x) € p(f(x)).
Proof: We shall prove that there exists xo € M such that

x0 € G p(f(x0)).

Since the mapping G-!p is continuos and p(K) € G(M) it remains
to show that the set G-1 p(cof(M)) satisfies the following condition:
If 9y is the fundamental system of neighbourhoods of
zero in X then for every V € ®x there exists U € ®x such

that co(UN (G-1p(cof(M)) —G-1p(cof(M)))) S V.
Let Ve ®x. Since the mapping G-! is continuous there exists
V’e Wx so that G-1V’' € V. The set p(cof(M)) is of Z type and so
there exists U’e %%x so that

co(U’'N (p(cof(M)) — p(cof(M)))) € V.
The mapping G-! is linear and so it follows that

G-!(co(U'N(p(cof(M)) — p(cof(M))))) =
= co(G-(U'N (p(cof(M)) — p(cof(M))))).
If U € 9y is such that G(U) < U’ we have that
co(UN (G-'p(cof(M)) — G p(cof(M)))) SV

and so all the conditions of Theorem 1 are satisfied which implies that
there exists xo € M such that xp€ G-1p(f(x)) and G(x) € p(f(x0)).

Now, we shall prove a Proposition about the almost conti-
nuous selection property. This property is related with fixed point
theory [1].

DEFINITION 5: Let X and Y be topological vector spaces,
McX,KcCY,f:M— 2K and 9% be the fundamental system of neigh-
bourhoods of zero in Y. If for every Ve 94 there exists a continuous
mapping gv: M — K such that gv(x) € f(x) +V, for every xe M we
say that the mapping f has the almost continuous selection property.
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Some interesting theorems about the almost continuous selec-
tion property are proved by Michael in [10]. In the following defi-
nition we shall denote by 9y the fundamental system of neigh-
bourhoods of zero in topological vector space X and by 9%y the
fundamental system of neighbourhoods of zero in topological vector
space Y. If Ve &y and A € Y we shall write

VI[A]l ={y|yeY, there exists z€ A such that z —yeV}.
In [3] the following Definition is given, where X and Y are topolo-
gical vector spaces.

DEFINITION 6: A multivalued mapping f: M—>2k(MC X,KCY)
is u-continuous iff for every Ve Oy there exists We ®x such that
x1— x2 €W (x1,x2 € M) implies f(x1) SV [f(x2)] and f(x2) S V [f(x1)].
The following Proposition is a generalization of Theorem 1 from [2].

ProPOSITION: Let X and Y be topological vector spaces, M be a
paracompact convex subset of X,K be a convex and compact subset
of Y,f:M—>&(K) be an u-continuous mapping, p:K—>M be a
continuous mapping such that f(M) is of Z type. Then the mapping
p-f has the almost continuous selection property.

Proof: Let V be an arbitrary element from @fx. Since K is comp-
act and p is continuous there exists V’e @y such that

p((y+V’)NK) S p(y) + V, for every ye K.

Further, the set f(M) is of Z type and so there exists U € Uy
such that

co(UN(f(M) —f(M))) < V.

Since the mapping f is u-continuous there exists W(U) € 9x
such that the following implication holds:

For every xi,x2e€M,x1—x2€ W,y € f(x1)= there exists
¥2 € f(x2) such that y, —y,€ U.

The set M is paracompact and so there exists a locally finite
partition Q of the unity subordinated to the open cover {x+ W}ien
(we shall suppose that every element from @£x is open and simme-
tric). From this we conclude that there exists a mapping #:Q—->M
such that g(x) =0, for every xe M\ {h(q) + W}.

Now, we shall define, similarly as in [2], gv: M — K in the fol-
lowing way:

gvix) = }.‘.Qq(x) z(h(q)), for all xe M
ge
where z is a chois function for the family {f(x)}cem. If

M(x)={q|qeQ,q(x) %20}, xeM
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then M (x) is a finite subset of Q and from q € M (x) it follows
that xe h(g) + W and so h(q) —x € W, since W is symmetric.

The mapping f is u-continuous and since z(k(q)) € f(h(q)) we
conclude that there exists v,(x) € f(x) so that 2(h(q)) — vq(x) € U.

Further let for every xe M and g€ Q

_ [ ve(x) qgeM(x)
Ug(x) = { 2(x) geQ\M(x)

and s(x) = X q(x) uq(x). It is obvious that s(x) € f(x).
qeQ

From the relation co(UN (f(M) —f(M))) €V’ it follows that
gv(x) —s(x) =qe§mq{x) [2(h(q)) — ve(x))] €

eco(UN(f(M)—-fM))) sV’

and so for every x € M we have that gy(x) € s(x) + V’. From this
we obtain that

plgv(x)) € p((s(x) + V')NK), for every x € M.

Since

p((y+V')NM) S p(y)+V, for every ye M
it follows that
pl(s(x) + V')NK) S p(s(x)) + V, for every x € M.

So the mapping p.f has the almost continuous selection pro-
perty since p.gv is a continuous mapping from M into M.

Similarly as in [1] we have the following Lemma.

LeEMMA: Let X be a topological vector space and C be a no-
nempty compact and convex subset of X. Let f:C—2€ be a closed
multivalued mapping which has the almost continuous selection
property and % be the fundamental system of neighbourhoods of
zero in X. If for every V € W ,fv:C—C is such that fv(x) € f(x)+V,
for every x € C and fv(C) is of Z type then there exists a fixed
point for the mapping f.

Proof: From Rzepecki's fixed point theorem it follows that
there exists, for every V e & ,xy € C so that

xv = fv(xv)

which implies that xv € f(xv) + V. Since C is compact and f is closed
as in [1] it follows the Lemma.

Now, it is easy to prove the following fixed point theorem.
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THEOREM 2: Let X and Y be topological vector spaces, M be a
nonempty compact and convex subset of X, K be a convex and
compact subset of Y ,f: M—> & (K) be a closed u-continuous mapping,
p:K—M be a continuous mapping such that f(M) is of Z type
and p(cof(M)) is of Z type. Then there exists xo € M such that

X0 € p(f(x)).

Proof: From the Proposition it follows that the mapping p.f
has the almost continuous selection property and that there exists
for every neighbourhood V in X, (p.f)v = p(gv) so that:

(p-f)v(x) € (p-f)(x) + V, for every x e M

and that (see the proof of the Proposition) (pf)v(M) < p(co(M)).
Since p(cof(M)) is of Z type it follows that (pf)v is of Z type for
every V and from the Lemma it follows that there exists xo so that

x0 € p(f(x0)).
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