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SOMMARIO. - Si presentano alcuni risultati riguardanti U'esistenza di
limitazioni a priori per le soluzioni (x,\) della equazione astrat-
ta Lx = (1 — \) 8x + A9Ux, dove L e lineare, Fredholm di indi-
ce zero, ed 8 e N sono operatori fra spazi normati. Usando
un’opportuna teoria del grado, si ottengono teoremi di esistenza
per equazioni astratte nonlineari in risonanza che consentono
di provare lesistenza di soluzioni periodiche per taluni sistemi
differenziali del tipo di Liénard con argomenti deviati.

SUMMARY. - We present some results on the existence of a priori
bounds for pairs (x,\) satisfying the functional equation
Lx=(1-\)8x + A)x. L is a linear Fredholm wmapping of
index zero, and 8 and O are (possibly) nonlinear maps be-
tween real normed spaces. The existence of a suitable coinci-
dence degree theory is assumed, and some existence theorems
for the equation Lx = 9Ux are derived. As applications, we study
the periodic problem for N-dimensional differential equation -of
Liénard type with deviating argument.

1. Introduction

In this paper we deal with the problem of existence of solutions
for functional equations of the form

Lx=9x ‘ (1.1)

(*) Pervenuto in Redazione il 25 luglic 1983.
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where, being X and Z real normed spaces, L: domL S X —>Z is a
linear Fredholm mapping of index zero and M: Y S X—>Z is a
(possibly) nomnlinear operator. It is well known that, in the present
situation, the problem of existence of solutions of (1.1) may be
reduced to the existence of fixed points of a convenient operator
9U': X = X, which can be constructed using L and 9T (see [16]).
Here, we shall study the equation

x—‘%x (1.2)

in the framework of a sultable topological degree theory (see [2]
and [12, Ch. V]). Therefore, we shall compare (1.2) with a uniquely
solvable lmear equation

x=&x (1.3)

by embedding both (1.2) and (1 .3) into a one-parameter family of
equations of the form

x=(1—x)a'x+§wz’x * e [0,1]. (4)

Now, the aim of the present baper is to prove some sufficient
criteria which give a priori estimates for any possible solution of
(1.4) and therefore make it possible to use topological degree
methods for the solvability of (1.2).

~ |

The paper consists of five sbctions

In Section 2 we give sdme sufficient conditions (Propo-
sition 2.1 and Proposition 2.2) | for the nonexistence of solutions

(x,A) € D x [0,1] (or (x,)) € D' 10,1[) to
Lx= (1 —i) Ax + W x (1.5)

where D € dom L is fixed. The 'main assumptions required are of
the following kind: (i) an hypothe51s of definiteness of the quadratlc
form u—=>(Lu,u) on coimL = domL/kerL, where (-,-) is a
suitable bilinear form defined bn ImL X coimL; (ii) a nondege-
neracy assumption for the pro;ectlon of (1.5) onto Z/Im L = coker L
(the bifurcation equation); (iii) a «one-sided growth restriction» for
the projections of the operatorsi& and 9C onto Im L.

In Section 3 we assume the existence of a topological degree
theory (in the sense of AMANN and WEIss [2]) for the study of (1.5)
and we apply the preliminary résults of Section 2 to get existence
theorems (Theorems 3.1, 3.2, 3.3; see also Remark (3.2)) for (1.1).
This procedure is made feasible trough an appropriate choice of the
set D. More precisely, choosing D = frQNdomL, where Q C X is
open and bounded, we obtain existence of solutions to (1.1) in
clQNdom L. Moreover, choosing DS X in such a way that its
complement X\D is bounded, we obtain a result ensuring that the
solution set relative to (1.1) is nonempty and bounded.
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In Section 4 we present some examples of abstract functional
equations to which the previously developed results can be applied.
For the sake of simplicity we restrict ourselves to the case of
L-compact operators (for this definition, see MAwHIN [20]). The
choice of this relevant class of operators is mainly due to the ap-
plications of the abstract theory to some differential equations of
nonlinear mechanics, where this assumption is satisfied (see Sec-
tion 5). However, L-k-set contractive [6] and L-condensing terms
[25] can be considered as well.

More precisely, in Section 4 we examine at first the case in
which ker L = {0} and X < Z topologically and algebraically; in this
situation, using a perturbation argument, we are able to find, as a
consequence of our results in Section 3, an abstract theorem of
resonance by WaArD [26, Th. 1] which extended previous results by
KANNAN and ScHUUR [10], [11]. Then we pass to the study of the
situation in which L can be noninvertible, and present two theorems
concerning the existence of solutions to the equations

Lx=(I1—-Q)8&x+8x+ e (1.6)
and v
Lx=(I-Q)8x+8x+ e (1.7)

where I — Q is a continuous projection from Z onto ImL, and
where §,4,8: X —Z are L-completely continuous operators with
& linear, § quasibounded (possibly nonlinear), and & (possibly non-
linear) satisfying a suitable one-sided growth restriction; e € Im L
is also assumed.

The results which are achieved in relation to equations (1.6)
and (1.7) permit us to obtain an extension of a theorem in MARTIN’s
book [14, Ch. IV, Prop. 6.3, p. 144] concerning the existence of
solutions to Hammerstein equations in Hilbert spaces (see also
AMANN [1]) as well as they can be applied to the problem of exist-
ence of periodic solutions to some forced nonlinear second order
vector differential equations of Liénard type which appear, for
instance, in nonlinear mechanics. Infact, it is well known that the
problem of linear forced vibrations of a rigid body with constraints,
springs, dashpots and actuators leads to a vector linear ordinary
differential equation of the form

Mx” 4 (d/dt) (Dx + Gx) + Bx = h(t) (1.8)

where x is the vector of generalized coordinates, M is the nonsingu-
lar symmetric mass or inertia matrix, D is the symmetric damping
matrix, G is the skewsymmetric matrix due to gyroscopic phenomena,
B is the matrix of forces and # is the (time dependent) vector of
external forcing. Consequently, in the last chapter (Section 5) we
consider the following nonlinear equations with delayed argument
generalizing (1.8)
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- x"+(d/dt) (VF(x)4+V(t, x))+%diang(l‘—c:')T = h(t) (1.9)
and’ ’ o Z ’
x"+f'(d/dt)(VF(x)+V(t,x))+Bg(t,x(t—-c),x’(t—o’))=h(t) (1.10)

in which B is an N X N (pOssib'ly singular) matrix and % is a con-
tinuous periodic function with fnean value zero.

* In Theorem 5.1 we reduce equatlon (19) to an abstract equation
of the type (1.6), with a suitable choice of function spaces. The
existence theorem for (1.6) prev1ous1y proved in Section 4 allows us
to achieve an extension of some' results of MAWHIN in [17] and Ck-
sARI and KanNAN [5, Th. 5.2 (c), (d)] concerning equation (1.9)
without delay. In a similar way we deal with equation (1.10). In
Theorem 5.2 we show that such equation can be written, in an
equivalent form, like equation (1.7), with a pertinent choice of the
abstract setting. In this case we also extend some recent results
obtained in [9]. !

i
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2. A priori estimates for zeroés of linear homotopies in normed
spaces

Let X,Z be real normed Espaces, with corresponding norms
l-1lx || |lz, let dom L be a linear' subspace of X and let
L: dom LcX->Z

be a linear map. Let P: X - X ahd Q: Z—> Z be two pI‘O]eCtIOIlS (i.e.
linear and idempotent operators) such that the sequence

|
X —>domL—>Z —>Z
is exact (ie. ImP = ker L and [Im L = ker Q). Whenever x € X, we

shall write x =7 + u (r € ker L, u € ker P) according to the direct
sum decomposition X = ker L @ ker P.

Let Y be a subset of X sucﬁ that dom LNY 2 & and let

a:sYcY->z

be two mappings. The linear hdmotopy joining L — 8 with L — 9
is the map
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#:[0,1] X (domLNY)—>Z
K(Mzx)=Lx— (1=2\)8x—Ax.

In the present section we derive two conditions sufficient to ensure
that # does not have zeroes on suitable subsets of its domain. To
achieve this goal we introduce the following assumptions (HO0), (HO0'),
(H1), (H2).

(HO) There exist a map I: X > Im P, a bilinear form
(-,-):ImL X (dom LNker P) >R,
and a number B > 0 such that, for any x =7 4+ ue€edoml,
(Lu,u) =z B||x — x| 2. | |
(HO’) There exist a map II: X > Im P and a bilinear fbrm
{(+,-):ImL X (domLNkerP)—-R
such that, for any x=r + ue€domlL,
{Lu,u) 20 and (Lu,u) =0 if and only if x =IIx.

Remark that, if II = P, then (HO) (resp. (H0')) means that the
quadratic form u—(Lu,u) defined on domLNkerP is coercive
(resp. positive definite). Obviously, if L is an invertible operator
defined on X, we necessarily have P =0 and II = 0; therefore in
this situation (HO0) (resp. (H0’)) means simply that L is coercive
(resp. positive), a case which often occurs in applications. In section
5 we shall show also a case in which a useful choice for II is a
nonlinear map.

(H1) There exist a set D, C domLN Y and map
o:Di—= (ImQ)*

such that, for any x € Dy,
(Qdx, ox) (Q9Nx,0x) >0

(where (€,1m) is the value of 1 €(ImQ)* (= the algebraic dual of
ImQ) at £ e Im Q).

In view of applications, we can call (H1) an «abstract sign
condition». The last assumption we introduce can be regarded as
an «abstract one-sided growth restriction»:

(H2) There exist a set D, S domLNY and numbers € ]0,1[,
o; € [0,00[, vi€[0,00[ (i=1,2,3) such that, for any x € D,,
((I —Q)8ax,u) <ey{Lu,u) + o (Lu, u)!-t + as, (2.2)
((I —Q)Nx,u) <vi{Lu, u) 4+ v Lu, u)1-= 4 v3 - (23)
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(where (-, ) is the bilinear form introduced in (HO) or in (HO0');
(H2) will be used only in connection either with (H0) or with (H0")).

Now we can state the following results.

Proposition 2.1. Assume (HO0), (H1), (H2). Suppose that
(i) max{ou, v} < 1; |
(ii) there is a number R > 0 such that
D:c{xeX||x—Ix| x> R}
Y(BR?) >0, ‘
where §: [0, o[ = R is the function
U(s) = (1 — max{a;, vi}) s — max {as, v2} si-t — max {a3, v3}.

If (\x)€[0,1] X (DIUD;), then Lx = (1 —\) 8x + A9 x.

* Proposition 2.2. Assume (HO0’), (H1), (H2). Suppose that
(i) max{os, v} < 1, min{o, i} <lLoa=v; =0, 03 = vs = 0;
(ii) (there ‘is a number R > 0 such that
 Dic{reX|||x—Ix|x>R}.
CIf (\x)€10,1[ X (DiUDy), then Lx = (1 —27)@x + AOx.

Proofs. We prove both Propositions 2.1 and 2.2 at the same time.
Let (M x) € [0,1] X (D1UDs) verify

Lx=(1—-%)8x 4+ Ax, (24)
or, equivalently,
0=(1-27)Qax +1Q9x, - (2.5)

Lu=(1-7)(I-Q)8x+ MI—-Q)Nx. (2.6)

If x € Dy, it follows from (2.5), using the map ¢ of (H1),
0= (0,9x) = (1 — 1) (Q8x, ox) + M(QNx, 9x)

which contradicts the fact that (Q8x,9x) and (Q9Tx,px) are, in
virtue of (2.1), non-zero real numbers with the same sign. Therefore

x ¢ Di. If x € D,, using (H2) it follows from (2.6)
(Lu,u) = (1 = 7)) {((I — Q) ax,u) + M {((I — Q) Nx, u)
< ((1 =MNas+ i) (Lu,u) + ((1 — Moz + Avz) (Lu, u)-=
+ ((1 —N)as + wv3). 2.7)
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In the case of Proposition 2.1, we deduce from (2.7)

(Lu, u) < max {a1,v1} (Lu, u) + max {ay, v2} (Lu, u)'-¢ 4+ max {as, vs},
and so, by the definition of the map ¢, we obtain
Y({Lu,u)) < 0. (2.8)

The assumptions on g, a; v; imply that ¢(0) <0, that ¢ is convex
and that y(s)—> « as s—> «~. The assumption ¢(BR?) > 0, jointly
with (2.8), shows that

A (Lu,u) < BR2
Since x € D,, we obtain

(Lu,u) < BR2< Bljx — I x|]2,

a contradiction with (HO0). Therefore x ¢ D, and Proposition 2.1 is
proved. :

In the case of Proposition 2.2, we deduce from (2.7)
(Lu,u) < ((1 — Mo + M) (Lu, u),
and so, being A € 10,1[, we have
(Lu,u) < 0.

The assumption (HO0’) implies that x =1Ix, ie. ||x — Ix||x=0.
Therefore x ¢ D, and Proposition 2.2 is proved, too.

3. Some existence results for nonlinear equations in normed spaces

Throughout the present section we assume that L is a linear
Fredholm map of index zero (i.e. Im L is closed and it has finite
codimension, equal to the dimension of ker L); obviously, the pro-
jections P and Q can be supposed to be continuous. Moreover we
assume that & and I are defined on Y = X, and that 8 is a linear
map.

Let A:ImQ—ImP be a linear isomorphism, and let
L+: ker Q- dom LNker P

be the righf inverse of L relative to P and Q. It is well known (see
MawHIN [16]) that a pair (x,A) € [0,1] X dom L verifies

Lx=(1—-2\)8x+A9Tx @3.1)
if and only if it verifies ’
x=(1=-2)&x +A0Ux (32)

where &' =P + (AQ + L+(I-Q))& , O = P + (AQ + L+(I—Q))9X.
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Let us now introduce a key assumption.

Let w be the set of all open bounded subsets of X. For any
) € w, let c1 and fr Q be, respectively, the closure and the boundary
of Q, and let C(clQ, X) be the linear space of all continuous map-
pings ¢l —> X with the topology of uniform convergence on clQ.
We assume that for any Q€ w, a subset M(Q) of C(clQ,X) is
selected in such a way that the following conditions hold: :

(D1) for any Q €w, the set () is convex, and every map f € M (Q)
maps bounded sets into bounded sets and it is proper (i.e. the
inverse image under f of any compact set is compact);

(D2) the class i))t(m) = {M(Q) lﬂem} is an admissible class of
mappings in X, and there is a topological degree

S ={0(,): {fe M) |O¢f(frﬂ)}—->Z|.Qew}
for M(Q), in the sense of AMANN and WEiss [2] (see also [12,

Ch. 5]);

(D3) for any Q € w the maps Iaa — Q' |aa and Icm'-— N’ | e1n are in
M(Q);

(D4) if 0 e ew and if the linear map I — a' is 1—1, then
o(I -&a,0) =0.

Therefore the usual technique of degree theo‘ry gives the fol-
lowing existence theorem of «continuation type»:

Theorem 3.0. Suppose ker (L — &) = {0}, and assume that there
is L € w, with 0 € Q, such that

Lxs# (1—-M\)8x+A9x (3.3)

for all (M x) € ]0 1[ X (dom LNfrQ). Then there exists at least
one x e domLNclQ such that

Lx = 9x. 34)

The proof of the above result is the same as the proof of
Théoreme 1.2 in MAWHIN [20, p. 16] except for the fact that in [20]
the set 9t (Q2) consists of the compact perturbations of the identity,
that is b is the Leray-Schauder degree. Obviously (see [12, Ch. VI],
[6], [25], for instance) other possible choices for sm(n), when X
is a Banach space, are

M(Q) ={laa — Y |Y € C(cl, X) k-set-contractive, k < 1},
M(Q) ={Iae — V| Y € C(cl R, X) condensing}.

We remark that (D4) is automatically satisfied in these three cases.
We remark also that it is possible to assume, instead of the exist-
ence of a degree theory in the sense of Amann and Weiss, the exist-
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ence of some suitable theory of generalized degree: for instance the
case in which I — &’ and I — 9U' are A-proper maps can be studied
in a similar manner (see [12, Ch. VII]).

Now we shall prove some existence theorems for a nonlinear
equation of the form (3.4), using the results of the preceding sec-
tion to ensure the validity of (3.3) in Theorem 3.0.

- Theorem 3.1. Suppose that (HO) holds for a continuous map II
such that II1(0) = 0. Assume that there exist positive numbers a, b
such that (H1) holds with '

Di={xedomlL]| ||Ix]|x=a, |[x—=1x|x <b},
and that (H2) holds with :

Dy={xedomlL]| ||[IIx|x<a | x—1Ix|x=>}
Moreover, suppose

max{a,vi} <1 and Y(Bb?) >0 3.5)

(where ¢ is the map defined in Proposition 2.1).
Let v :
Q={xeX|||Ix|x<a |x—1Ix|x<b} 3.6)

Then there exist at least one x € dom LN (so that || x||lx <a+ b)
such that

Lx =9x. |

Proof. The continuity of II, jointly with II(0) = 0, implies that
Q is an open bounded subset of X containing 0. Moreover

dom LNfrQ c D1UD2.

Using (3.5) and choosing R = b, the assumptions (i) and (ii) of
Proposition 2.1 hold. So we can apply this result and obtain that

Lx#= (1—-2)8x 4+ ANx

whenever (A, x) € [0,1] X (dom LN fr Q). In particular (setting A=0)
the linear manifold ker(L — &) has empty intersection with
dom LNfrQ and so it must be equal to {0}. Applying Theorem 3.0
we get the result (remark that Lx = 9Ux if x € dom LNfr Q).

Theorem 3.2. Suppose (H0). Assume that there exists a non-ne-
gative number a such that (H1) holds with
Di={xedomL]| || Tix||x > a},
and that (H2) holds with
D,={xedomL| ||IIx||x < a}.
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Moreover, suppose
max {a1, v} < 1.
Then the set
Z={xe domL]Lx-—- %x}
is non-empty and bounded, and ||1lx ||x < a for any x €x.

Proof. We shall use Proposition 2.1 again. All the assumption
in Proposition 2.1 are obviously satisfied, except for (ii). But let R
be any positive number such that li(BRZ) >0 (Y as in (ii)): if

D,c{xe X|||x—Ix|x=>R
we can directly apply Proposition 2.1. Otherwise, we can redefine
={xedoml| |[|Ix|x<a}N{xeX| | x—Ix|x =

and apply Proposmon 2.1 with this choice of D,. In any case we
have
Lx= (1 —-A)8x 4+ A9Tx

for (A, x) €[0,1] X (DiUDz‘) = [0,1] X (dom L\ &), where & is the
bounded set

& ={xedomL| ||Ix|x<a |x—1Ix|x <R}

As particular cases, for A = 1, we obtain that the solution set X is
contained in &, and, for A = 0, we obtain that ker (L — &) is con-
tained in &, so that it must be trivial. At last we fix Q equal to any
open ball containing . Theorem 3.0 can be applied and we get that
Z is non-empty.

Theorem 3.3. Suppose (HO0') with I continuous and II(0) = 0.
Assume that there exist positive numbers a, b such that (H1) and
(H2) hold with

Di={xedomL| ||lx|x =a, | x— Ix|x < b}

D;={xedomL|||x||x <a, |x—Ix|x=>b}
and with
au<sl,
@w=v:=0 a3 =vi=0.
Let - ,
Q={xeX||x|x<a |x—1x|x<b}

Then there exist at least one x € dom LNclQ (so that || x||x < a+b)
such that
Lx = 9x.

Proof. First we use Proposition 2.2 with R = b, so that
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Lxs (1 =AN)8dx4A0Nx

whenever (A, x) € 10,1[ X (dom LN fr Q). In order to apply Theorem
3.0 we have only to prove that the kernel of L — & is trivial. We
claim that ker (L — &) NfrQ = &, which implies the desired result.
If we suppose that x* € dom LNfrQ verifies Lx* = dx* we have
that the pair '

(v, x*) € 10, 1[ X (dom LN fr Q)

verifies Lx* = (1 — ¥) dx* 4+ ¥ 8x* which is a contradiction with
the conclusion of Proposition 2.2, used with 9 = 4.

Remark 3.1. Proposition 2.2 can be applied to prove a version
of Theorem 3.3 in which all solutions of Lx = 9Tx are uniformly
bounded (as Propositions 2.1 has been applied first to an existence
result — Theorem 3.1 —, secondly to a version of this one — Theor-
em 3.2 — in which all possible solutions are uniformly bounded).

Remark 3.2. Further existence results for solutions to Lx = 9x,
can be obtained by suitable definitions of D; and D, (according to
more specific assumptions on L and 9T). For instance, when 9T (X)
is a bounded set, one can easily derive an existence result for ab-
stract Landesman-Lazer type equations as in MAWHIN [19] (see also
[3], [18],..., for different approaches to this problem).

4. Applications to abstract equations at resonance

We show in this section some applications of Theorem 3.2 and
Theorem 3.3 to abstract equations at resonance. For the sake of
simplicity we confine ourselves to the case in which the maps &’
and 9T’ are compact on bounded sets, that is, in the terminology
of coincidence degree theory ([19], [20]), the case in which the
maps € and 9N are L-compact on bounded sets. In this case the
Leray-Schauder topological degree theory ensures the validity of
(D1) - (D4).

We briefly discuss the case in which the kernel of L is trivial.
In this case we necessarily have P =0 and Q = 0. Therefore the
map II in (HO) or (HO’) must be the constant 0. It follows that the
set Dj, as defined in theorems 3.1, 3.2, 3.3 is empty, and that the
set D, in theorems 3.1 and 3.3 consists of all points in dom L with
a fixed positive norm b, whereas it coincides with the whole dom L
in Theorem 3.2.

We can now summarize the results obtained in Sectlon 3 in the
particular case ker L = {0} as follows.
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Let L:domL € X—Z be an invertible linear map, and let
9: X = Z be a map L-compact on bounded sets. We define &: X —>Z
by settmg 8 =0 (a natural choice due to the invertibility of L).
Let (- :Z X domL—R be a bilinear form.

| Corollary 4.1. Assume that. |

(i) there is a number B >0 such that (Lx,x) = 8| x||2 for all
xedomL

(zz) there is a number b > 0 such that
(9x, x) < vi{Lx,x) + v2(Lx, x)l‘E + v3, (4.1)

wzth 0<s<1 0< v1<1 0< vi, 0 < v, for allxe-dom‘vaith
Nixllx =1,

(iii) §(Bb?) > 0.

Then there is at least one x € dom L wzth ||x|]x < b such that
Lx = 9x. v

Moreover, if (4.1) holds for all x € dom L, the assumption (iii)
zs not needed, being satzsfzed for all b sufficiently large.

Corollary 4.2. Assume that |
(i) (Lx,x) 2 0 and (Lx,x) =0 implies x =0,
(ii) there is a number b > 0 such that
(9x, x) < (Lx, x),
~ for all xe dom L with ||x||x =

Then there is a least one x € domL with ||x||x<b such that
Lx = 9. :

We remark that Corollary 4. 1 can be used to prove the existence
of a fixed point for a map 9 = ENE, being X a real Hilbert space
with inner product (-, -) and norm |(|-||x, E: X = X a linear, selfad-
joint, completely continuous operator, and N: X — X a continuous
map bounded on bounded sets.

In fact, usmg Corollary 4.1 with L = identity on X, we obtain
Corollary 43 Assume that there exist numbers 8€]0,2[ and c;
(z = 1 2,3) such that, for every x€ X,
C (Nnx) <allzl+ el x)EE + o

Suppose ¢ || E |2 < 1. Then the map ENE has a fixed point.
For the proof, we have only to observe that
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(ENEx,x) = (NEx, Ex) .
L a||E|P(x,x) + || E |8 (x, x)1-%2 + ¢s.

A direct proof of the existence of a fixed point of ENE can be found
in MARTIN's book [14, IV.6] (see also AMANN [1]). This result has
useful applications to the problem of the existence of solutions to
integral Hammerstein equations with selfadjoint and positive kernels,
since, under the same assumptions of Corollary 4.3, the map EZ2N
has a fixed point, namely Ex*, where x* is a fixed point of ENE.

Corollary 4.2 admits the following application.

Let X,Z be real Banach spaces with corresponding norms
II-llx,]|-|lz, and let H be a real Hilbert space with inner product
(-, -)m, such that the triple (Z,H,Z*) is in normal position (see
AMANN [1]) and X € Z algebraically and topologlcally Let (z,z*)
be the value of z* € Z at z€ Z.

Corollary 44. Let A:domAC X—>Z be a Zinearv opera:tor such
that
(i) (Ax,x) = 0 for all x € dom A,
(ii) there exists a number ¢>0 such that the map
L=A+4cl:domAcCcX—Z

is omnto, has trwzal kernel, and its inverse L-!: Z —->X is com-
pletely continuous.

Let O : X —>Z be a continuous map, bounded on bounded sets.
Suppose that there exists b > 0 such that

(Ax + Mx,x) =0
whenever x € dom A and || x||x = b. Then there is an x € dom A with
[|x|lx < b such that Ax + OMx = 0.

This result is equivalent to a result by WarD [26, Theorem 1],
so that it contains the result of KANNAN and Scruur [10], [11]. To
prove it, we set L=A+cl, 9 =cl — 9, and we remark that
Ax 4 9Mx = 0 and Lx = 9x have the same set of solutions. For any
x € dom L we have

(Lx,x) = (Ax, x) + c(x, %) = (Ax, %) + ¢ (%, X)n
so that we can apply directly Corollary 4.2.

We shall apply now the results of Section 3 to some cases in
which the kernel of L is not necessarely trivial. More precisely we
shall discuss two cases in which the map 9C can be decomposed
into a sum 9; + 9;, where 9¢; has its range contained into the
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image of L whereas 9, is a suitable map, linear in the first case,
nonlinear but quasibounded in the second one.

Let the spaces X,Z, the Fredholm mapping L, the projections
P,Q, be as in Section 3. Let &,8,8: X — Z be mappings L-compact
on bounded sets. Suppose that & is linear, and that ¢ is quasibo-
unded, i.e. the quasinorm of & :

|| =inf{c=>0](36>0)(VxeX)|8x|z<cl| x|x+b}

is finite. Let e be a fixed element in Im L. We look for solutions
x € dom L to the abstract equations at resonance

Lx=(I—Q)Fx+8x+ e 4.2);
and : , o
Lx=(I—-Q)8&x+8x+e. : (4.2)n

Theorem 4.1. Suppose that
(i) ker Q8 = ker P,
(ii) there is ‘a continuous bilinear form
(+,*):ImL X (domLNkerP)-R -

such that u—>{Lu,u) is coercive on domLNkerP and the

inequality ( (I — Q) &u, u) < w (Lu, u) + pa{Lu, u)i-c 4 ys
| holds with 0<e<1 and pi=0 (i=1,2,3) for all u € dom LN ker P,
(iii) o + p1 < 1, where

o = sup{(Lu,u)-'(8u,u)|ue domLNkerP, ||ul|x=1}.

Then the set of all solutions x € domL to (4.2); is non-empty,
bounded, and contained in ker P.

. Proof. The map 9U: X — Z defined by Mx = (I—Q) Fx + dx + ¢
is L-compact on bounded sets. Let us apply Theorem 3.2. To verify
(HO) we choose II = P; the existence of § >0 such that, for all
uedomLNkerP,

(Luyu) > Bllully “3)

followé from the coercivity assumption. Let us choose a =0. To
verify (H1) we observe that D;=domL\kerP, and we define
¢ :Di— (ImQ)* by setting, for all e€ ImQ and x € D,

(g, 0x): = Zig (Qdx);,

where 7; is the j-th coordinate of n € ImQ with respect to a fixed
finite-dimensional orthonormal basis in Im Q. If x € D; we have

(Qax, x) (Q9Tx, ox)
= (Qax, ox) (Q(I — Q) x 4+ Qax + Qe, 9x)
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= (Q4x, ¢x)?
= (Z; (Qax)?)* = 0.

The assumption (i) implies Qdx = 0, being Px = 0. Therefore (Hl)
holds.

To verify (H2) we observe first that D, = dom LNkerP. For any
u € D,, using (i), we have .

((I —Q)8u,u) =(8u,u) - (Qau, u)
=(8u,u) < a{Lu,u) » v “4.4)
and so, using (ii) and (4.4).,
((I —Q)Nu,u)
= ((I — Q)*&uy, u)+((I-Q)au u)+<(I—-Q)e u)
= ((I — Q) Fu,u) + (8u,u) + (e, u)

< (m+ o) (Lu,u) + p2 (Lu, u)-< + (e, u). (4.5)
Inequality (iii) allows us to fix a number ¢ > 0 such that
(m+a) +8B-12s*||e|z< 1 4.6)

where s* = sup{ (v, w)! | ||w||x =||v||z=1}. Let K(¢) be a numb-
er such that 12 < K (¢) 4 ¢t for any real t 2 0. From (4.5) we obtain,
using (4.3),

(T — Q) O, u) < (p1 + o) (Lut, ) + pa (Lt =< + 5* || ez || |1
< (w1 + &) + 2812 5% || e|z) (L, u) + po { Lit, u)i-s
+ (B-12s*|| e[z K (C) + p3). |

Therefore (H2) holds. Using (4.6) we get the result.

Theorem 4.2. Suppose that
(i) the assumption (HO) holds,

(ii) there is a number w >0 such that, for any u € dom LNker P
and z € Im L with || z||z=1,

(Lu, u)? 2 w(z,u),

(iii) there is a linear map a*:X —->Z, L-compact on bounded sets,
a number a>0 and a map

¢o:Di={x€ domL| ]|I'Ix||x >a}— (ImQ)
such that, for every x € D,
(Qax, ox) (Q8x, ox) > 0,

(iv) there are numbers w;20 (i=1,2,3) such that, for any x in the set
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D;={xedomlL||IIx|x < a}
one has
(I —Q)Fx,u) <w(Lu,u) + pa{Lu, u)’? 4 ps,
(v) wig-12|[¢|| +m <L

Then the set of all solutions x €e domL to (4.2)x is non-empty
and bounded.

Proof. We shall apply Theorem 3.2, choosing
N X>Z Nx=(I—-Q)Sx+6x+e,
d:X—-2Z, 8x=358(1+4|a*|)-1a*x,

where & is a positive number which will be fixed later. Now (HO0)
is an assumption. Consider (iii): if x € D; we have

(Qax, ox) (QNx, 0x)
= 8(1 + || a*|])-1 (Q-a*x, ox) (Q8x, 9x) > 0.

Therefore (H1) holds for each xeDl. Consider (iv): for ahy
x € D,, using (ii), we have

(I - Q) ax,u) |
< w1 ||(I — Q) 8xl|z{ Lu, u)"2
< wt]|a]] (|| — IIx|[x + [[Tx|[x) (Lu, u)!?
< w-18(1 + [|a*[)-1[|a*|| 812 (Lu, u)
+ w1 8(1 + [|@7))-1 18] a {Lu, u)1?,

and
((I —Q)Nx,u)
={(I —Q)*&x,u) + {(I — Q) Sx,u) + (e, u)
< (Lu,u) 4 pa(Lu, u)2 + y3
+ w-t||(I — Q) 8x||z{Lu, u)? + w-1|| e||z (Lu, u)2.
But now there is a number K(§) such that
I(I — Q) &xl|z < |||z
< (i8]l + 8) llxllx + K(5)
< (||8]] + 8) (||x — Tx]||x + K(3) |
< (||8]| + 8) B-2{Lu, u)> + (||8|| + &) a + K(3).
Therefore (H2) holds for any x € D, with '
e =1/2
o = dw-1 (1 + [|&*|))-1||a*]| 817,
o=+l (|g]] 4 8) B2 = w-18-12||g|| + m + Sw-1p-12,
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Obviously, we can choose a priori the number & so small that
max {oy, [1a| || < 1), and, simulta-
neously, vi<1 (in virtue of the inequality (v)). The theorem is proved.

In the following section we shall show some applications of the
preceding existence theorems for abstract equations to the problem
of existence of periodic solutions to vector differential equations
with deviating arguments.

5. Applications to the existence of periodic solutions for differential
delay equations

Let RN (N > 1) be the N-dimensional real euclidean space, with
euclidean inner product (-|-) and corresponding norm |-|. Let T > 0
be fixed and let w: =2x/T. Let us define the spaces H*. We first

define, for k = 0, the real vector spaces

Cr:= {x:R—RN|x is T-periodic and of class @k}.
Next we define on @‘; the inner product

| (x])2: = T-1 {7 (x(t) | 9(t)) dt

and the corresponding norm |x|2: = (x]x)}?. We then define
H? = the completion of e with respect to |-|2;

(H 9 is canonically isomorphic to the Hilbert space 12 ([0, T],RN))

For any k=1 we denote by H 1’; the vector subspace of H 9 consisting
of all mappings x € @; -1 with x(x-1 absolutely contmuous and
x”‘)eH" If er° we shall write simply [x instead of J'Tx(t) dt
and x w1ll denote the mean value T-! fx of x.

We recall that, for any x € H ;,
212 < w222 +‘l£| (5.1)
(the ALMANSI - TONELLI - WIRTINGER inequality: see [24]),
sup{|x(t)| | t e R} < 3-Rxmo-1|x’ |, + | %] (5.2)
(a particular case of an inequality due to CEesAri: see [15, 1.1.4]).

Let 9n be the real algebra of all N X N real constant matrices.
If A= [ai;] €9 then diag (A) is the vector (au,an,...,ann), ie.
the principal diagonal of A, AT is the transpose of A and spec(A )
is the spectrum of A. Moreover, we introduce the norms

||A]| : = (max spec(ATA))¥? (the spectral norm of A),



80 SERGIO INVERNIZZI and FABIO ZANOLIN

|| A |]1 : =max; Z;|a;| (themaximum absolute column sum norm of 4),
[|A]le: = (N-1Z; ]| a;; »)V* (the normalized euclidean norm of A).

It can be easﬂy seen that, for all A4, B € 9Mx,
| diag(AB) | < N2||A|| || Blle- -~ (5.3)
If x€@, teR and 7 =[] € My, then we define |

x(t — ) = [xi(t — )],

i.e. x(t — 7) is the matrix whose (i, j)-entry is x;j(t — ©i;;). We remark
that, if A = [a;;] € 9n, the i-th component of the vector

. diag Ax(t — o¢)T
is
anxi(t — on) + anXo(t — o) + ... + awxn(t —ow) (i=1,...,N).
Therefore, if ¢ = 0, we have
diag Ax(t — 0)T = Ax(t).

Let us introduce now a map F:RN—R of class € a map
V:R X RN RN of class @' and T-periodic in the first variable, a
(possibly singular) real N X N constant matrix B =[b;] and a
map he€ H 0

In both the following Theorems 5.1 and 5.2 we w111 assume:
(j) n=0; o
(jj) there exists a continuous T-periodic map £:R—R and a number

£ = 0 such that, for all (t,x) e R X RN,
|V(t,x) | < £(t)|x| + .

The first result in this section is the following

Theorem 5.1. Assume (j), (jj) and uppose that

b(V)w +a(B) <o?,
where
b(V): =min{3-12x|L|,sup|L(-) ]|},

spec (1/2 (B 4+ BT))U{0}), when ¢ =0,
a(B): { (2,,[ ,,|2)1’2, otherwise. )

Then there exists at least one x €H2 such that x =0 and
x" + (d/dt) (VF(x) + V(t,x)) + diag Bx(t —c)T = h(t).  (54)
Proof. We shall apply Theorem 4.1. Let us fix a number
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0 e [0, (w— (b(V)w+a(B)))/2[\spec(B).
Obviously, a map x € H2 is a solution of (5.4) with mean value x—O
if and only if
x" + (d/dt) (VF(x) + V(t,x)) + 6diag(x — %) (t — o)
+ diag(B — 0I) x(t — )T = h(t) (5.5)

and X = 0. Therefore, if we define

X:=H , with norm || x|[x: = max{|xf, | %’ |2},

Z:=H?, with norm ||z|lz: =|z]z,

domlL: =H;, Lx:=—x",

P:X—>X Q:Z>2Z, Px:=% Qz:=1%,

&'X—)Z 8x: = diag(B — 0I) x(t — o)T,

:X—>Z, Fx:= (d/dt) (VF(x) +V(t,x)) + Bdlagx(t —0),
e:=—nh(-),

we obtam that x € H2 is a solution of (54) with =0 if and only
if xe domLNkerP and

Lx=(I—-Q)&x+8x + e. 5.6)

Now it is a classical fact that L is a linear Fredholm map of
index zero with ker L = Im P, Im L = ker Q.

The right inverse of L
Lt:ImL—>X

is completely continuous. Hence in order to prove the L-compactness
on bounded sets of d,&, we have only to check that &,F are contin-
uous and map bounded sets into bounded sets. This easily follows
from the chain rule, the continuty of (3/dx) (VF(x)), (3/9t) V (t,x),
(0/dx) V (t,x), and the fact that the topology induced on H} by its
own norm is finer than the topology induced by the umform con-
vergence. :

Clearly e € Im L = ker Q.
Let us verify assumptions (i) — (iii) of Theorem 4.1.
(i) -Let x € H}. We have the i-th corriponent of Qdx is
(QAx)i =T f(8x)i =T~ [ Z¢ (b — 0) x1(- — o)

= Zk(bix —0)T-' fxx(-) = ((B —0I) X):,
that is
Qlx = Bx — 0x.

The choice 0 ¢ spec(B) implies that, for any x € H ; , Bx—0x=0
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if an only if X = 0, that is Qdx = 0 if and only if Px = 0.

In order to check (ii) and (iii), we shall use the following two
estimates.

First we evaluate, for any u € H ‘T with @ = 0.
(diagu(-— o) |u)2 =T fZiui(- — o) ui(-)
< (T %l (- —ou) |2) 2 |ule = |ul2.
Moreover, let

v=(v,V2...,VN) EH;‘,

vi(+): =Zjbiju; (- — oij) (i=1,...,N).
Then we have
(diagBu(-—0o)T|u)2= (v|u):
< |v||ul
= ,(T—lfzi[):,- biju; (- — oij) |2)1/2 | u |2
S (T2 (24| b3 |2) (Z|ui(- — 04) |2) )2 | ul2
= (T1Z:i(Zi| 0i|2) (Zi S |ui (-)|2))2 | ul
= (Zy| i |2)V [ ul3. |
(ii). - We define (-é, ) :=(-|-)2. The inequality (5.1) implies
(Lu,u) = | v’ |22 (min{l,w})*||ul|%
for any u € dom LN ker P, i.e. u~> (Lu, u) is coercive on dom LN ker P.

- Moreover, using both (5.1) and (5 2) we have, for each
ue doankerP

((I —Q)&u,u)

=T-1f((d/dt) VF(u)|u) + T-' f((d/dt) vit, u)|u)
+ T-1f(6diagu(-—c) |u)

=0—-T-1f(V(t,u)|u') + BT'lf(dlagu( —_ 0') |u)
STfe() |u| ||+ T k|| + 0| ul? o
< (m1n{3 N2qw-1|£] , wlsup|[£(-) |} + Gw-z) | o’ (2+4’<[ulz
= (b(V)oo—1 + 8w-2) (Lu, u) + & (Lu, u)'2.
Therefore we can choose € = 1 /2 and
= b(V)w-' + 0w2 , pp = £,p3 = 0.
(iii). - Let us estimate a. For every uedom LN ker P we have, for o0,
(Qu, u)
= (diag Bu(-— ¢)T|u); — 8(diagu(-— o) | u)2
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< (i | by P12 | wf2 + 0|2 |
< (a(B)w? +8) [ |2= (a(B)w?+ 0) (Lu,u).
If ¢ = 0 we obtain
(Au, u)
=(Bulu), —0(u|u),= (V2(B + BT) u|u), — 0fu|2
<a(B)|ul24+0<a(B)w?|u’|?
< (a(B)w-2+0) (Lu, u),
so that a < a(B)w—2+ 0. By virtue of the choice of 8 we obtain
a+wm < (b(V)w+a(B) +20)w2< 1.
We conclude that (5.6) has at least one solution x € dom L N ker P.
Remark 5.1. Theorem 4.1 shows also that (under the assumpt-
ions of Theorem 5.1) the set of all possible solutions x € H 2 of (54)

with mean value zero is bounded in H} More precisely, if x € H is
a solution of (5.4) with X =0, one has

| < g% = (2= (b(V)w +a(B))) - (k? + | hlew),

from which one can easily obtain bounds for |x|; and sup|x(.)|,
namely |x|; < p*w-! and sup|x(-)| < 3-12qw-1p*,

Of course, (5.4) may have an unbounded set of solutions, actually
kerB, if c=0, F=0, V=0, h=0, and B is singular.

Remark 5.2. Qur Theorem 5.1 extends a result of MAawHIN [17,
Theorem 2], where V is identically zero, B = [b;] is nonsingular
and either it is negative definite or (Zj|b; )2 < w2

Remark 5.3. The inequality b(V)w + a(B) < w? is «sharp».
Indeed, if N=2, let T: = 2=, and

a'::[?:;/z :/2], B':=[_}ﬁ ’_i‘g],F:=O,V:=O.

The system x"” + diag Bx(t — )T =0, ie.,

xX1=—YVaxi(t—m)+ Vaxa(t—=/2) =0
[x"z+ VBxi(t—3r/2) - Vax(t—=) =0

has the nontrivial solution x = (cos(t), —sin(t)). Therefore (Fred-
holm Alternative) there exists # € H) with 2 = 0 such that

x" + diagBx(t — )T =h
does not have a solution in H? . Being b(V) =0, one has

a(B) =w?  (ie. |—1/22+ |1/2P+ [1/2P+|—=1/2]=1).
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We remark also that spec (B) ={—1,0} and B = BT. This shows
that, in the case ¢ = 0, the condition on (X|b;[?)'/2 cannot be sub-
stituted (as in the case ¢ = 0) with the negative (semi-)definiteness
of B. Actually, in the present case, the problem

x” + Bx =0, eri ,
is uniquely solvable.

A second example concerns the case B =0. Let T = 2%, and

0¢:=0,B:=0,F:=0,V(-,x): = [(1) _(l)]x.

One can immediately check that the system
- x” + (d/dt) V(t,x) = (sin(t),cos(t))

does not have 2rn-periodic solutions. However, being a(B) =0, one
has ' , '
' _ b(V)w =’ ;

A third example, with B = 0, V = 0, and ¢ = 0, can be found in
[8, Remark 3.4].

- Remark 5.4. In order to illustrate the definition of b(V), let us
look for 2-periodic solutions xe€ H ; with mean value zero to the

scalar equation ‘
‘ X" 4 (d/dt) (va(t)x) + ax = h(t),

where 7€ HY , a € R, and, for each n=1,2,..., v, is 2-periodic of
class @!, and satisfies '
va(t) =0 for te [0,1 - (1/n)IU[1 + (1/n),2],
va(l) = n"z‘ ‘
0 <wvn(t) < n'? for t € [0,2]. ,
For each n we have sup|va(-)| =#n'2,|v.|2< 1, so that
b(V) =min{3-127|v,|z, sup | va(-)|} < min {312, nl?2}.
More precisely,
b(V) = n'2, when n < 3,
b(V) <3-12x, when n = 4.
Hence the possible use of just one norm in the definition ob »(V)
would have restricted the range of application of Theorem 5.1.
Remark 5.5. If 7 is continuous, then Theorem 5.1 proves the
existence of a classical (i.e. of class ©?) T-periodic solution of (5.4).

We shall consider now the case in which the linear «restoring
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field» in equation (5.4) is substituted by a nonlmear term with
delayed arguments.

Let g:R X RN X RN— RN be a continuous map, T-pemodlc in the
first variable. If A = [a;;], A’ = [a’;], and t € R, we define

g(t,AA): = (a(t;an,an,...,ain; a'n,a’n,...,a'n),
&(t;an,an,...,an; aan,a'n,...,a"n),
............ ,
gnx(t;an, anz,...,ax80; a'Ny, ANz, . .., @'NN) ).

We shall look for solutions x € H 2 to the following delay dif-
ferential equation
x"+(d/dt) (VF(x)+V(t,x)) + Bg(t,x(t—0),x'(t—c")) = h(t), (5.7)
where ¢ = [6y;] and ¢’ = [¢’;] are fixed matrices of M.

In the sequel we shall relate the matrix ¢ with a fixed matrix
c* € 9Mx choosen in such a way that

oc*edMy, |[[o—o*|i= m1n{||0'-'r]]1|1€91’6* },
where ON§ is the linear manifold of 9x consisting of all matrices

© = [7;] such that <a =t for any i,k k. Namely, t€ %; if and

only if the columns of © are equal one to each other. (For some
properties of ¢*, see Remark 5.12 after Theorem 5.2).

At last, we introduce for any matrix © = [t4] € 9Mx (actually
T=0 or T =20¢") the sets

R(r) = { (hk,j) €{1,2,...,NP | 1,,,-=-ck,-},

W(r) : = {A = [a;] € My | an = ai; whenever (k, k, ) eS’(i:)}.

We will prove

Theorem 5.2. Suppose that (j) and (jj) of Theorem 5.1 hold.
Moreover, assume that:

(jjj) there exist an orthogonal matrix U € %N and number M > 0
such that, for each index i,

gi(t,x,y) (Ux): >0 ,
holds for all (t,x,y) € R X RN X RN with |(Ux):| > M;
(jv) there are numbers b >0,c>0,d =0, pe[1,2] such that
|g(t, A, 4') | < (b7||Al|? + co || A’||2)V7 + d
holds for all t € R and all (A, A’) € BW(c) X T3 (c’);
(v) the inequality
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() + (&) 1 un<1-rswiec
holds, with
Y =1v(c) ‘: =201 4 T2 || — o* || 2
Then there is at least one x € HZ such that
x" 4 (d/dt) (VF(x) +V(t,x)) + Bg(t,x(t —c),x'(t —d’)) = h(t).
Proof. We use Theorem 4.2. We choose first a number
0 € [0,1[\ spec(B)
to be specified later, and we define
X:=H , with norm |[x[lx: = (b7 |x|? + c7|x’|?)V?,
Z:=HY , with norm [|z]jz: = |z,
domL: =H; , Lx: = —
P:X>X, Q:Z—>2Z Px:=% Qz: =3,

r'X—2 TIx:=g(.,x(-—0), ¥(-—7’)),
§:X—>Z, 8x: = BI'x — 0I'x,
§:X>Z, Fx:= (d/dt) (VF(x) + V(t,x)) + 6T'x,
e:=—nh(.).

We need only to show that the abstract equation

Lx=(I—Q)3%x+8x-+e ‘ - (5.8)

has a solution x e dom L. In fact, if x € dom L verifies (5.8), then
x € HZ and the equality

x” + (d/dt) (VF(x) + V(t,x)) + 0Tx — 0Tx + BTx — 0Tx = h(t) (5.9)
holds. Integrating both members of (5.9) on [0,T] we obtain

BfTx=0/Tx.

Since 0 ¢ spec(B), we necessarily have fT'x = 0, so that (5.9) becomes
exactly (5.7). In order to prove that (5.8) has a solution x e dom L,
we shall apply Theorem 4.2.

We prove first that the inequalities |
ITx|lz < [| %]ix + d (5.10)
I8 1lz< (| B +0) || x]lx + (|| B|| + ) d (5.11)
hold for all x € X. In fact, if x € X we easily see that

20— o)l 3= T ][x(-—a)]|%
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=T 1fN-1Z | xi(- — 04)|2 = T-IN-1Z;; f| %i( - — 035)| 2
= TNy | 5(+)|2 = T-AN-U Ny ()|
=T-1f]x(-)]2=|x|2,
and, similarly, that
l”x,('_ o.))”e|22= Ix'lzz.

We remark that, if on; = o for some triple (h, k,j) of indexes,
then x;(-— on) = xj(-— ox;); equivalently, we have, for all ¢,
x(t — o) € B(c¢), and, similarly, x'(t — ¢’) € T3(a’).

Therefore we can use assumption (jv) to evaluate ||Tx||z.
Actually, we have

|]1"x}||z = (T-'f|g(-,x(-—0),x(-—¢'))|?)
< (T || 2(- = a)||2 + 02| &' (- = )| 2)%) + d
S[(T“ﬂ br ” x(-— 0')|| ’:Iz/p)m‘l‘(T_l fl c? “ x(— o")|| i I 2/p)p/2]1/p+d
= [b?(T-1f|| x(- — °')||§)”/2 + e (T-1f|| %' (- — o-’)“i)p/Z]l/p +d
= (b"]x];+c"|x’|§)1/p+d
= x|lx + 4,
from which we easily obtain
I8x|lz=|I(B —I)Tx|lz< (|| Bl + &)]| x [|x + (1Bl +0)d
Hence the inequalities (5.10) and (5.11) are proved.

The above computations show, in particular, that T' (as sub-
stitution operator) is continuous, and bounded on bounded sets. As
in the proof of Theorem 5.1 we can now see that &,8 are both
L-compact on bounded sets; moreover, (5 11) shows that ¢ is quasi-
bounded with quasinorm

el <liBll+9. (5.12)
Obviously, e € Im L = ker Q. ‘ o
Let us verify assumptions (i) — (v) of Theorem 4.2.

(i). - We have to verify (HO). For every x€ X, let ®x: R—>RN be
the continuous T-periodic map defined by

(®x) () : = diag(Ux(-— o)T)

and, for any i=1,...,N, let t;=ti(x) be the vminimum of all
t € [0,T] at which the map [(®x):(-)| reaches its minimum value,
that is

t;=min{z € [0,T] | |(®x)i(t)| = min|(®x)i(-)|}. - (5.13)
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We remark that, being U = [uy],
(Dx)i(-) = Zjuij x; (- — oif).
We define

II: X—-)Imll’ Ox: = U1 ((@x)1 (t1), ((Dx)z(tz),...,((I)x)N(tn)),
( _"‘( )2)

and we claim that
|| x — IIx || ié [67(2w-1 + T2 || o — o*|| 1/2)1’ + cr]12P(Lu, u). (5.14)
In fact, wc;, recall first that ‘
||x—1‘Ix||;=bl’lx-IIx];’+cP[x’|;’. (5.15)
Next we evaluate |x — IIx| 2. To do this we introduce the vector
w= (W, Wy,..., Wn), |
whose i-th component is
wi = Zjui; xi(ti — o*i).
We have
|x —Ix|,=|Ux — Ullx |2
S |Ux—wl+|w-Ullx})
= (T %] Zjuij(xi(-) — x;(t:i — %) )| 2) 2
+ (Zi| Zj i (xi(t: — 0*i) — xi(ti — 035) )| )12
= (T1Zi f] yi(-)|*)"* + | diag(U(S* — S) )|,
where
yil) = Zjwi(x(-) — xj(ti—0%)), i=1,...,N,

S* [S 1]], 5 ij —'xl(tl -0 1)
S . = [S;,], Su .« — x;(t' - o"l)'

Each map y:(-) vanishes at ¢; — ¢*;. Therefore, using Poincaré-Picard
inequality, we obtain

(T-V: f| yi(+ )| 2)12 < 201 (T-1%: f| y'i(- )| 2)12
= 20~ (T1Z; f| Zj uij x'5( - )| 2)1V?
= 2w-1 | UJC' |2 |
= 20-1| x|, | | (5.17)
Moreover, using (5.3), we have | ‘
| diag(U(S* — §))| < N2 || U||-|| S* = S[o = Ni2|| S* — § ||.. (5.18)

(Recall that ||U|| =1 because U is orthogonal). Therefore, from (5.16)
and using (5.17) and (5.18), we have
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|x —Ix|s € 20! [ x' 2 + N¥2|| S* — S .. (5.19)
At last let us evaluate || S* — S||.. We have -
NZ2||8* — Slle = (Zij| x:(t; — 0%) — xi(tj — o) | 2) 12
< (Zq| o — 0% | f] 2a(- )| 2) 2
= (il o — 0% [) J] 24+ )]| 2) 2
< (max; I | oji — 0% | )2 (JZi| (- )| 2)12
=||o—o*|| 1/2 T2 | %, (5.20)
We derive, from (5.15), (5.19), (5.20), that
| x — Hx||2 [b? (2w-! + T12|| o — o-*”m)p 4 cr]¥r.|w |2
ie. (5.14) holds
(ii). - This assumption is nothing but inequality (5.1) with weight.
Namely, let w = 2n/T,u € H;,z € H‘; with #=20,|z|.=1. Then (5.1)
implies (Lu,u)?=|u';Zw|u|z 2 w(z|u):= wlz, u).
(iii). - Let us define the linear L-completely continuous map

a*: X—>Z, d*x: = (B — 6I) diag(Ux(-— ¢)T),

and let
a:=bMNZ,
Since '
||k = (b?|Tx |2)¥% = b [Tl |, = b | Tix |,
we have

Di={xedomlL | ||Ix||x > a}
={xeH%| | Ox|>ab-} = {er2 | [UIIx|>MN1/2}
Since Im Q consists of all constant mappings R —> RN, we can identify
both ImQ and (ImQ*) with RY, and choose the euclidean inner

product as bilinear pairing. Let ¢,,j =1,2,...,N, be the j-th vector
of the canonical orthonormal basis in RN. We shall define the map

¢:Dy ={eH2T| | Ullx | > MN2} - (ImQ)* = RN
setting
ox:= (BT —0I)~'ej,

where the index j(x) is defined in the followmg way:
j(x):=min{je{l,...,N} | for every t€R, [(®x); (t)|>M}
Of course we have to verify that j(x) is well-defined. Namely, if
{je{l,...,N} | for every téR, [(®x);(t)]| > M} =
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and recalling the definition (5.13) of ¢ = t;(x), we have that for
every index j

[(®x);(t;)] < M
and so, by definition of Ilx,
|UIlx | = | ((@x)1(t1) ..., (®x)n(tn)) |
= (Zj[(®@x);(t;)|*)12 < MN'2,

which is a contradiction with x € Di={xe H2 | | Ullx| > MN"}

At last, let x € D;. We have |

(Qa*x, ox) = (Q8*x | ox)
= (T-1f(B — 0I) diag(Ux(-— o)) | (BT — 0I)-1 ejx)) -
=T-1f(®x)jtx,

(Q8x, ox)
= (T-1f(B — 8I) Tx| (BT — 8I)~' ¢;))
=T-1f(g(-,x(-—0),x'(-—¢")))jx -
=T gjte) (+5 %1(+ = Gjten) 5+, 2N (- = Gjeam); X't (= iean) 5. )

The choice of j(x) implies that

| Zk it Xk (t — @jeae) | = | (Dx)jeo) (2)] > M
for each t € R. Using the assumption (jjj) we obtain that
it (L x1(t = Gjxn) .o o, XN(E— Gion); ¥) + (DX)jeny () > 0
for all teR and all y e RN, In particular this implies that
(Qa'x, ox) (Q8x, 0x) > 0.
(iv). - Let x€ H2 with ||lix|x=b|Ixp<a (ie. x€Dy), and let
u = (I — P)x. We have, using (5. 10)
A (I —-Q)Fx,u) s
= ((d/dt) (VF(x) + V(-,x)) + 0Tx — 0T% | u)>
=T-1f((d/dt) VF(x)|u) + T-1f((d/dt) V(-,x)|u)
+ T-1(0(Tx — Tx|u) |
= =T f(V(.,x)|w) + 0T {(Tx|u)
STfe( )| x| ||+ T f&|u|
+0(b7|x[2 + cv |2’ [2)V2 | ulp + 0d | u |2
sup]&( JIE |x|z|u |24 6ci|x|2|ul2 + 6c2| X’ |2|u|2+03|u |2

where c;, c:, c; are constants depending on b, ¢, p, N, £, d, w. Moreover,
using (5.19), (5.20), we obtain
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(I — Q) §x,u)

< (sup |£(-)| + 6ciw!) (|x —Tx|o + |Tx |2) | ']z

+002w‘1|u’]§+03|u’lz '

< (sup |£(:)] 4+ 8ciw!) (2w-1| x|

+ T2 |lo —o*|| V2| %' ]a + ab~!)| v’ |2

+ 00t |2+ 3| u' |2

S(ysup [I(-)] +0ca) |02+ c3| 0’ |2,
where c; is a constant explicitly computable. Therefore (iv) holds
with

pi:=ysup|£(-)| + 0cs (5.21)

mi=c3 e:=1/2, ys: =0.

(v). - The part of the proof concerning (i) shows that the constant §
-of inequality (v) of Theorem 4.2 can be defined as follows:

B-12: = [b? (20! 4 T2 ” c—o* “1/2):7 + cr]iir
= (bry? 4 cr)lr (5.22)
Using (5.12), (5.21), (5.22), we have

ot 62| 8] +
==t (b7 + ¢)V7 (|| B|| +6) + ysup | £(- )| + by

b p c pq1/p
([ )+ (&) ] 1 rsplac s 6
where c¢s is a computable real constant. In virtue of the inequality
(v), we can choose 6, at the beginning of the proof, in such a way
that

wlB-12||§||+m < L
The proof is complete.

Remark 5.6. The case of a nonconstant delay matrix o (t) = [ei; ()],
where each entry oji(-) : R-—>R is a continuous and T-periodic func-
tion, can be treated through the same perturbation argument we
have used in [7] and following the same lines of the proof or
Theorem 5.2.

Remark 5.7. Theorem 5.2 (even if it permits us to deal with
equation (5.7) which is more general than (5.4) does not contain
Theorem 5.1 as a corollary. Indeed, if we want to apply Theorem
5.2 to equation (5.4) and we assume the same hypotheses as in
Theorem 5.2, we have to choose

c=0=0 g(t,x,y)=x, U=1,b=1,c=d=0,
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and p any number in the interval [1,2].

Then, according to assumption (v) in Theorem 5.2, we would
have existence of a solution x € Hg for the equation (5.4) provided

that v _
|B|| + 2 (sup | £(-)]) v < w?/2,

while, according to Theorem 5.1, it would be sufficient to require
I Bl + (sup | £(-)]) » < w?
which is sharper.
Remark 5.8. It is easy to see that the usual quasiboundedness
condition on the map g

(iv) et xy)| < (b?|x|p +cr|ylp)Ve + d,
for all x,yeRN and t€eR,
is equivalent to the assumption ( jv) in the particular case in which

J(e) =3@)={1,...,NB,

i.e. if in the matrix o, as well as in ¢’, all the rows are equal one to
each other.

Remark 5.9. Following the prbof of Theorem 5.2, it is not dif-
ficult to see that if we assume V(t x) =V (x) satisfying
(jj’) there are two constants 220 and &£ >0 usch that
| Vx)=V(y)|<tlx—y|+ £

holds, for any x,y € RN,

then the growth restiction (v) on the coefficients may be improved
into

, b p c \r 1r
w1 (e )+ (E )] imn e -
and the same existence result holds.

Remark 5.10. We note that a classical solution is obtained in the
case of a continuous forcing term #.

Remark 5.11. If N =1, Theorem 5.2 gives the following result

Corollary 5.1. Let fi:R—R and gi:R3*— R be continuous func-
tions, with g1 T-periodic in the first varzable and let hi:R—>R be
continuous and T-periodic.

Assume that

(k) there exists a number M; > 0 such that
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(g1(t,x,y) — ) signx >0 (<0)
for every te R,y € R and x € R such that |x| = Mi;

(kk) there are numbers b1 > 0,c1>0,d1 = 0,p1€[1,2] such that
for every t,x,y €R,

1
lgi(t,x,y)| < ( b1p1|x|p1 —}-Clpllylp1 ) /pl-i—dl;

(kkk) 261/ w) P + P < P,

Then, for any o,¢’ € R, the generalized Liénard delay-diffe-
rential equation

£+ fi(x) X + gi(t,x(t — ), x'(t — ') = (t)
has at least one T-periodic solution (of class @2).
In fact, Theorem 5.2 applies with the positions
F(x):= f: (_l'(‘)fl(s) ds)dt,
Vitx):=0,B=1,
glt,x,y):=gl(txy) — m
h(t):=h(t) — .
All the assumptions of Theorem 5.2 can be easily checked.

Moreover it can be easily seen that the assumption (k) may be
replaced with the more general one

(k’) there exists a number M; > 0 such that
(f(g(-,x(-—0),x'(-—0')) — h(-)))sign(x(t)) =20 (<0)
for any x € @1, such that |x(t)| 2 M1, for all t.

Corollary 5.1 extends a result of MARTELLI and ScHUUR [13] (for
related results, see [9], [21]1, [22], [23]. In [21] and [23] sharper
estimates than (kkk) have been obtained in the case ¢ = ¢’ = 0 and
g = g(t,x) not dependent on x’).

Remark 5.12. Obviously, there is no loss of generality if we sup-
pose, for each 4,7,
low| <T/2.

This implies that the constant ||o — ¢*||; which appears in the de-
finition of vy = y(¢) satisfies the inequality

|| —o* || < NT/2.

From this one can easily obtain sufficient conditions for the exist-
ence of periodic solutions x € H 21 to the equation (5.7), whatever ¢
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may be.

The practical computation of the matrix ¢* which minimizes the

convex (nondifferentiable) map

i flo -

on the manifold 9’((,;; seems not to be trivial.

There are examples, for any N > 2 in which the minimizing

matrix o* is not unique. Moreover it can be shown that, if N = 2,
one can choose ¢* = [0*;], with o*; = N-!Z;0;;, but this is not
true for N = 3.-

(11
[2]
[3]

[4]

[51
[61

[71

[81
[9]

[10]

[11]
[12]
[13]

[14]

REFERENCES

AMANN H., Existence theorems for equatzons of Hammerstein type. Appl.
Anal., 2 (.1973), 385-397.

AMANN, H. and WEISS, S. A, On the uniqueness of the topological de-
gree. Math, Z, 130 (1973), 39-54.

CARISTI, G. and INVERNIZZI, S., On the existence of solutions for non-
linear equations with symmetries with respect to the kernel of the linear
part. Boll. Un Mat. Ital, (6) 1-B (1982), 87-102.

CESARI, L., Functional analysis and periodic solutions of nonlinear dif-
ferential equations, in Contributions to Differential Equations I, J. Wiley
& Sons, New York, 1963, 149-187.

CESARI, L. and KANNAN, R., Solutions in the large of Liénard systems
with forczng terms. Ann, Mat Pura Appl. IV Ser., 111 (1976), 101-124.
HETZER, G., Some remarks on (I)+ -operators and on the coincidence
degree for a Fredholm equation with noncompact nonlinear perturbatlon
Ann. Soc. Sci. Bruxelles Sér. I, -89 (1975), 497-508.

INVERNIZZI, S. and ZANOLIN, F., On the existence and uniqueness of
periodic solutions of differential delay equations. Math. Z., 163 (1978),
25-37.

INVERNIZZI, S., On the solvability of some operator equations wzth
angle-condzttons Nonhnear Anal., 6 (9) (1982), 935-941.

INVERNIZZI, S. and ZANOLIN F., Periodic solutions of functional-dif-

ferential systems with sublinear nonlznearzttes J. Math. Anal. Appl., 101

(1984), 588-597.

KANNAN, R. and SCHUUR, J. D., Boundary value problems for even order
nonlinear ordinary differential equatzons Bull. Amer. Math. Soc., 82 (1976),
80-82.

KANNAN, R. and SCHUUR, I. D., Nonlinear boundary value probleems
and Orlicz spaces. Ann. Mat. Pura Appl. IV Ser., 113 (1977), 245-254.
LLOYD, N. G., Degree theory, Cambridge University Press Cambridge,
1978.

MARTELLI, M. and SCHUUR, J. D., Periodic solutions of Liénard type
second order ordinary differential equations. Téhoku Math. J. II Ser., 32
(1980), 201-207.

MARTIN, R. H., jr., Nonlinear operators and d1fferent1a1 equations in Ba-
nach spaces. John Wiley & Sons, New York, 1976.



[15]

[16]

[17]

[18]

[19]

[201]

[21]

[22]

[23]
[24]
[25]

[26]

A PRIORI BOUNDS AND EXISTENCE RESULTS etc. 95

MAWHIN, J., Degré topologique et solutions périodiques des systémes
différentiels non linéaires. Bull. Soc. Roy. Sci. Liege, 38 (1969), 308-398.

MAWHIN, J., Equivalence theorems for nonlinear operator equations and
coincidence degree theory for some mappings in locally convex topological
vector spaces. J. Differential Equations, 12 (1972), 610-636.

MAWHIN, J., An extension of a theorem of A. C. Lazer on forced non-
linear oscillations. J. Math. Anal. Appl., 40 (1972), 20-29.

MAWHIN, J., The solvability of some operator equations with a quasi-
bounded mnonlinearity in normed spaces. J. Math. Anal. Appl. 45 (1974),
455-461.

MAWHIN, J., Landesman-Lazer's type problems for nonlinear equations.
Conf. Sem. Mat. Univ. Bari, 147 (1977).

MAWHIN, J., Compacité, monotonie et convexité dans lUétude de pro-
bléme aux limites semi-linéaires. Seminaire d’Analyse Moderne, 19, Univ.
de Sherbrooke, 1981.

MAWHIN, J. and WARD, J. R., Nonuniform nonresonance conditions at
the two first eigenvalues for periodic solutions of forceed Liénard and
Duffing equations. Sem. Math. Appl. et Méchanique, 145, Louvain-la-Neuve,
1981.

PETRYSHIN, W. V. and YU, Z. S,, Periodic solutions of nonlinear second-
order differential equations which are not solvable for the highest de-
rivative. J. Math. Anal. Appl., 89 (1982), 461-488.

REISSIG, R., Schwingungssitze fiir die verallgemeinerte Liénardsche Dif-
ferentialgleichung. Abh. Math. Sem. Univ. Hamburg, 4 (1975), 45-51.
TONELLI, L., Su una proposizione dell’Almansi. Rend. R. Accad. dei Lin-
cei, XXIII (1914), 676-682.

VOLKMANN, P., Demonstration d’'un théoreme de coincidence par la me-
thode de Granas (preprint). ‘

WARD, J. R., Existence theorems for nonlinear boundary value problems
at resonance. J. Differential Equations, 35 (1980), 232-247.



