A CLASS OF LINEAR OPERATO'RS IN PERIODIC
FUNCTION SPACES INCLUDING
DIFFERENCE-DIFF ERENTIAL OPERATORS (*)

t
{

by MARINO ZENNARO (in Trieste) (**)

SOMMARIO. - Si fa uno studio degli operatori lineari definiti negli spa-
zi di Banach C% delle funzioni T-periodiche e di classe Co,
u:R—->C, n=0, per i quali la composizione con gli operato-
ri di traslazione u—u(.*+%), <R, & commutativa. Si trova-
no gli autovalori e si da ina rappresentazione del tipo Lu =
= [Tu(x+.) dG(x) per mezZo di funzioni a variazione limitata.
I risultati teorici sono applicati ad operatori definiti da equa-
zioni differenziali alle differenze.

SUMMARY. - This is a study of linear operators for which compositi-
on with shift operators u—u(.+%), <R, on Banach spaces
C% of T-periodic functions u:R~>C, n=0, is commutative.
Eigenvalues are found and representations of the type Lu =
= [Tu(xt.) dG(x) by functions of bounded variation are given.
The abstract results are applied to operators given by difference-
differential equations. i

1. Introduction.

For T € R*, the space
C';,: ={ueCR,C)|u?(t+T)=u?(t)VteR, i=0,...,n}

with the norm |lu|| .»:= > max | u®(t) | is a Banach space.
T k=0 t

(*) Pervenuto in Redazione il 2 maggio 1983.
(**) Indirizzo dell’Autore: Istituto di Matematica dell’'Universita - Piazzale Euro-
pa, 1 - 34100 Trieste. ‘
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- Besides consider the space
L;: ={u:R—>C|u(t+T) =u(t) VteR and u € [?([0,T],C)}

which, equipped with the usual inner product (u,v):= f gu( t)v(t)dt,
is a Hilbert space of equivalence classes.

For every n 2 0 the space C; is continuously embeddable in the
space LZT and, moreover, for every m > n the embedding operator
I: C;’-—>C; is completely continuous.

For each real number ~ let us define the following shift operator
acting on T-periodic functions

S-u(t): =u(t+=).

It is easy to see that S: is an isometry (isomorphism which
preserves the norm) on the spaces C; for every n=0. Since
Sz0Sv = S: 4« for every 1, 7' € R, the set § of all the shifts turns out
to be a group. ,

Next consider the space £mm: = Q(C;,C;”) of the continuous
linear operators mapping C; into C;" and define an action of the
group 8 onto £"™ as follows

S:xL:=8_:.L.S; VLe "™ and VteR.

Therefore the set
£8mm:=08(Ct,Cm): ={Le £mm|S.xL = LVt e R}

is a closed linear subspace of £™™, and hence it is a Banach space.

Observe that the ope‘rators of £8mm are characterized by the
property that they commute with the shifts, i.e.

LoS-:=SreL VTGR.

The spaces £8™™ include various kinds of operators given, for
example, by linear difference-differential equations (DDE'’s) with
constant coefficients or by integral equations such as u(t) =
=f OTK (t — x) u(x) dx + f(t) with a T-periodic convolution kernel.

We give an integral representation theorem for the operators
of £8%" and hence, in particular, for the T-periodic solutions of
DDE’s. Many representation theorems are known for initial value
problems to DDE’s (see for example L.E.El'sgol'ts-S. B. Norkin [3]
and J. Hale [4]) and for ordinary differential equations in Banach
spaces with many kinds of lateral conditions (see for example C. S.
Honig [5]). On the contrary similar results do not seem to exist
for T-periodic solutions to DDE'’s. ’
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We also obtain again some known results on the spectral theory
and on the solvability of DDE’ § with constant coefficients (see for
example L.E.El'sgol’ts-S. B. Norkin [2] and S. Invernizzi-F. Zanolin
[6]). Furthermore the representation theorems provide a straight-
forward estimate of the rate of uniform convergence for the Fourier
expansion of the solutions.

This research was snggestedf by a paper of A. Bellen [1] in which |
he studies an iterative monotone method for the numerical solution
of nonlinear delay differential e;:'quations of the type

u (1) = f(tu(t),u(t—=)) n=12,

in spaces of T-periodic functiors. An iteration requires the solution
of a linear difference- differential equation.

~ Moreover a maximum pnnc1ple and the knowledge of upper
and lower solutions are needed. The results of this paper are fully
used in M. Zennaro [7], where some maximum principles are proved,
and in A. Bellen-M. Zennaro [2], where a method for finding upper
and lower solutions is given.

2. The spaces £5™™, Eigenval&es and eigenspaces.

Define for every ke Z the function ex(?): = exp (2 kmit

). The

set E: = {ek} is an orthogbnal system in L;, and is a fund-
amental set m C" since span E is dense in C" for every n = 0.
The spaces £8nm can be charactenzed as follows
|
THEOREM 2.1 - For every L ‘5 gmm the statements
(i) - Le £8mm;

(ii) - For every k € Z there ex1sts A € C such that Ler = Mex;
are equivalent.

Proof. Let (i) be true. Smce S.er = ex(t) ex for every 'ceR
we have that S:.Ler= L.S:ei= ex(t)Ler and then Lex(t + =) =
= ex(t) Lexr(t) for every t, <. For t = 0 we have Ler(t) = Lex(0) ex(<)
for every © € R. Therefore (ii) ﬁs proved, with Ax = Lex(0).

Conversely, assume (ii) to Tbe true. It follows that if p is a tri-

gonometric polynomial, i.e. p = I: a;e;, then

tl—-—s

L.S-p= Za,L S1e,_Ea,e,(‘r)Le,_Za.e,('r))» e =
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= ST(Z aihie;) = S:.Lp.
1
Since span E is dense in C; and L is continuous, (i) holds, too. W

Throughout the paper we shall mark the dependence of the
numbers M on L by 7\.’;.

It is easy to prove the following three corollaries.

COROLLARY 2.2 - Let L,M € £8»™; then we have )»lfﬂ“M = }»,’: 4 kkM
for every k € Z. '

CoroLLARY 2.3 - Let Le £8"m™; if there exists L-1¢€ £mn then
L-'e £8™" and AL = (ML)-! for every k € Z.

COROLLARY 24 - Let L€ £87™ and M € £8mpr; then M.L € £8n»
and )»24“ = )»14 . )»z for every ke Z.

When the continuous operator L, acting from C'T1 into C;’, will
be regarded as a continuous operator acting from C; into C;’, we
shall still denote it by L.

THEOREM 2.5 - Let L belong both to £8" and £5¢7 and let M
belong both to £8™ 7 and £8"9; then they commute, i.e. L-.M = M. L.

Proof. By Corollary 2.4 we have that L. M and M.L belong to
£8"? and 7»2‘“ e )»201“ = 7»2 . )“I: for every k € Z. Therefore, if p is

s
a trigonometric polynomial, i.e. p = X aie;, then

I= =g

M.Lp = ;aiMoLe; = ZaiKiMOLei = Z_Ia,-)»,-L"Me,- = Z_Ia,-LoM'ei = L.Mp.

Since span E is dense in C" and L.,M; M.L are continuous, it fol-
lows that L. M=M.L. N

THEOREM 2.6 - L € £8"™ implies L € £8n+km+k for every k = 1.

Proof. For n=0 and m >0 this is a consequence of the re-
presentation theorems for the spaces £8% given in Section 3. Infact
we shall see that for every L e £8%™ there exists a function G,
[G] eS;’ (see Theorem 3.6), such that Lf(t) =J'(7;f(x+t) dG(x) for
every f € CY. Now, if fe Ck, it is easily seen that the following
equalities hold for i =1,...,%k

(Lf)® (t) = JT D (x+1) dG(x) = LfV (t)
and hence, since f(*) is continuous, we have that Lf € Cin+k,
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~ Moreover let ||L|[o,= be the norm of L as operator from C? into
C’;; then

k-1 . mk . e _
”LHC:H = Eo” (Lf)9 || - + :;,k || (LF)P || » = EOHLfm” -+
m . k-1 . '
+ 2 | L) < E L floml[ 9]« + | L] 7 <

<ULllom E 191 =1 Elfomll 1 ¢t

and therefore L is continuous also from C; into C;’+’<.

Assume the theorem true for n — 1 and m = 0. It is easy to see
that the operator J:u—>u’ — u!belongs to £877-1 for every p>1
and that there exists J-!1e€ £8r-1», By Corollary 2.4 we have
L.J-1e £8n-1.m since J-!1 € £8n-1.7,

By the inductive hypo’chesisz L.J-1€ £8n-1+kmi+k for every k 2 1,
since J € £8n+kn-1+k we have that L = L.J-1.J € £&n+km+k o the
proof is complete.. 3 :

For every L e £8™™ let us call eigenvalue of L each complex
number A such that Lu = Au for some u € C’; , u#0.

For every A eCand Le 538"’“ define the set
Kiy: ={?kez1xlf=x}
which, obviously, may be e-mpt§.‘ Besides, define

.
EL,)» . — {ek}keKL'}v

and denote the sets Epr o and KLo by E. and K. respectively.

Let N, be the linear malllifold of the functions u € C; such

that Lu = M1 Note that N o= kernL and N = {0} if and only if
) is not an eigenvalue of L.

LEmMMA 27 - If E = E;UE; and E:NE, = @, then we have that
C; = span E; @ span E; for everj} nz=0.

The proof is standard and is omitted for the sake of brevity.

Now we are able to prove the following theorem concerning
the structure of the linear manifold Ni..

THEOREM 2.8 - Let L € £6™™ and let A be a complex number; then

we have Nr = span EL»., wheré span @ = {0}.
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. . —"
Proof. Since L is continuous, we have spanE;, TS N L. Conv-
ersely, let u € Ny»; then, by Lemma 2.7, we have that u — v+ w,
n . .

P

where v € span Ej,». ‘r and w € span (E—EL,X)LT.
Consider the operator J defined in the proof of Theorem 2.6;
by Theorem 2.5 we have J-1. L = L.J-! and then L(J-'u) =J-1(Lu) =
= M-1u. Since J-lu e Cz+1, its Fourier expansion Xarer converges
k
uniformly with all its derivatives up to the n—th, ie. in Cr, to
J-1u. Therefore, since L is continuous, '

L(J-'u) —N-1u= Zak()»’,: —~Ae=0
k

[, 7
and we have A = AL for every ar = 0, ie. J-'u € span Ey,», CT. On the
other hand J-! is an isomorphism of C; on'co»'C;+1 and J-! maps
span E1» into itself. Thus we have
Py 7 S | ——

J-lvespanEry T < spanEr, T
and
~1141

-J-'w € span (E—E.,) T span (E—Ey,.) QT.
Hence, by Lemma 2.7, J-'w =0, ie. w=0and u=v. MW

This theorem yields, as a corollary, the following result on the
set of the eigenvalues of L.

CoroLLARY 2.9-If L € £8mm, its eigenvalues are exactly {K”:}k ez

THEOREM 2.10 - Let L € £8n™; then L =0 if and only if AL= 0
for every ke Z. , -

Proof. If L = 0, it obviously follows that );2 = 0 for every k € Z.
Conversely, if )»2 =0 for every k€Z we have Lp=0 for every

p € span E and therefore, since span E is dense in C; and L is cont-
inuous, it follows that L=0. W

The following theorem can be proved by the same arguments
of Theorem 2.8.

THEOREM 2.11 - Let L e £8"™ and let R(L) be the range of L;
then R (L) = span (E — Er). '

Since span (E — E.) T = C?ﬂ (span ELLg) 1 , we have immediat-
ely the following corollary. ;

COROLLARY 2.12 - Let L e £8™™ and let R(L) be closed; then
the equation Lu = f has a solution in C; if and only if (f,ex) =0
for every k € K. ‘ '
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3. Representation theorems for the spaces £8%".

First consider the case £8%9,

LemMA 3.1 - The space £8%° I1s isometrically isomorphic to C‘;’,
the dual space of C‘;.

Proof. Indeed one can proi\/e by direct arguments that the
operator ‘;

K: £8°'°—>C°T* sucih that K(L): = P;oL,
whgre P(‘; is the evaluation funcitional defined by P;u: = u(0), is
linear and preserves the norm. |
On the ‘other hand there exis§t5 the inverse
K-t: C‘;f — £80.0
defined as follows: ,
for every F € C‘}* énd ue Cg K—’(F*) u(t):=F.Su N

Let us consider the space éVo([O, T1,C) of the complex funct-
ions G defined in [0,7] which are of bounded variation and are
such that G(x + 0) = G(x) for every x€(0,T) and G(0) =0 (see
C. S. Honig [5]).

|
0 ifx=0and x=T

Let ®(x):={] it 0<xoT
Sg: —_ BVO([O:T]:C)

span{(I)}

~ The following lemma is a' trivial consequence of the Riesz
theorem.

LEMmMA 3.2 - The space C‘;* is isometrically isomorphic to the
space S°, and for every F* € C? we have that
, F'u :_fgu(x) dG(x) for every ue C‘;,
where [G] is the element of S‘; corresponding to the linear funct-
ional F* in the isometry.

Combining the results of Lemmata 3.1 - 3.2, we easily obtain
the representation theorem for the operators of the space £8%°.

TueoreM 3.3 - There exists jan isometry G, between .the space
£899 and the space Sl?, and for'every L € £8%% we have that
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Lu(t) = J'oTu(x + t) dG(x)

for every u e C; and for every real number ¢, where [G] = Go(L).

Each function G € 8o(L) will be called representative function
of the operator L.

In the space S9the norm is given by || [G]||o: = inf V(G+A ®),
AeC
where V(G+MD) is the variation of G+ A®.

Using Corollary 2.9 and Theorem 3.3 we can derive a result on
the representation of all the eigenvalues of the operators which
belong to the space £899,

CorOLLARY 3.4 - All the eigenvalues of L € £8%° are given by

T
M = f ex(x) dG(x), where [G] = Go(L).

0

T T ;
Proof. Lex(t) = f ex(t+1)dG(x) = f ex(t) ex(x) dG (x) =
0 0

T
= (fek(x) dG(x)) ex(t). W
0

Now consider # > 1 and observe that L € £8%" implies L € £8™
for every m < n.

Let us denote by S’; the subspace of S°T of the classes of the

representative functions of the operators Le £8%” for n>1. In order
to characterize the classes of S s We begin with the case n = 1.

THEOREM 3.5 - The space SIT is made up as follows:
S;=1G1eS%|G(x) = JXF () dg
for some F such that F—F(0) € BV,([0,7],C) and F(0) = F(T)}.

Proof. If such an F exists, we have immediately that [G] € S;.

Conversely let us consider L € £8%1. The derivative operator D be-
longs to £81% and then D.L € £8%9 According to Theorem 3.3, let
[G] =6(L) and [H] = &y(D.L). ‘

Let g(t) =1; it follows that

T
D.Lg(t) =gz-fdG(x) —0
0
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and also

T : ‘
D.Lg(t) =de(x) =H(T)—H(O0)
0

and then H(0) = H(T).

Now consider the function i

K(x): = j H(E) d&

and let fe C° ; it follows that

t T

fDaLf(E)d§=f (ef—g f(x+€) dG(x)) dt =
0 f 0

0

T T
=ff(x+t) dG‘(x) - ff(x) dG(x)
0 0 :

and also .
t

}Dotf(a)da= [ (ff(x%&) dH (x)) d& =

0

OR&]

f(x+E)d§)dH(x) Pf(T)ff(T+E)dE H(O)ff(’é)d‘é—
0 ' ‘r

f —fH(x)(%ff(x+E) de) dx =
0 0

= [H(T) - H(0)] [f() ~ [H) T+ t) — f(x)1 dx =
0 o -

T T
= — [Hx+1) dK (x) + [#(x) dK (x)
0 | 0
and then
| roo. E |
[tx+t) (G +K) (x) = [#(x) d(G+K) (x) VieR
;0
By integrating we obtain

T

T
f(ff(x+t)d(c-+1<) (x)) di = f(ff(x+t)dt)d(G+K) (x) =
0 !
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T

d(G+K) (x), where f: = % #(€) dt is the mean of f.

H
\hl
OR‘%

Moreover

T

g . T
J (JHs+0)d(G+K) x))at =T [1(x) a(G+E) (x)
0

0

and therefore we can conclude that

T T
[ta+t) d(G+K) (x) =7 [d(G+K) (x).
0 0

If we put
T

|
p: = —T—o d(G+K) (x),

we have that [G(x)] =[px — K(x)] in S° and hence we can sup-
pose that G(x) = px — K (x).

Thus the function F(x):=p— H(x) is such that G(x) =
=J*F(8)d§,F —F(0) € BV, ([0,T],C) and F(0) = F(T).
The uniqueness of F is trivial. ]

The function F will be called main derivative of the represent-
ative function G.

- Besides, we shall denote by ¢; the restriction of 8, to £8°! and
renorm the space S! by ||[G]][1:=][G]|lo+ V(F). It is easy to
verify that §; is an isometry between £§°! and Si.

For n = 2 the following characterization holds for S;.

THEOREM 3.6 - The space S . is made up as follows:
S'T’ ={[G] e S‘;]G € C*-1([0,T],C), [G"-V — G»V (0)] € SIT
and G¥(0) =G® (T) for k=1,...,n—1}.

Proof. Let Le$£8%2; then D.Le£8%. Let [G]=8o(L)
and [H] =6y(D.L); we have that [H] € S‘, so that H may be sup-
posed to be continuous. By the same arguments of Theorem 3.5 we

obtain H(0) = H(T) and we can suppose G(x) = px — K(x), where
we have put '
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x T
K(x): = fH(g) dt and p:=—11,_jd(c;+1<) ().
0 ; 0

It follows that G € C! ([0, T],C) and that G'(x) =p — H(x), so
that G’(0) = G'(T) and [G'— G’(O)] € S;.

Conversely it is easy to sde that a function G which fulfils
these properties defines an operator L € £8°%2.

For n = 3 the proof can be feasily carried out by induction. W

Like before, 8, will denote the restriction of go to the subspace
£8%7, The space S; will be renormed by

NG ||n: = | [G1]jo+ V(G) + ...+ V(G"-V) + V(F),
where, according to the definitions, F is the main derivative of the
function G-V — G-V (0). G, is an isometry between £8%" and S;.
Remark that, if [G] € S'; with'#n = 2, the main derivative of G is
exactly the ordinary derivative G'.

4. Smooth operators. ‘
It is interesting to consider the subspace of £8°» which consists
of those operators which have a'representative function with certain

smoothness properties. ;
|

We shall say that L € £8%~ I1s smooth if it has a representative
function which is of class C7, and we shall denote by S£8%" the
set of such operators. ? :

For the operators of §£8%~ :fthe corresponding subspace of S; is
$Sn: ={[G] € $7|[G1NC~([0,T],C) = D}.

We have obviously that £8%" < 8§£8%™ for every m <mn.

E
THEOREM 4.1 - SS7 is closed in S for every n > 0.

Proof. If n =0, it is a coﬂsequence of the fact that the con-
vergence in BV, implies the umniform convergence; thus BVoNC is
closed in BV, and then SS‘; is'étzlosed in S"T.

If n=1, assume {[Gi]}—>[G] in S} and [Gi] € SS!. We can

suppose Gr € C!,G € €, G —> G uniformly and G’x—G’«(0) € BV,NC.
Let H;. and H be respectively the main derivatives of G: and G; it
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is easy to see that Hi(x) = G'u(x) + pe[1 — O(x)], where pi: =
= G'«(T) — G’+(0) and ;

._ [0 ifx=0
6(")'—{1 if0<x<T.

Since Hr— H«(0)—>H — H(0) in BV, and G’«(T) = Hx(0), we
have that G+ — G’+(0) — pr®—>H — H(0). On the other hand © is
not a continuous function, and we recall that BVoNC is closed in
BVy. Therefore G’x — G« (0) - F € BV,NC® in BV, (and then uni-
formly, too) and pr—>p e C. Thus, by integrating, we have that
Gi(x) — G’k(O)x-eng(E) dg for every x € [0, T].

Moreover, from the convergence of Gi(x) to G(x), it follows
that G'+(0)—>mne€C and so we have G(x)=nx+f;F(§)d§, i.e.
G € C'([0,T],C), ie. [G] € SS;.

If n > 2, the proof is carried out by induction. Assume that the

theorem holds for n — 1. Consider a sequence {[G«]} converging to
[G] in S; such that [Gi] eSS’T‘. We can suppose that Gt € Cn,

GeC"! and G+ — G'+(0) € Cr-1, Since n = 2, by Theorem 3.6 and
by the definition of the norm in the space S;, we can conclude

that [G'x—G’+(0)] € SS';-I, [G-G'(0)] € S’;‘—l ‘and
{[G'x—G'+(0)]} > [G’ — G’(0)]

in S;—l , then, by the inductive hypothesis, [G’'—G’(0)] € SS;-1 ,

ie. G’e€C*! and so GeCn ie. [G] € SS’;. |

By virtue of the isometry €,, the subspace $£8%” is closed in
£80.n

7 For L € $£8%" with n >1, the representation given by Theorem
3.3 takes the particular form

T
Lu(t) = fI‘L(x)u(x'-l-t)dx VuecCy,
0

where It is uniquely determined in C"-‘( [0,T],C).

Moreover I'z("-1) — T';(»-D(0) € BV,N C? and, for n = 2, T®(0) =
=T*(T) for k=0,1,...,n— 2. This is a trivial consequence of
Theorems 3.5-3.6 and of the smoothness of L.

The function T'p will be called associated kernel to the smooth
operator L.

Conversely it is easily seen that every function I' which fulfils
these properties defines an operator L € §£80.n, ‘
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THEOREM 4.2 - Let {L:} be a sequence of 8§£8%"(n = 1) which
converges to L in §£8%7; let I'x and T be respectively the associated
kernels to Li and L. Then {I'+} converges uniformly to I' with all
the derivatives up to the (n—1) — th.

Proof. Let [Gi] =8u(Lt) and [G] = 6.(L). We can suppose
Gi,G € C* and hence we have‘I‘fk'")=G‘k'"+” and I'm = Gm+) for

m=0,1,...,n—1. Since {[G}-I[G] in SS», we have that
V(If;”') —Tm™)—0 for m=0,1,...,n— 2 and that
V(Cr=Y 4 g [1 — @] — T —p [1-0])—0,

where pr: = 1“(;-1) (T) — 1";:1“1)(0) and p:=T0-V(T) —Tr-D(0) (see
the proof of vThe-orem 4.1, case n =1). It follows that I‘(km)—I‘(:‘) 0)->
— I'tm) — Tm (0) uniformly for m =0,1,...,n — 2 and that I‘(k"*” —_
— r;cn—l) (0) — pr ® > T(n-1) — 1“("--1{ (0) — ¢ ® uniformly.

Since © ¢ C°, while T gc”—” an':d‘ T(n-1) are cp«ntinuom, we ’have that
I‘-L"-'“ —_ I‘;c"-U (0) > I'»-1) — T»-1(0) uniformly, too. We can suppose

that Gix—> G uniformly and then, since also I't — T« (0)—>T —T'(0)
uniformly, it follows that v

x

f[rk(a) — Ty «n‘wz—sf[r(a) ~T(0)1dE
[i]

0

vuni'formly, i.e. Ge(x) — T'e(0) x—iG(x) —-T@0)x uniformly, and hence
T (0) - T(0) and T'r—T uniformly.

In this way, by n—1 passagés, we can show that I‘gc'"’ (0)—T(m (0)
and that I‘:")—>I‘("') uniformly for m=1,...,n—1, too. B

5. Linear difference-differential equations with constant coefficients.

In this last section we apply the foregoing theory to linear dif-
ference-differential equations with constant coefficients such as

‘ o aat ™k

where n2>1, f e C3, ai; €C, T € R. We look for a solution in the
space C;.

The equation DDE is of the form Nu ={f, where N e £8™°. If
D* denotes the k — th derivative operator, we have that
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n-1 mk
N=D+ X X aijkoqu..
k=0 j=1 1

LEMMA 5.1 - The operator D" — wl (which belongs to £89) is

. . 2kmi
invertible for every w € C such that w 5 (

)* for every ke Z,
and the inverse operator J, ., is smooth.

2kmi
Proof. Let w # ( 7

)» for every ke Z, By Theorem 2.8 it fol-
lows that kern(D" — wlI) = {0}. -

Consider the following equation with boundary conditions:

ym (x) — (—1)"wy(x) =0
y*&) (0) = y*(T) for k=0,1,...,n—2
y(n—l) (T) — y(n-U(O) = (— 1)’?—1

It is easy to see that this equation has a unique solution
I'e C~(R,C). Since T, restricted to [0,7], fulfils the properties of

the associated kernels, it defines an operator, say J.,., which belongs
to S£80n, :

Let f € C?; then we have

T : T )
(D" —wl) o Jnuf(t) = :iz;n fI‘(x)f(x 4+ t)dx — wfl"(x)f(x +t)dx =
0 : ’ [

T
= — wfl‘(x) f(x +t) dx + (— 1)»=1[T0-)(T) —
0 ;

.
— TO-90)Tf(t) + (— 1) fr(n)(x) f(x + t) dx =
0
— (__ l)n—l [1“(11—1) (T) - [(n-1) (0)] f(t) —

T
— (= 1)n f [T(x) — (— 1)"w T (x)1f(x + t) dx = f(1).
0

Hence (D" — wl).Jso =1 (the identity operator) and therefore

we can conclude that D" — wl is invertible and that its inverse
Jnw is smooth. W

LeMMa 52 - Let Le8nm,Me£Smm+1 and let there exist
the inverse L-1 € £8™* Then the following properties hold:

(i) - kern(L+M)-is a finite dimension subspace of Cniy
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(ii) - R(L) is closed in C'" ;

(iii) - L+ M is invertible if and only if kern (L4+M) = {0};

(iv) - If m =0 and L-! is smooth, then also (L+M)-! is smooth,
if it exists.
Proof. The properties (i), (%i), (iii) easily follow from the equal-
ity L+M =L.(I+L-'-M) and the complete continuity of M as
operator from C" into C'" _

In order to prove (iv), asbume m=0, L-! to be smooth and
L+M to be invertible. Since

(L+M)-t = (I+L-1.M)-1, L1 =
= (I+L'eM—L-1.M) o (I+L-'.M)-1,L-1 =
=L — L' Mo(I+ L' M)-1. L1,

L-1€ 8£8%" and L-1. M. (I+L—1$M) “1.L-1€ £8%7+1 — §£8%", we have
that (L4+M)-1€ 8£8%". N

If we put L: = D» ——wIandM =l + 2: E ax; D*. S-

k=0 j=1
27;\:1 )*, equation DDE takes the form (L+M)u = f; the hy-

potheses of Lemma 5.2 are fulfilled for m =0 and therefore prop-
erties (i), (ii), (iii), (iv) hold.

In partlcular by (i) and (ii), we have that dim kern N =d < oo
and that R(N) is closed in C° Moreover, by (iv) and Lemma 5.1,

the operator N-1 = (L+M)-1 1s smooth if it exists. In this case the
solution of DDE has the following form:

u(t) = JTT(x) f(x+1) dx

w# (

where T is the associated kernel to N-1, which will be called resolv-
ent kernel of DDE.

Now consider the following complex function of complex
variable:

m

Co(z)i=z"+ Z Z awjz* exp (i z)

k=0 j=1
which is called, according to L.E.El’ sgol’ts-S. B. Norkin [3], the
characteristic quasipolynomial of DDE.

ka) keZ, and

Observe that the eigenvalués of N are AN :=of
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kat 2km

then the set B: {exp (——) | o(
]

ential functions is a basis of kern N.

)=20 } of complex expon-

By Corollary 2.12 and Lemma 5.2, equation DDE has a solution
ue C’; if and only if the function f is LZT-orthogonal to B.

Finally, by Lemma 5.2-(iii), we have that N is invertible if and
ka

only if ¢ ( ) # 0 for every k € Z.

If N is invertible, by Corollary 23, we have that M ~'=

—[o(2krt 2"’“ )]-! and then, by Corollary 3.4,
1/ 2k 1 2k
1 _ Tix — N =1 — i -1
T fl‘(x) exp( ) dx = T AN, [To(— )1-
0

So the Fourier expansion of the resolvent kernel I' of DDE is

S [To (- ka )]-1e (anzx ).
keZ i T

Since I'-1 is continuous and of bounded variation in [0,T],
the Fourier expansion converges uniformly to I' with all its derivat-
ives up to the (n — 1)-th in every closed subinterval [a,8] < [0,T).
Since for n = 2 we have T®(0) =I'®*(T) for k=0,1,...,n — 2, the
first n — 2 derivatives of the expansion converge uniformly in [0, T1].

In any case the solution u of equation DDE has the form:
T

u(t)= [ (Z[To (- 2R )11 exp (PETEZ)) f (x4 ) dx =

= 3 [To(~ 2572)1- 1(fexp( ZKTIZ ) fx) dx) exp(— 2ETEL) =
kel T

_kzz[T (ka )1 1( exp(— kax)f(x)dx)exp(ZkMt),

0
which is nothing but the Fourier expansmn of u.

By truncating the expansion to 2m + 1 terms, we have the ap-
proximation

Un(t) = [TTwm(x) f(x+1) dx,

where Tm(x) : = o [To (_Eﬂ)] “1g (Zk'n:ix

———), which converges
k==m T
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umformly to u as m tends to oo,

In order to give a bound fo the error || u — tm Hm, note that

fr(x) P (x+1) dx =frm(x) Pm(x+1) dx
0 ! ’

: j m )
for every trigonometric polynomial p.= X axex, and hence

k=-m

u(t) — un(t) = 7 [T(x) 4 Ton(x)1 [f (x+1) — pu(x+1)] dx.

We can choose p. equal to p , the best L2-approx1matlon to f

by trigonometric polynomlals of degree <m, and denote by em(f)

the error ||f — p: l|z2.
T

By the Cauchy - Schwartz mequahty we have
Hu-umllw<HI‘ T || 22 em (f) < || T =Tl| 22][f = g'm

| L2 A

< VTEn(f)||T = Tl 22

where q* is the best uniform ;approxunatxon to f by trigonometric
polynomlals of degree < m, and Emn(f) is the error ||f—gq |

We want to estimate H r— 'I"mHL

To this aim we consider the function ®(y) : |<p3(’zy ) which is

defined and continuous in R {0}. We have immediately that
Iim ®(y) = lim ®(y)=1; therefore since o ( 2kmi

T ) = 0 for every
Y=+ oo Y~

k € Z, there exists o > 0 such tHat | o (2"’“)12> (ZE% ) for .
very ke€Z. ’
Hence
"* 2
T =Tulla2 = (7% -;—w( )
k=1 o
Hoe 2k1cz 2T
2—-— 21/<_________ zk2nl/2.
+ k=ms1 T l I ) (2r)" VoT (k m+1 )

Since k-2n < & -2 for every ‘E €[k —1,k], we obtain

+eo
Z k2n< andE_[(zn_l)mZn 1] l
k=m+1

We can conclude that theré exists a constant ¢ > 0,
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2T
2r)"V2n—1)o

depending on the operator N such that

(11

[2]

(3]

[4]
[5]
[6]
(7]

|| — tm || » < ¢ Em(f) m=-m-12)
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