A CLASS OF LINEAR OPERATORS IN PERIODIC FUNCTION SPACES INCLUDING DIFFERENCE-DIFFERENTIAL OPERATORS (*)

by MARINO ZENNARO (in Trieste) (**)

SOMMARIO. - Si fa uno studio degli operatori lineari definiti negli spazi di Banach C_T^n delle funzioni T-periodiche e di classe C_T^n , $u: \mathbf{R} \to \mathbf{C}$, $n \ge 0$, per i quali la composizione con gli operatori di traslazione $u \to u(.+\tau)$, $\tau \in \mathbf{R}$, è commutativa. Si trovano gli autovalori e si dà una rappresentazione del tipo $Lu = \int_0^T u(x^+.) dG(x)$ per mezzo di funzioni a variazione limitata. I risultati teorici sono applicati ad operatori definiti da equazioni differenziali alle differenze.

SUMMARY. - This is a study of linear operators for which composition with shift operators $u \to u(.+\tau)$, $\tau \in \mathbb{R}$, on Banach spaces C_T^n of T-periodic functions $u: \mathbb{R} \to \mathbb{C}$, $n \ge 0$, is commutative. Eigenvalues are found and representations of the type $Lu = \int_0^T u(x^+.) dG(x)$ by functions of bounded variation are given. The abstract results are applied to operators given by difference-differential equations.

1. Introduction.

For $T \in \mathbb{R}^+$, the space

$$C_T^n := \{ u \in C^n(\mathbf{R}, \mathbf{C}) \mid u^{(i)}(t+T) = u^{(i)}(t) \, \forall \ t \in \mathbf{R}, \ i = 0, ..., n \}$$

with the norm $||u||_{C_T}^n := \sum_{k=0}^n \max_t |u^{(k)}(t)|$ is a Banach space.

^(*) Pervenuto in Redazione il 2 maggio 1983.

^(**) Indirizzo dell'Autore: Istituto di Matematica dell'Università - Piazzale Europa, 1 - 34100 Trieste.

Besides consider the space

$$L_T^2 := \{ u : \mathbf{R} \to \mathbf{C} \mid u(t+T) = u(t) \ \forall t \in \mathbf{R} \text{ and } u \in L^2([0,T],\mathbf{C}) \}$$

which, equipped with the usual inner product $(u, v) := \int_0^T u(t) \overline{v(t)} dt$, is a Hilbert space of equivalence classes.

For every $n \ge 0$ the space C_T^n is continuously embeddable in the space L_T^2 and, moreover, for every $m \ge n$ the embedding operator $I: C_T^m \to C_T^n$ is completely continuous.

For each real number τ let us define the following shift operator acting on T-periodic functions

$$S_{\tau}u(t):=u(t+\tau).$$

It is easy to see that S_{τ} is an isometry (isomorphism which preserves the norm) on the spaces C_T^n for every $n \ge 0$. Since $S_{\tau} \circ S_{\tau'} = S_{\tau + \tau'}$ for every τ , $\tau' \in \mathbf{R}$, the set S of all the shifts turns out to be a group.

Next consider the space $\mathfrak{L}^{n,m}:=\mathfrak{L}(C_T^n,C_T^m)$ of the continuous linear operators mapping C_T^n into C_T^m and define an action of the group \mathfrak{L} onto $\mathfrak{L}^{n,m}$ as follows

$$S_{\tau} x L := S_{-\tau} \cdot L \cdot S_{\tau}$$
 $\forall L \in \mathfrak{L}^{n,m}$ and $\forall \tau \in \mathbb{R}$.

Therefore the set

$$\mathfrak{LS}^{n,m}:=\mathfrak{LS}(C_T^n,C_T^m):=\{L\in\mathfrak{L}^{n,m}\,|\,S_\tau xL=L\,\forall\,\tau\in\mathbf{R}\}$$

is a closed linear subspace of $\mathfrak{L}^{n,m}$, and hence it is a Banach space.

Observe that the operators of $\mathfrak{L} \mathbb{S}^{n,m}$ are characterized by the property that they commute with the shifts, i.e.

$$L \circ S_{\tau} = S_{\tau} \circ L \quad \forall \tau \in \mathbf{R}$$

The spaces $\mathfrak{LS}^{n,m}$ include various kinds of operators given, for example, by linear difference-differential equations (DDE's) with constant coefficients or by integral equations such as $u(t) = \int_0^T K(t-x) u(x) dx + f(t)$ with a T-periodic convolution kernel.

We give an integral representation theorem for the operators of $\mathfrak{LS}^{0,n}$ and hence, in particular, for the T-periodic solutions of DDE's. Many representation theorems are known for initial value problems to DDE's (see for example L.E.El'sgol'ts-S. B. Norkin [3] and J. Hale [4]) and for ordinary differential equations in Banach spaces with many kinds of lateral conditions (see for example C. S. Hönig [5]). On the contrary similar results do not seem to exist for T-periodic solutions to DDE's.

We also obtain again some known results on the spectral theory and on the solvability of DDE's with constant coefficients (see for example L.E.El'sgol'ts-S. B. Norkin [2] and S. Invernizzi-F. Zanolin [6]). Furthermore the representation theorems provide a straightforward estimate of the rate of uniform convergence for the Fourier expansion of the solutions.

This research was suggested by a paper of A. Bellen [1] in which he studies an iterative monotone method for the numerical solution of nonlinear delay differential equations of the type

$$u^{(n)}(t) = f(t, u(t), u(t-\tau))$$
 $n = 1, 2,$

in spaces of T-periodic functions. An iteration requires the solution of a linear difference-differential equation.

Moreover a maximum principle and the knowledge of upper and lower solutions are needed. The results of this paper are fully used in M. Zennaro [7], where some maximum principles are proved, and in A. Bellen-M. Zennaro [2], where a method for finding upper and lower solutions is given.

2. The spaces $\mathfrak{LS}^{n,m}$. Eigenvalues and eigenspaces.

Define for every $k \in \mathbb{Z}$ the function $e_k(t) := exp\left(\frac{2k\pi i t}{T}\right)$. The set $E := \{e_k\}_{k \in \mathbb{Z}}$ is an orthogonal system in L_T^2 , and is a fundamental set in C_T^n , since span E is dense in C_T^n , for every $n \ge 0$.

The spaces $\mathfrak{LS}^{n,m}$ can be characterized as follows.

THEOREM 2.1 - For every $L \in \mathfrak{L}^{n,m}$ the statements

- (i) $L \in \mathfrak{L} \mathbb{S}^{n,m}$;
- (ii) For every $k \in \mathbb{Z}$ there exists $\lambda_k \in \mathbb{C}$ such that $Le_k = \lambda_k e_k$; are equivalent.

Proof. Let (i) be true. Since $S_{\tau}e_k = e_k(\tau)e_k$ for every $\tau \in \mathbf{R}$, we have that $S_{\tau} \cdot Le_k = L \cdot S_{\tau}e_k = e_k(\tau)Le_k$ and then $Le_k(t+\tau) = e_k(\tau)Le_k(t)$ for every t, τ . For t=0 we have $Le_k(\tau) = Le_k(0)e_k(\tau)$ for every $\tau \in \mathbf{R}$. Therefore (ii) is proved, with $\lambda_k = Le_k(0)$.

Conversely, assume (ii) to be true. It follows that if p is a trigonometric polynomial, i.e. $p = \sum_{i=-s}^{s} a_i e_i$, then

$$L \circ S_{\tau} p = \sum_{i} a_{i} L \circ S_{\tau} e_{i} = \sum_{i} a_{i} e_{i}(\tau) L e_{i} = \sum_{i} a_{i} e_{i}(\tau) \lambda_{i} e_{i} =$$

$$= S_{\tau}(\sum_{i} a_{i} \lambda_{i} e_{i}) = S_{\tau} \cdot Lp.$$

Since span E is dense in C_T^n and L is continuous, (i) holds, too.

Throughout the paper we shall mark the dependence of the numbers λ_k on L by λ_k^L .

It is easy to prove the following three corollaries.

COROLLARY 2.2 - Let $L, M \in \mathfrak{S}^{n,m}$; then we have $\lambda_k^{L+M} = \lambda_k^L + \lambda_k^M$ for every $k \in \mathbf{Z}$.

COROLLARY 2.3 - Let $L \in \mathfrak{L} \otimes \mathfrak{I}^{n,m}$; if there exists $L^{-1} \in \mathfrak{L}^{m,n}$, then $L^{-1} \in \mathfrak{L} \otimes \mathfrak{I}^{m,n}$ and $\lambda_k^{L^{-1}} = (\lambda_k^L)^{-1}$ for every $k \in \mathbf{Z}$.

COROLLARY 2.4 - Let $L \in \mathfrak{L} \otimes^{n,m}$ and $M \in \mathfrak{L} \otimes^{m,p}$; then $M \circ L \in \mathfrak{L} \otimes^{n,p}$ and $\lambda_k^{M \circ L} = \lambda_k^M \cdot \lambda_k^L$ for every $k \in \mathbb{Z}$.

When the continuous operator L, acting from C_T^n into C_T^m , will be regarded as a continuous operator acting from C_T^q into C_T^p , we shall still denote it by L.

THEOREM 2.5 - Let L belong both to $\mathfrak{LS}^{n,m}$ and $\mathfrak{LS}^{q,p}$ and let M belong both to $\mathfrak{LS}^{m,p}$ and $\mathfrak{LS}^{n,q}$; then they commute, i.e. $L \cdot M = M \cdot L$.

Proof. By Corollary 2.4 we have that $L \cdot M$ and $M \cdot L$ belong to $\mathfrak{L} \otimes^{n,p}$ and $\lambda_k^{M \circ L} = \lambda_k^{L \circ M} = \lambda_k^L \cdot \lambda_k^M$ for every $k \in \mathbb{Z}$. Therefore, if p is a trigonometric polynomial, i.e. $p = \sum_{i=-s}^{s} a_i e_i$, then

$$M \circ Lp = \sum_{i} a_i M \circ Le_i = \sum_{i} a_i \lambda_i^{M \circ L} e_i = \sum_{i} a_i \lambda_i^{L \circ M} e_i = \sum_{i} a_i L \circ Me_i = L \circ Mp.$$

Since span E is dense in C_T^n and $L \cdot M$, $M \cdot L$ are continuous, it follows that $L \cdot M = M \cdot L$.

Theorem 2.6 - $L \in \mathfrak{S}^{n,m}$ implies $L \in \mathfrak{S}^{n+k,m+k}$ for every $k \ge 1$.

Proof. For n=0 and $m \ge 0$ this is a consequence of the representation theorems for the spaces $\mathfrak{LS}^{0,m}$ given in Section 3. Infact we shall see that for every $L \in \mathfrak{LS}^{0,m}$ there exists a function G, $[G] \in S_T^m$ (see Theorem 3.6), such that $Lf(t) = \int_0^T f(x+t) \, dG(x)$ for every $f \in C_T^0$. Now, if $f \in C_T^k$, it is easily seen that the following equalities hold for $i=1,\ldots,k$

$$(Lf)^{(i)}(t)=\int_0^T f^{(i)}(x+t) dG(x)=Lf^{(i)}(t)$$
 and hence, since $f^{(k)}$ is continuous, we have that $Lf\in C_T^{m+k}$.

Moreover let $||L||_{0,m}$ be the norm of L as operator from C_T^0 into C_T^m ; then

$$||L||_{C_{T}^{m+k}} = \sum_{i=0}^{k-1} ||(Lf)^{(i)}||_{\infty} + \sum_{i=k}^{m+k} ||(Lf)^{(i)}||_{\infty} = \sum_{i=0}^{k-1} ||Lf^{(i)}||_{\infty} +$$

$$+ \sum_{i=0}^{m} ||(Lf^{(k)})^{(i)}||_{\infty} \leq \sum_{i=0}^{k-1} ||L||_{0,m} ||f^{(i)}||_{\infty} + ||Lf^{(k)}||_{C_{T}^{m}} \leq$$

$$\leq ||L||_{0,m} \sum_{i=0}^{k} ||f^{(i)}||_{\infty} = ||L||_{0,m} ||f||_{C_{T}^{k}}$$

and therefore L is continuous also from C_T^k into C_T^{m+k} .

Assume the theorem true for n-1 and $m \ge 0$. It is easy to see that the operator $J: u \to u' - u$ belongs to $\mathfrak{LS}^{p, p-1}$ for every $p \ge 1$ and that there exists $J^{-1} \in \mathfrak{LS}^{p-1, p}$. By Corollary 2.4 we have $L \cdot J^{-1} \in \mathfrak{LS}^{n-1, m}$, since $J^{-1} \in \mathfrak{LS}^{n-1, n}$.

By the inductive hypothesis $L \cdot J^{-1} \in \mathfrak{L} \otimes {}^{n-1+k,m+k}$ for every $k \ge 1$; since $J \in \mathfrak{L} \otimes {}^{n+k,n-1+k}$, we have that $L = L \cdot J^{-1} \cdot J \in \mathfrak{L} \otimes {}^{n+k,m+k}$. So the proof is complete.

For every $L \in \mathfrak{LS}^{n,m}$ let us call eigenvalue of L each complex number λ such that $Lu = \lambda u$ for some $u \in C_T^n$, $u \neq 0$.

For every $\lambda \in \mathbb{C}$ and $L \in \mathfrak{LS}^{n,m}$ define the set

$$K_{L,\lambda}:=\{k\in\mathbf{Z}\,|\,\lambda_{\nu}^{L}=\lambda\}$$

which, obviously, may be empty. Besides, define

$$E_{L,\lambda}:=\{e_k\}_{k\in K_{L,\lambda}}$$

and denote the sets $E_{L,0}$ and $K_{L,0}$ by E_L and K_L respectively.

Let $N_{L,\lambda}$ be the linear manifold of the functions $u \in C_T^n$ such that $Lu = \lambda u$. Note that $N_{L,0} = \ker L$ and $N_{L,\lambda} = \{0\}$ if and only if λ is not an eigenvalue of L.

LEMMA 2.7 - If $E = E_1 \cup E_2$ and $E_1 \cap E_2 = \emptyset$, then we have that $C_T^n = \overline{span E_1} \oplus \overline{span E_2}$ for every $n \ge 0$.

The proof is standard and is omitted for the sake of brevity.

Now we are able to prove the following theorem concerning the structure of the linear manifold $N_{L,\lambda}$.

THEOREM 2.8 - Let $L \in \mathfrak{L} \otimes \mathfrak{L}^{n,m}$ and let λ be a complex number; then we have $N_{L,\lambda} = \overline{span E_{L,\lambda}}$, where $span \varnothing = \{0\}$.

Proof. Since L is continuous, we have $\overline{span E_{L,\lambda}}^{c^n} \subseteq N_{L,\lambda}$. Conversely, let $u \in N_{L,\lambda}$; then, by Lemma 2.7, we have that u = v + w, where $v \in \overline{span E_{L,\lambda}}^{c^n}$ and $w \in \overline{span (E - E_{L,\lambda})}^{c^n}$.

Consider the operator J defined in the proof of Theorem 2.6; by Theorem 2.5 we have $J^{-1} \cdot L = L \cdot J^{-1}$ and then $L(J^{-1}u) = J^{-1}(Lu) = \lambda J^{-1}u$. Since $J^{-1}u \in C_T^{n+1}$, its Fourier expansion $\sum a_k e_k$ converges uniformly with all its derivatives up to the n-th, i.e. in C_T^n , to $J^{-1}u$. Therefore, since L is continuous,

$$L(J^{-1}u) - \lambda J^{-1}u = \sum_{k} a_k (\lambda_k^L - \lambda) e_k = 0$$

and we have $\lambda = \lambda_k^L$ for every $a_k \neq 0$, i.e. $J^{-1}u \in \overline{span}E_{L,\lambda}^{r}$. On the other hand J^{-1} is an isomorphism of C_T^n onto C_T^{n+1} and J^{-1} maps $span}E_{L,\lambda}$ into itself. Thus we have

$$J^{-1}v \in \overline{span E_{L,\lambda}}^{c_T^{n+1}} \subset \overline{span E_{L,\lambda}}^{c_T^n}$$

and

$$J^{-1} w \in \overline{span(E-E_{L,\lambda})}^{c_{T}^{n+1}} \subset \overline{span(E-E_{L,\lambda})}^{c_{T}^{n}}$$

Hence, by Lemma 2.7, $J^{-1}w = 0$, i.e. w = 0 and u = v.

This theorem yields, as a corollary, the following result on the set of the eigenvalues of L.

COROLLARY 2.9 - If $L \in \mathfrak{LS}^{n,m}$, its eigenvalues are exactly $\{\lambda_k^L\}_{k \in \mathbb{Z}}$.

THEOREM 2.10 - Let $L \in \mathfrak{LS}^{n,m}$; then L=0 if and only if $\lambda_k^L=0$ for every $k \in \mathbb{Z}$.

Proof. If L=0, it obviously follows that $\lambda_k^L=0$ for every $k \in \mathbb{Z}$. Conversely, if $\lambda_k^L=0$ for every $k \in \mathbb{Z}$, we have Lp=0 for every $p \in span E$ and therefore, since span E is dense in C_T^n and L is continuous, it follows that L=0.

The following theorem can be proved by the same arguments of Theorem 2.8.

THEOREM 2.11 - Let $L \in \mathfrak{L} \otimes \mathfrak{n}^{m}$ and let R(L) be the range of L; then $\overline{R(L)} = \overline{span(E - E_L)}$.

Since $\overline{span} (E - E_L)^m = C_T^m \cap (\overline{span} E_L^2)^{-1}$, we have immediately the following corollary.

COROLLARY 2.12 - Let $L \in \mathfrak{LS}^{n,m}$ and let R(L) be closed; then the equation Lu = f has a solution in C_T^n if and only if $(f, e_k) = 0$ for every $k \in K_L$.

3. Representation theorems for the spaces $\mathfrak{L} S^{0,n}$.

First consider the case $\mathfrak{LS}^{0,0}$

LEMMA 3.1 - The space $\mathfrak{L} \otimes^{0,0}$ is isometrically isomorphic to C_T^{0*} , the dual space of C_T^0 .

Proof. Indeed one can prove by direct arguments that the operator

$$K: \mathfrak{L} \otimes^{0,0} \to C_T^{0*}$$
 such that $K(L):=P_0^* \circ L$,

where P_0^* is the evaluation functional defined by $P_0^*u:=u(0)$, is linear and preserves the norm.

On the other hand there exists the inverse

$$K^{-1}:C^{0^*}_{\tau} \to \mathfrak{S}^{0,0}$$

defined as follows:

for every
$$F^* \in C_T^{0*}$$
 and $u \in C_T^0$ $K^{-1}(F^*) u(t) := F^* \circ S_t u$.

Let us consider the space $BV_0([0,T],\mathbb{C})$ of the complex functions G defined in [0,T] which are of bounded variation and are such that G(x+0)=G(x) for every $x \in (0,T)$ and G(0)=0 (see C. S. Hönig [5]).

Let
$$\Phi(x) := \begin{cases} 0 & \text{if } x = 0 \text{ and } x = T \\ 1 & \text{if } 0 < x < T \end{cases}$$

$$S_T^0 := \frac{BV_0([0, T], \mathbb{C})}{span\{\Phi\}}.$$

The following lemma is a trivial consequence of the Riesz theorem.

LEMMA 3.2 - The space C_T^{0*} is isometrically isomorphic to the space S_T^0 , and for every $F^* \in C_T^{0*}$ we have that

$$F^* u = \int_0^T u(x) dG(x)$$
 for every $u \in C_T^0$,

where [G] is the element of S_T^0 corresponding to the linear functional F^* in the isometry.

Combining the results of Lemmata 3.1 - 3.2, we easily obtain the representation theorem for the operators of the space $\mathfrak{LS}^{0,0}$.

THEOREM 3.3 - There exists an isometry \mathcal{G}_0 between the space $\mathfrak{L} \otimes \mathfrak{I}^{0,0}$ and the space S^0_{τ} , and for every $L \in \mathfrak{L} \otimes \mathfrak{I}^{0,0}$ we have that

$$Lu(t) = \int_0^T u(x+t) dG(x)$$

for every $u \in C_T^0$ and for every real number t, where $[G] = \mathcal{G}_0(L)$.

Each function $G \in \mathcal{G}_0(L)$ will be called representative function of the operator L.

In the space S_T^0 the norm is given by $||[G]||_0 := \inf_{\lambda \in \mathbf{C}} V(G + \lambda \Phi)$, where $V(G + \lambda \Phi)$ is the variation of $G + \lambda \Phi$.

Using Corollary 2.9 and Theorem 3.3 we can derive a result on the representation of all the eigenvalues of the operators which belong to the space $\mathfrak{LS}^{0,0}$.

Corollary 3.4 - All the eigenvalues of $L \in \mathfrak{LS}^{0,0}$ are given by

$$\lambda_k^L = \int_0^T e_k(x) dG(x)$$
, where $[G] = \mathfrak{G}_0(L)$.

Proof. Le_k(t) =
$$\int_{0}^{T} e_{k}(x+t) dG(x) = \int_{0}^{T} e_{k}(t) e_{k}(x) dG(x) =$$

$$= \left(\int_{0}^{T} e_{k}(x) dG(x)\right) e_{k}(t). \quad \blacksquare$$

Now consider $n \ge 1$ and observe that $L \in \mathfrak{L} \otimes^{0,n}$ implies $L \in \mathfrak{L} \otimes^{0,m}$ for every $m \le n$.

Let us denote by S_T^n the subspace of S_T^0 of the classes of the representative functions of the operators $L \in \mathfrak{LS}^{0,n}$ for $n \ge 1$. In order to characterize the classes of S_T^n , we begin with the case n = 1.

THEOREM 3.5 - The space S_T^1 is made up as follows:

$$S_T^1 = \{ [G] \in S_T^0 | G(x) = \int_0^x F(\xi) d\xi \}$$

for some F such that $F-F(0) \in BV_0([0,T],\mathbb{C})$ and F(0) = F(T).

Proof. If such an F exists, we have immediately that $[G] \in S^1_T$. Conversely let us consider $L \in \mathfrak{LS}^{0,1}$. The derivative operator D belongs to $\mathfrak{LS}^{1,0}$ and then $D \cdot L \in \mathfrak{LS}^{0,0}$. According to Theorem 3.3, let $[G] = \mathfrak{G}_0(L)$ and $[H] = \mathfrak{G}_0(D \cdot L)$.

Let $g(t) \equiv 1$; it follows that

$$D \cdot Lg(t) = \frac{d}{dt} \int_{0}^{T} dG(x) = 0$$

and also

$$D \cdot Lg(t) = \int_0^T dH(x) = H(T) - H(0)$$

and then H(0) = H(T).

Now consider the function

$$K(x):=\int_{0}^{x}H(\xi)\,d\xi$$

and let $f \in C_{\tau}^{0}$; it follows that

$$\int_{0}^{t} D \cdot Lf(\xi) d\xi = \int_{0}^{t} \left(\frac{d}{d\xi} \int_{0}^{T} f(x+\xi) dG(x) \right) d\xi =$$

$$= \int_{0}^{T} f(x+t) dG(x) - \int_{0}^{T} f(x) dG(x)$$

and also

$$\int_{0}^{t} D \cdot Lf(\xi) d\xi = \int_{0}^{t} \left(\int_{0}^{T} f(x+\xi) dH(x) \right) d\xi =$$

$$= \int_{0}^{T} \left(\int_{0}^{t} f(x+\xi) d\xi \right) dH(x) = H(T) \int_{0}^{t} f(T+\xi) d\xi - H(0) \int_{0}^{t} f(\xi) d\xi - \int_{0}^{T} H(x) \left(\frac{d}{dx} \int_{0}^{t} f(x+\xi) d\xi \right) dx =$$

$$= \left[H(T) - H(0) \right] \int_{0}^{t} f(\xi) d\xi - \int_{0}^{T} H(x) \left[f(x+t) - f(x) \right] dx =$$

$$= -\int_{0}^{T} f(x+t) dK(x) + \int_{0}^{T} f(x) dK(x)$$

and then

$$\int_{0}^{T} f(x+t) d(G+K) (x) = \int_{0}^{T} f(x) d(G+K) (x) \quad \forall t \in \mathbb{R}.$$

By integrating we obtain

$$\int_{0}^{T} \left(\int_{0}^{T} f(x+t) \, d(G+K) \, (x) \right) \, dt = \int_{0}^{T} \left(\int_{0}^{T} f(x+t) \, dt \right) \, d(G+K) \, (x) =$$

$$= T\bar{f} \int_{0}^{T} d(G+K) (x), \text{ where } \bar{f} := \frac{1}{T} \int_{0}^{T} f(\xi) d\xi \text{ is the mean of } f.$$

Moreover

$$\int_{0}^{T} \left(\int_{0}^{T} f(x+t) d(G+K)(x) \right) dt = T \int_{0}^{T} f(x) d(G+K)(x)$$

and therefore we can conclude that

$$\int_{0}^{T} f(x+t) d(G+K) (x) = \bar{f} \int_{0}^{T} d(G+K) (x).$$

If we put

$$\rho:=\frac{1}{T}\int_{0}^{T}d\left(G+K\right)\left(x\right),$$

we have that $[G(x)] = [\rho x - K(x)]$ in S_T^0 and hence we can suppose that $G(x) = \rho x - K(x)$.

Thus the function $F(x) := \rho - H(x)$ is such that $G(x) = \int_0^x F(\xi) d\xi$, $F - F(0) \in BV_0([0, T], \mathbb{C})$ and F(0) = F(T).

The uniqueness of F is trivial.

The function F will be called *main derivative* of the representative function G.

Besides, we shall denote by \mathfrak{G}_1 the restriction of \mathfrak{G}_0 to $\mathfrak{LS}^{0,1}$ and renorm the space S_T^1 by $\|[G]\|_1 := \|[G]\|_0 + V(F)$. It is easy to verify that \mathfrak{G}_1 is an isometry between $\mathfrak{LS}^{0,1}$ and S_T^1 .

For $n \ge 2$ the following characterization holds for S_T^n .

THEOREM 3.6 - The space S_T^n is made up as follows:

$$S_T^n = \{ [G] \in S_T^0 | G \in C^{n-1}([0,T], \mathbb{C}), [G^{(n-1)} - G^{(n-1)}(0)] \in S_T^1$$
 and $G^{(k)}(0) = G^{(k)}(T)$ for $k = 1, \dots, n-1 \}.$

Proof. Let $L \in \mathfrak{LS}^{0,2}$; then $D \cdot L \in \mathfrak{LS}^{0,1}$. Let $[G] = \mathfrak{G}_0(L)$ and $[H] = \mathfrak{G}_0(D \cdot L)$; we have that $[H] \in S^1_T$, so that H may be supposed to be continuous. By the same arguments of Theorem 3.5 we obtain H(0) = H(T) and we can suppose $G(x) = \rho x - K(x)$, where we have put

$$K(x) := \int_{0}^{x} H(\xi) d\xi \text{ and } \rho := \frac{1}{T} \int_{0}^{T} d(G+K) (x).$$

It follows that $G \in C^1([0,T], \mathbb{C})$ and that $G'(x) = \rho - H(x)$, so that G'(0) = G'(T) and $[G' - G'(0)] \in S^1_T$.

Conversely it is easy to see that a function G which fulfils these properties defines an operator $L \in \mathfrak{LS}^{0,2}$.

For $n \ge 3$ the proof can be easily carried out by induction.

Like before, \mathcal{G}_n will denote the restriction of \mathcal{G}_0 to the subspace $\mathfrak{LS}^{0,n}$. The space S^n_{τ} will be renormed by

$$||[G]||_n := ||[G]||_0 + V(G') + \ldots + V(G^{(n-1)}) + V(F),$$

where, according to the definitions, F is the main derivative of the function $G^{(n-1)} - G^{(n-1)}(0)$. \mathfrak{G}_n is an isometry between $\mathfrak{L} \otimes^{0,n}$ and S_T^n . Remark that, if $[G] \in S_T^n$ with $n \ge 2$, the main derivative of G is exactly the ordinary derivative G'.

4. Smooth operators.

It is interesting to consider the subspace of $\mathfrak{LS}^{0,n}$ which consists of those operators which have a representative function with certain smoothness properties.

We shall say that $L \in \mathfrak{LS}^{0,n}$ is *smooth* if it has a representative function which is of class C^n , and we shall denote by $\mathfrak{SLS}^{0,n}$ the set of such operators.

For the operators of $SS^{0,n}$ the corresponding subspace of S_T^n is

$$SS_{T}^{n}$$
: = { [G] $\in S_{T}^{n}$ | [G] $\cap C^{n}$ ([0, T], \mathbb{C}) $\neq \emptyset$ }.

We have obviously that $\mathfrak{LS}^{0,n} \subset \mathfrak{SLS}^{0,m}$ for every m < n.

THEOREM 4.1 - SS_T^n is closed in S_T^n for every $n \ge 0$.

Proof. If n=0, it is a consequence of the fact that the convergence in BV_0 implies the uniform convergence; thus $BV_0 \cap C^0$ is closed in BV_0 and then SS_T^0 is closed in S_T^0 .

If n = 1, assume $\{[G_k]\} \to [G]$ in S_T^1 and $[G_k] \in SS_T^1$. We can suppose $G_k \in C^1$, $G \in C^0$, $G_k \to G$ uniformly and $G'_k - G'_k(0) \in BV_0 \cap C^0$. Let H_k and H be respectively the main derivatives of G_k and G; it

is easy to see that $H_k(x) = G'_k(x) + \rho_k [1 - \Theta(x)]$, where $\rho_k := G'_k(T) - G'_k(0)$ and

$$\Theta(x) := \begin{cases} 0 & \text{if } x = 0 \\ 1 & \text{if } 0 < x \le T. \end{cases}$$

Since $H_k - H_k(0) \to H - H(0)$ in BV_0 and $G'_k(T) = H_k(0)$, we have that $G'_k - G'_k(0) - \rho_k \Theta \to H - H(0)$. On the other hand Θ is not a continuous function, and we recall that $BV_0 \cap C^0$ is closed in BV_0 . Therefore $G'_k - G'_k(0) \to F \in BV_0 \cap C^0$ in BV_0 (and then uniformly, too) and $\rho_k \to \rho \in \mathbb{C}$. Thus, by integrating, we have that $G_k(x) - G'_k(0) x \to \int_0^x F(\xi) d\xi$ for every $x \in [0, T]$.

Moreover, from the convergence of $G_k(x)$ to G(x), it follows that $G'_k(0) \to \eta \in \mathbb{C}$ and so we have $G(x) = \eta x + \int_0^x F(\xi) d\xi$, i.e. $G \in C^1([0,T],\mathbb{C})$, i.e. $[G] \in SS_T^1$.

If $n \ge 2$, the proof is carried out by induction. Assume that the theorem holds for n-1. Consider a sequence $\{[G_k]\}$ converging to [G] in S_T^n such that $[G_k] \in SS_T^n$. We can suppose that $G_k \in C^n$, $G \in C^{n-1}$ and $G'_k - G'_k(0) \in C^{n-1}$. Since $n \ge 2$, by Theorem 3.6 and by the definition of the norm in the space S_T^n , we can conclude that $[G'_k - G'_k(0)] \in SS_T^{n-1}$, $[G' - G'(0)] \in S_T^{n-1}$ and

$$\{[G'_k - G'_k(0)]\} \rightarrow [G' - G'(0)]$$

in S_T^{n-1} ; then, by the inductive hypothesis, $[G'-G'(0)] \in SS_T^{n-1}$, i.e. $G' \in C^{n-1}$ and so $G \in C^n$, i.e. $[G] \in SS_T^n$.

By virtue of the isometry \mathcal{G}_n , the subspace $SS^{0,n}$ is closed in $SS^{0,n}$.

For $L \in SSS^{0,n}$ with $n \ge 1$, the representation given by Theorem 3.3 takes the particular form

$$Lu(t) = \int_{0}^{T} \Gamma_{L}(x) u(x+t) dx \qquad \forall u \in C_{T}^{0},$$

where Γ_L is uniquely determined in $C^{n-1}([0,T], \mathbb{C})$.

Moreover $\Gamma_L^{(n-1)} - \Gamma_L^{(n-1)}(0) \in BV_0 \cap C^0$ and, for $n \ge 2$, $\Gamma_L^{(k)}(0) = \Gamma_L^{(k)}(T)$ for k = 0, 1, ..., n - 2. This is a trivial consequence of Theorems 3.5-3.6 and of the smoothness of L.

The function Γ_L will be called associated kernel to the smooth operator L.

Conversely it is easily seen that every function Γ which fulfils these properties defines an operator $L \in SSS^{0,n}$.

THEOREM 4.2 - Let $\{L_k\}$ be a sequence of $SS^{0,n}(n \ge 1)$ which converges to L in $SSS^{0,n}$; let Γ_k and Γ be respectively the associated kernels to L_k and L. Then $\{\Gamma_k\}$ converges uniformly to Γ with all the derivatives up to the (n-1) – th.

Proof. Let $[G_k] = \mathfrak{G}_n(L_k)$ and $[G] = \mathfrak{G}_n(L)$. We can suppose G_k , $G \in C^n$ and hence we have $\Gamma_k^{(m)} = G_k^{(m+1)}$ and $\Gamma^{(m)} = G^{(m+1)}$ for m = 0, 1, ..., n - 1. Since $\{[G_k]\} \rightarrow [G]$ in SS_T^n , we have that

$$V(\Gamma^{(n-1)} + \rho_k [1 - \Theta] - \Gamma^{(n-1)} - \rho [1 - \Theta]) \rightarrow 0,$$

 $V(\Gamma_k^{(m)} - \Gamma^{(m)}) \to 0 \text{ for } m = 0, 1, ..., n - 2 \text{ and that}$ $V(\Gamma_k^{(n-1)} + \rho_k [1 - \Theta] - \Gamma^{(n-1)} - \rho [1 - \Theta]) \to 0,$ where $\rho_k := \Gamma_k^{(n-1)}(T) - \Gamma_k^{(n-1)}(0)$ and $\rho := \Gamma^{(n-1)}(T) - \Gamma^{(n-1)}(0)$ (see the proof of Theorem 4.1, case n=1). It follows that $\Gamma_k^{(m)} - \Gamma_k^{(m)}(0) \rightarrow \Gamma^{(m)} - \Gamma^{(m)}(0)$ uniformly for $m=0,1,\ldots,n-2$ and that $\Gamma_k^{(n-1)} - \Gamma_k^{(m)}(0)$ $=\Gamma_{k}^{(n-1)}(0)-\rho_{k}\Theta\to\Gamma^{(n-1)}-\Gamma^{(n-1)}(0)-\rho\Theta \text{ uniformly.}$

Since $\Theta \notin C^0$, while $\Gamma_k^{(n-1)}$ and $\Gamma_k^{(n-1)}$ are continuous, we have that $\Gamma_k^{(n-1)} - \Gamma_k^{(n-1)}(0) \to \Gamma_k^{(n-1)} - \Gamma_k^{(n-1)}(0)$ uniformly, too. We can suppose that $G_k \to G$ uniformly and then, since also $\Gamma_k - \Gamma_k(0) \to \Gamma - \Gamma(0)$ uniformly, it follows that

$$\int_{0}^{x} \left[\Gamma_{k}(\xi) - \Gamma_{k}(0) \right] d\xi \rightarrow \int_{0}^{x} \left[\Gamma(\xi) - \Gamma(0) \right] d\xi$$

uniformly, i.e. $G_k(x) - \Gamma_k(0) x \rightarrow G(x) - \Gamma(0) x$ uniformly, and hence $\Gamma_k(0) \to \Gamma(0)$ and $\Gamma_k \to \Gamma$ uniformly.

In this way, by n-1 passages, we can show that $\Gamma_k^{(m)}(0) \rightarrow \Gamma^{(m)}(0)$ and that $\Gamma_k^{(m)} \to \Gamma^{(m)}$ uniformly for m = 1, ..., n-1, too.

Linear difference-differential equations with constant coefficients. 5.

In this last section we apply the foregoing theory to linear difference-differential equations with constant coefficients such as

(DDE)
$$u^{(n)}(t) + \sum_{k=0}^{n-1} \sum_{j=1}^{m_k} a_{kj} u^{(k)}(t+\tau_{kj}) = f(t)$$

where $n \ge 1$, $f \in C_{\tau}^0$, $a_{kj} \in \mathbb{C}$, $\tau_{kj} \in \mathbb{R}$. We look for a solution in the space C_{τ}^{n} .

The equation DDE is of the form Nu = f, where $N \in \mathfrak{S}^{n,0}$. If D^k denotes the k – th derivative operator, we have that

$$N = D^{n} + \sum_{k=0}^{n-1} \sum_{j=1}^{m_{k}} a_{kj} D^{k} \cdot S_{\tau_{kj}}.$$

LEMMA 5.1 - The operator $D^n - \omega I$ (which belongs to $\mathfrak{L} \otimes n, 0$) is invertible for every $\omega \in \mathbb{C}$ such that $\omega \neq (\frac{2 k \pi i}{T})^n$ for every $k \in \mathbb{Z}$, and the inverse operator $J_{n,\omega}$ is smooth.

Proof. Let $\omega \neq (\frac{2k\pi i}{T})^n$ for every $k \in \mathbb{Z}$. By Theorem 2.8 it follows that $kern(D^n - \omega I) = \{0\}$.

Consider the following equation with boundary conditions:

$$\begin{cases} y^{(n)}(x) - (-1)^n \omega y(x) = 0 \\ y^{(k)}(0) = y^{(k)}(T) & \text{for } k = 0, 1, \dots, n - 2 \\ y^{(n-1)}(T) - y^{(n-1)}(0) = (-1)^{n-1} \end{cases}$$

It is easy to see that this equation has a unique solution $\Gamma \in C^{\infty}(\mathbf{R}, \mathbf{C})$. Since Γ , restricted to [0, T], fulfils the properties of the associated kernels, it defines an operator, say $J_{n,\omega}$, which belongs to $SS^{0,n}$.

Let $f \in C_T^0$; then we have

$$(D^{n} - \omega I) \cdot J_{n,\omega} f(t) = \frac{d^{n}}{dt^{n}} \int_{0}^{T} \Gamma(x) f(x+t) dx - \omega \int_{0}^{T} \Gamma(x) f(x+t) dx =$$

$$= -\omega \int_{0}^{T} \Gamma(x) f(x+t) dx + (-1)^{n-1} \left[\Gamma^{(n-1)}(T) - \Gamma^{(n-1)}(0) \right] f(t) + (-1)^{n} \int_{0}^{T} \Gamma^{(n)}(x) f(x+t) dx =$$

$$= (-1)^{n-1} \left[\Gamma^{(n-1)}(T) - \Gamma^{(n-1)}(0) \right] f(t) -$$

$$- (-1)^{n} \int_{0}^{T} \left[\Gamma(x) - (-1)^{n} \omega \Gamma^{(n)}(x) \right] f(x+t) dx = f(t).$$

Hence $(D^n - \omega I) \circ J_{n,\omega} = I$ (the identity operator) and therefore we can conclude that $D^n - \omega I$ is invertible and that its inverse $J_{n,\omega}$ is smooth.

LEMMA 5.2 - Let $L \in \mathfrak{L} \otimes \mathfrak{L}^{n,m}$, $M \in \mathfrak{L} \otimes \mathfrak{L}^{n,m+1}$ and let there exist the inverse $L^{-1} \in \mathfrak{L} \otimes \mathfrak{L}^{m,n}$. Then the following properties hold:

(i) - kern(L+M) is a finite dimension subspace of C_T^n ;

- (ii) R(L) is closed in C_T^m ;
- (iii) L+M is invertible if and only if $kern(L+M) = \{0\}$;
- (iv) If m = 0 and L^{-1} is smooth, then also $(L+M)^{-1}$ is smooth, if it exists.

Proof. The properties (i), (ii), (iii) easily follow from the equality $L+M=L \cdot (I+L^{-1} \cdot M)$ and the complete continuity of M as operator from C_T^n into C_T^m .

In order to prove (iv), assume $m=0,\ L^{-1}$ to be smooth and L+M to be invertible. Since

$$(L+M)^{-1} = (I+L^{-1} \circ M)^{-1} \circ L^{-1} =$$

$$= (I+L^{-1} \circ M - L^{-1} \circ M) \circ (I+L^{-1} \circ M)^{-1} \circ L^{-1} =$$

$$= L^{-1} - L^{-1} \circ M \circ (I+L^{-1} \circ M)^{-1} \circ L^{-1},$$

 $L^{-1} \in \mathbb{SLS}^{0,n}$ and $L^{-1} \circ M \circ (I + L^{-1} \circ M)^{-1} \circ L^{-1} \in \mathbb{SS}^{0,n+1} \subset \mathbb{SS}^{0,n}$, we have that $(L+M)^{-1} \in \mathbb{SS}^{0,n}$.

If we put
$$L:=D^n-\omega I$$
 and $M:=\omega I+\sum\limits_{k=0}^{n-1}\sum\limits_{j=1}^{m_k}a_{kj}D^k \cdot S_{\tau_{kj}}$, $\omega\neq(\frac{2k\pi i}{T})^n$, equation DDE takes the form $(L+M)u=f$; the hypotheses of Lemma 5.2 are fulfilled for $m=0$ and therefore properties (i), (ii), (iii), (iv) hold.

In particular, by (i) and (ii), we have that $\dim \ker N = d < \infty$ and that R(N) is closed in C_T^0 . Moreover, by (iv) and Lemma 5.1, the operator $N^{-1} = (L+M)^{-1}$ is smooth, if it exists. In this case the solution of DDE has the following form:

$$u(t) = \int_0^T \Gamma(x) f(x+t) dx$$

where Γ is the associated kernel to N^{-1} , which will be called *resolvent kernel* of DDE.

Now consider the following complex function of complex variable:

$$\varphi(z) := z^{n} + \sum_{k=0}^{n-1} \sum_{j=1}^{m_{k}} a_{kj} z^{k} \exp(\tau_{kj} z)$$

which is called, according to L.E.El'sgol'ts-S. B. Norkin [3], the characteristic quasipolynomial of DDE.

Observe that the eigenvalues of N are $\lambda_k^N := \varphi(\frac{2k\pi i}{T}), k \in \mathbb{Z}$, and

then the set $B := \left\{ exp\left(\frac{2k\pi it}{T}\right) \middle| \varphi\left(\frac{2k\pi i}{T}\right) = 0 \right\}$ of complex exponential functions is a basis of kern N.

By Corollary 2.12 and Lemma 5.2, equation DDE has a solution $u \in C_T^n$ if and only if the function f is L_T^2 -orthogonal to B.

Finally, by Lemma 5.2-(iii), we have that N is invertible if and only if $\varphi\left(\frac{2k\pi i}{T}\right) \neq 0$ for every $k \in \mathbb{Z}$.

If N is invertible, by Corollary 2.3, we have that $\lambda_k^{N-1} = [\varphi(\frac{2k\pi i}{T})]^{-1}$ and then, by Corollary 3.4,

$$\frac{1}{T}\int_{0}^{T}\Gamma(x) \exp(-\frac{2k\pi ix}{T}) dx = \frac{1}{T}\lambda_{-k}^{N-1} = [T\varphi(-\frac{2k\pi i}{T})]^{-1}.$$

So the Fourier expansion of the resolvent kernel Γ of DDE is

$$\sum_{k\in\mathbb{Z}} \left[T\varphi \left(-\frac{2k\pi i}{T} \right) \right]^{-1} exp \left(\frac{2k\pi ix}{T} \right).$$

Since $\Gamma^{(n-1)}$ is continuous and of bounded variation in [0,T], the Fourier expansion converges uniformly to Γ with all its derivatives up to the (n-1)-th in every closed subinterval $[\alpha, \beta] \subset [0,T)$. Since for $n \ge 2$ we have $\Gamma^{(k)}(0) = \Gamma^{(k)}(T)$ for $k = 0, 1, \ldots, n-2$, the first n-2 derivatives of the expansion converge uniformly in [0,T].

In any case the solution u of equation DDE has the form:

$$u(t) = \int_{0}^{T} \left(\sum_{k \in \mathbb{Z}} \left[T\phi\left(-\frac{2k\pi i}{T}\right)\right]^{-1} exp\left(\frac{2k\pi ix}{T}\right)\right) f(x+t) dx =$$

$$= \sum_{k \in \mathbb{Z}} \left[T\phi\left(-\frac{2k\pi i}{T}\right)\right]^{-1} \left(\int_{t}^{t+T} exp\left(\frac{2k\pi ix}{T}\right) f(x) dx\right) exp\left(-\frac{2k\pi it}{T}\right) =$$

$$= \sum_{k \in \mathbb{Z}} \left[T\phi\left(\frac{2k\pi i}{T}\right)\right]^{-1} \left(\int_{0}^{t} exp\left(-\frac{2k\pi ix}{T}\right) f(x) dx\right) exp\left(\frac{2k\pi it}{T}\right),$$

which is nothing but the Fourier expansion of u.

By truncating the expansion to 2m + 1 terms, we have the approximation

$$u_m(t) = \int_0^T \Gamma_m(x) f(x+t) dx,$$

where $\Gamma_m(x) := \sum_{k=-m}^m [T\varphi(-\frac{2k\pi i}{T})]^{-1} exp(\frac{2k\pi ix}{T})$, which converges

uniformly to u as m tends to ∞ .

In order to give a bound to the error $||u-u_m||_{\infty}$, note that

$$\int_{0}^{T} \Gamma(x) p_{m}(x+t) dx = \int_{0}^{T} \Gamma_{m}(x) p_{m}(x+t) dx$$

for every trigonometric polynomial $p_m = \sum_{k=-m}^{m} a_k e_k$, and hence

$$u(t)-u_m(t)=\int_0^T \left[\Gamma(x)-\Gamma_m(x)\right]\left[f(x+t)-p_m(x+t)\right]dx.$$

We can choose p_m equal to p_m^* , the best L_T^2 -approximation to f by trigonometric polynomials of degree $\leq m$, and denote by $e_m(f)$ the error $||f - p_m^*||_{L_T^2}$.

By the Cauchy-Schwartz inequality we have
$$\|u-u_m\|_{\infty} \leq \|\Gamma-\Gamma_m\|_{L_T^2} e_m(f) \leq \|\Gamma-\Gamma_m\|_{L_T^2} \|f-q^*_m\|_{L_T^2} \leq \sqrt{T} E_m(f) \|\Gamma-\Gamma_m\|_{L_T^2}$$

where q_m^* is the best uniform approximation to f by trigonometric polynomials of degree $\leq m$, and $E_m(f)$ is the error $||f - q_m^*||_{\infty}$.

We want to estimate $\|\Gamma - \Gamma_m\|_{L^2_T}$.

To this aim we consider the function $\Phi(y) := \frac{|\varphi(iy)|^2}{y^{2n}}$ which is defined and continuous in $\mathbf{R} - \{0\}$. We have immediately that $\lim_{y \to +\infty} \Phi(y) = \lim_{y \to -\infty} \Phi(y) = 1$; therefore, since $\varphi(\frac{2k\pi i}{T}) \neq 0$ for every $k \in \mathbf{Z}$, there exists $\sigma > 0$ such that $|\varphi(\frac{2k\pi i}{T})|^2 > \sigma(\frac{2k\pi}{T})^{2n}$ for every $k \in \mathbf{Z}$.

Hence

$$\| \Gamma - \Gamma_m \|_{L^2_T} = \left(\sum_{k=-\infty}^{-m-1} \frac{1}{T} | \varphi \left(-\frac{2k\pi i}{T} \right) |^{-2} + \frac{1}{\sum_{k=m+1}^{+\infty} \frac{1}{T}} | \varphi \left(-\frac{2k\pi i}{T} \right) |^{-2} \right)^{1/2} \leqslant \frac{2T^n}{(2\pi)^n \sqrt{\sigma T}} \left(\sum_{k=m+1}^{+\infty} k^{-2n} \right)^{1/2}.$$
Since $k^{-2n} \leqslant \xi^{-2n}$ for every $\xi \in [k-1,k]$, we obtain
$$\sum_{k=m+1}^{+\infty} k^{-2n} \leqslant \int_{\xi^{-2n}}^{+\infty} d\xi = [(2n-1) \ m^{2n-1}]^{-1}.$$

We can conclude that there exists a constant c > 0,

$$c:=\frac{2T^n}{(2\pi)^n\sqrt{(2n-1)\sigma}},$$

depending on the operator N such that

$$||u-u_m||_{\infty} \leq c E_m(f) m^{-(n-1/2)}.$$

REFERENCES

- [1] A. BELLEN, Cohen's iteration process for boundary value problems for functional differential equations, Rend. Ist. Matem. Univ. Trieste XI, 32-46 (1979).
- [2] A. BELLEN, M. ZENNARO, Sulla ricerca di soluzioni periodiche di equazioni e disequazioni differenziali ordinarie e con ritardo, B.U.M.I. (6) 2-B, 803-817 (1983).
- [3] L. E. EL'SGOL'TS, S. B. NORKIN, Introduction to the theory and application of differential equations with deviating arguments, New York, Academic Press, 1973.
- [4] J. HALE, Theory of functional differential equations, Applied Mathematical Sciences, New York-Heidelberg-Berlin, Springer-Verlag, 1977.
- [5] C. S. HÖNIG, The Green function of a linear differential equation with a lateral condition, Bull. Amer. Math. Soc. 79, 587-593 (1973).
- [6] S. INVERNIZZI, F. ZANOLIN, On the existence and uniqueness of periodic solutions of differential delay equations, Math. Z. 163, 25-37 (1978).
- [7] M. ZENNARO, Maximum principles for linear difference-differential operators in periodic function spaces, Numer. Math. 43, 121-139 (1984).