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SOMMARIO. - Dati uno spazio topologico compatto S ed un grafo fi-
nito ed orientato G, si dimostra che in ogni classe di omotopia
o-regolare si pud scegliere una funzione completamente regolare
e debolmente quasi-costante rispetto ad una opportuna partizio-
ne P di S. Se inoltre S é triangolabile, si puo scegliere una fun-
zione pre-cellulare vale a dire completamente regolare e propria-
mente quasi-costante rispetto ad una opportuna suddivisione cel-
lulare di S.

SUMMARY. - Given a compact topological space S and a finite direct-
ed graph G, we prove that in every o-regular homotopy class
we can choose a function which is completely regular and
weakly quasi-constant with respect to a suitable partition P of
S. Moreover, if S is triangulable, we can choose a pre-cellular
function i.e. a function which is completely regular and properly
quasi-constant with respect to a suitable cellular decomposition
of S.

INTRODUCTION. - By using the definitions of o-regular and com-
pletely o-regular functions from a topological space S to a finite di-
rected graph G (see Background) we go on (see [3], [4] and [5])
with the study of normalization theorems for regular homotopy. To
this purpose, given a partition P of S, we introduce the definitions
of quasi-constant and weakly quasi-constant function with respect
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to P (see Definitions 4 and 10). Then, by using also the first nor-
malization theorem (see [4], Theorem 12) we prove that any o-reg-
ular function from a compact space S to G is completely o-homo-
topic and weakly quasi-constant w.r.t. a suitable partition P. (The
second normalization theorem) (see Theorem 3).

The previous theorem can be refined when S is a compact trian-
gulable space, proving that any o-regular function from S to G is
completely o-homotopic to a function pre-cellular w.r.t. a suitable
decomposition @ C of S. (The third normalization theorem) (see
Theorem 6).

|

Moreover we prove that between two pre-cellular functions
which are o-homotopic, there exists also a homotopy which is pre-
cellular w.r.t. a suitable decomposition of S X 1. (The third norma-
lization theorem for homotopies) (see Theorem 8).

- Then all the previous results are generalized to the case between
pairs of topological spaces and of graphs (see 85, 6) and to the
case between (n 4 1) — tuples (see § 7).

At least we apply the results to the case of n-dimensional groups
of regular homotopy and we obtain that in any class of regular
homotopy group there exists a loop which is a pre-cellular function
w.r.t. a suitable triangulation (subdivision into cubes) of I". With
reference to this, we remark that the subdivisions into cubes are
useful to give a combinatorial interpretation of homotopy groups
by blocks of vertices (see [10]).

The previous results will be used in a next paper to prove that
regular homotopy groups are isomorphic to the classical homotopy
groups of the polyhedron | K¢| of the simplicial complex K¢ asso-
ciated with G, whose simplexes are given by the totally headed sub-
sets of G. !

0. - Background

Let X be a non-empty subset of a finite directed graph G. A
vertex of X is called a head of X in G if it is a predecessor of all
the other vertices of X. We denote by Hg(X) the set of the heads
of X in G. X is called headed if H(X) # ¢ and totally headed if all
the non-empty subsets of X are headed.

Given a function f:S - G, where S is a topological space, we
denote by the capital letter V the set of all the f-counterimages of

(1) For simplicity, we consider the finite decompositions C of S by (open)

CW-commplexes which satisfy the condition that for all ¢ € C, o is a sub-
complex of C.
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v € G, and, if we want to emphasize the function f, we write
Vi = f-1(v).

We call image-envelope of a point x € S by f, and we denote by
(f(x)), the set of vertices, such that the closure of their f-counterim-

ages include the point ie. v € (f(x))ex e V.

A function f:S-—>G is called o-regular, if, for all different

v,w € G, such that v is not a predecessor of w, it is VN W = ¢.
We proved that f is o-regular iff:

i) (f(x)) is headed, Vx € S;
ii) f(x) e H({f(x))), Vx € S. (See [5], Proposition 2).

So it is natural to define a more restrictive class of functions
by saying that a function f:S— G is completely o-regular (or sim-
ply c. o-regular) if:

i’) (f(x)) is totally headed, Vx € S;
iw') f(x) € H({(f(x)}), Vx € S.

Afterwards we also consider functions satisfying only condition
i, which we call completely quasi regular functions. In [5] we
proved that a completely quasi regular function can be replaced by a
c. oregular one by constructing the o-patterns of the function (where
an o-pattern of a function f:S->G is a function g:S— G such
that g(x) € H ({(f(x)}), Vx € S). In the case of pairs of topological
spaces S, S’ and of pairs of graphs G,G’, in [5] in order to intro-
duce the o-patterns, we gave the definition of balanced function i.e.
of a function f:S,8 = G,G’ such that (f(x’)) = (f(x’)),Vx' € S".
With reference to this we remember that if the subspace S’ is open
in S, all the functions are balanced.

1. - Enlargability of sets in a uniform space

DEFINITION 1. - Let (S,90) be a uniform space, where the fil-
ter @) is the uniformity of S. Given a vicinity W € O, we put
W(x)={yeS/(x,y) e W}, Vxe S, and W(X) = U W(x), VX c S.

xeX
REMARK. - If (S, d) is a metric space, the subsets
We={(p,q) eSXS/d(pq) <€}, €>0,
constitute a basis of the uniformity induced by the metric d.

DEFINITION 2. - Let (S,9)) be a uniform space and W a vicinity

of @. Then n subsets Xi,...,Xn of S are called W-enlargable if
W) n...n wix,) = ¢.

REMARK. If Xi,...,X, are W-enlargable, then all the m-tuples
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(m > n), obtained by adding any m — n subsets of S, are still
W-enlargable.

DEFINITION 3. - Let (S,d) be a metric space and Xi,...,Xn
subsets of S. We call enlargability of the wn-tuple Xi,...,Xn and
we denote by enl(Xi,...,Xs) the non-negative real number r such
that: ?

=¢,Ve<r
# ¢, Ve > 7.

REMARK 1. - If 1N ...N X, &, we put enl(Xi,...,Xn) =0,
while if one at least among the X; is empty, we put enl(X1,...,Xn) =
= diameter of S.

We(X) N...0N Ws(X,,?) {

REMARK 2. - Let Xi,...,Xn. be a m-tuple of subsets of S, ob-
tained by adding to the n-tuple Xi,...,X, any m-n subsets of S, then
enl(Xy,...,Xn) <enl(X1,...,Xm).

REMARK 3. - Let X1 = ¢, X2 ¢. It results
enZ(Xl, Xz) < d(Xl, Xz) < Zenl(X1, Xz).

In fact if we put d(Xi, X2) =n, for all ¢ there exist x € X; and
y€ X, such that d(x, y)<n+e Hence it is Wn+e (X)) N Wate (X,) = ¢,
ie. enl(Xy, X3) < n+e=d(Xy, X2) + e. Since ¢ is arbitrary, it follows
enl (X1, X2) < d(X,, X2). ‘

Moreover let r = enl (X1, X2). For all € > 0 it is
Wrie(X1) 0 WHe(Xa) = $.

Then there exist z € Wr+¢(X;) NWr+¢(X,), x1 € X; and x € X, such that
d(X1, X2) < d(x,x) Ld(x1,2) + d(%,27) < 2r+2c = 2enl (X1, X2)+ 2e.
Since ¢ is arbitrary, it follows d(Xi, X2) < 2enl(X1, X2). We remark
that it may be d(Xi, X2) < 2enl (X1, X2). In fact if S = {x1, x2} is the
discrete metric space, where d(xi, x2) = 1, it is enl({x1}, {x2}) = 1.

PROPOSITION 1. - Let S be a compact space and the filter O
the uniformity of S@. If, for n subsets X1,...,X, of S, it results
XiNn...N X,= ¢, then there exzsts a vicinity W € ) such that
Xi,.. Xn are W-enlargable.

Proof. - We suppose all the sets X; are non-empty, otherwise the
proposition is trivial Since S is compact, Vi=1,...,n, the family
{W(X:)}, VW €9, constitute a! basis of the neighbourhoods
filter of X; (see [2], Cap. 2, § 4, n. 3); moreover, since S is
normal, the neighbourhoods filter of X; is closed. Consequently,
{W(x1)) N...N W(X,)}, VW €9) is the basis of a closed filter

(2) We remark that in a compact space there exists only one uniformity com-
patible with the topology (see [2], Cap. 2, § 4, n. 1).
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§. Now, if & is the null filter, there exists W e€ & such that
WE)n..NWX)=¢=W(X)) N...N W(X,), ie. Xi,...,Xn
are W-enlargable. Otherwise, since S is compact, there exists a point x
adherent to &, and since & is a closed filter, x eW (X)) N ...N W (X,),
VWeo. Then it is xe W(X;), VWeW, i=1,...,n As the sets
W(X;:) constitute a basis of the neighbourhoods filter of X; it fol-
lows x€ X;, i=1,...,n ie. xe€e X1 N...N X, Contradiction. O

CoROLLARY 2. - Let S be a compact metric space and Xi,..., X
subsets of S such that X1N...NX, = ¢, then it is enl(X,,...,Xn) > 0.
O

2. - The second normalization theorem

DEFINITION 4. - Let A be a non-empty set, G a finite graph and
P ={X;}, j € J, a partition of A. A function f: A—> G is called quasi
constant with respect to P (w.r.t. P) or P-constant if the restrictions
of f to each X; are constant functions. Moreover, if A is a topological
space, f: A— G is called weakly quasi-constant w.r.t. P or weakly
P-constant if the restrictions of f to the interior of every X; are
constant.

REMARK. - If P’ = {X"t}, k € K, is a partition of A finer than P,
i.e. if all the X; € P are the union of elements X’: € P’, then the
function f is obviously quasi-contant also w.r.t. P’.

DEFINITION 5. - Let (S,9W) be a uniform space and W a vicinity
of ). A subset X of S is called small of order W or a W-subset if
X X X € W. Moreover a family € = {X;}, j €], is called small of
order W or a W-family if X; X X; < W, VjeJ.

REMARK 1. - If W is closed and {X;}, j € J, is a W-family, {X;},
j €J, is a W-family.

REMARK 2. - If S is metric, small of order We is the same as
saying that the diameter of X is < ¢ and, respectively, the mesh of
the family o€ is < €.

THEOREM 3. - (The second normalization theorem). Let S be a
compact space, the filter ) the uniformity of S, G a finite directed
graph and f:S— G a completely o-regular function from S to G.
Then there exists a vicinity W € O such that, for all the W-parti-
tions P = {X;}, j € J, there exists a function h : S — G which is com-
pletely o-regular, weakly P-constant and completely o-homotopic to f.

Proof. - Consider all the n-tuples ai,...,a, n = 2, non-headed
in G. Since f is c.oregular, it follows 4 N ... N A, = ¢. By Prop-
osition 1, for every wn-tuple ai,...,a, there exists a vicinity
V(a.....an € €)) such that Ai,..., A, are V (a.-...a0 _enlargable. Then
we put V= NV (a.....a) and consider a simmetric vicinity W € 9
such that WeW < V. Now, if P ={X;}, j € J, is a W-partition, we
can define a relation g:S— G, by putting, as constant value, for
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every Xj€ P, any vertex of H ({f(X )}). We prove that g satisfies
the followmg conditions:

i) g is a function. We have only to state that, for all X, the set
{f(Xj)} ={ai,...,a.} is headed. Suppose it is non-headed, and let
Xt,...,xn € X; be, such that f(x1))=ai,...,f(xs) =a. Since
Xix X;<W it follows (x,x)eW, r,s=1,...,n, and also
x1eWixy)N...NW(x,) € V(A)N...NV(A,). Contradiction.

ii) g is completely quasi-regular, i.e. Vx € S the image-envelope
(g(x)) is totally-headed. Suppose there exists x € S and a n-tuple
ai,...,an € (g(x)) non-headed. Then it results x € Afﬂ .. .ﬂzifl and so
Wi(x) ﬂAf # ¢, Vi=1,...,n Hence in W(x) there are n points
Xi,...,%X» such that x; € Af, Vi=1,...,n But, from the definition
of g, there exist n elements X;€ P and n points y; such that
g(xi) =ai=f(y)) Vi=1,...,n where x; y; € X;. Since P is a W-par-
tition, we have (x;, y;) € W. Therefore by (x, x:;) € W, (x:;,y:) € W and
WeWCV,Vi=1,...,n, it results’

xeV(y)N...NV(y,) CV(A)N...O0V(An).
Contradiction.
iii) The function F:S X I - G, given by:

f(x) VxeS, Vtel0,1/2]
g(x) VxeS, Vtel[l/2,1]

is completely quasi-regular. This is true Vx e S, Vt = 1/2, since f
and g are completely quasi-regular functions. We have to prove this
also Vxe€ S, t =1/2, ie. that (F(x,t)) = (f(x)) U (g(x)) is totally
headed. Suppose x€ S and let ai,...,an.€ (f(x)) U (g(x)) be a
n-tuple non-headed. We can order the a; in such a way that
ai,...,ap € {f(x)) and ap41,...,an € {g(x)) — (f(x)). Therefore it is
X € Aflﬂ .. .ﬂfifp and so W(x) ﬂAfi;éfcb, Vi=1,...,p. Hence there are
in W(x) p points x1,...,x, such that x; € Al,Vi=1,...,p. Then it
isxeW(x) N...N W(xp) S V(Af)’ﬂ .N Vpr Moreover it is
xezif)+1 N...NA%, and by ii) it follows er(Af NNV (AL).
Hence we obtam the contradiction | xe€ V(Af )N. V(A{l ).

F(x,t) = {

Now if we consider any o-pattern h of g, we obtain the sought
function. In fact we have:

i’) h:S— G is completely o-regular (see [5] Proposition 7).

ii’) h is weakly p-constant by the definition of o-pattern of a
quasi-constant function.

iii’) h is completely o-homotdpfc to f. Since the homotopy F is
completely quasi-regular by iii), there exists an o-pattern E of F
(which is completely o-regular by [5], Proposition 7). Moreover we
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can choose E such that E(x,0) = f(x), E(x,1) = h(x), Vx € S, since
f and & are completely o-regular i.e. f(x) € H({f(x))) = H({(F(x,0)})
and h(x) €e H({g(x))) = H({(F(x,1))), Vx € S. Then h is completely
o-homotopic to f by E. [

ReMArk 1. - If W is a closed set, we can give the function g, by
choosing as constant image of X; € P any vertex of H({f(X;)}).

REMARK 2. - If S is a compact metric space, we can determine
a real positive number r and choose partitions P with mesh < r. In
fact, we have just to calculate enl(Ai,...,A.), Vn-tuple ai,...,a
non-headed; so the real number 7 is given by 1/2 inf(enl (A1, ..., An)).

REMARK 3. - If G is an undirected graph, the function g can be
choosen quasi-constant. Moreover if S is a compact metric space,
by Remark to Definition 2, we have just to consider the couples of
non-adjacent vertices ax, ar and then to find the distances d(As, Ax)
rather than the enlargabilities enl(An, Ax). Consequently, if we put
v’ = inf(d(An, Ax)) and r = 1/2inf(enl(An, Ax)), since by Remark 3
to Definition 3 it follows 7’ < 4r, we can choose a covering P = {X;},

j € J, with mesh < -

So we obtain again Property 7 of [8].

3. - The third normalization theorem

By comparing the second normalization theorem for directed
and undirected graphs, we remark an asymmetry since for the for-
mer we are able to construct a q.constant function, while for the
latter we obtain only a weakly q.constant function. Nevertheless,
by choosing a particular compact space S, also for directed graphs
we obtain results similar to those for undirected graphs. For this
purpose we consider the compact triangulable spaces and its finite
decompositions C by (open) CW-complexes (see [13], Cap. VII)
which satisfy the condition:

(1) Vo € C, ¢ is a subcomplex of C, i.e. VT€C, tNo = ¢ =>T€0O,

DEFINITION 6. - Let C be a finite cellular complex and D a sub-
set of cells of C. We denote by |C| a realization of C and by |D |
the subspace of C constituted by the points of the cells of D.

REMARK. - Nevertheless, if there is no ambiguity, we denote by
o both a cell and the subspace |o|. So, for example, we write ¢

rather than |o|.

(3) We add (1), since we consider cellular subdivisions (triangulations and sub-
divisions into cubes) of this kind. Nevertheless we can obtain the same re-
sults also if we leave out (1).
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DEFINITION 7. - Let D a non-empty subset of cells of a finite
complex C. We call star of a point x € | D| w.r.t. D, and write stp(x),
the set of the cells of D whose closure in |C|, and therefore in | D],
includes x. Moreover we call star of a subset X < |D| w.r.t. D, and
write stp(X), the set of the cells of D, whose closure has a non-
empty intersection with X. Similarly we can define the star stp(c)
of acell of D and the star stp(D’) of a subset D’ of D. Then, if D = C,
simply we write st(x), st(X),...,rather than stc(x), stc(X),...,.

REMARK 1. - The stars are open sets in |D|. In fact their com-
plements are closed in | D|, since if for a cell = it is T < |D|, also

it follows T < | D|. Then, if D = C, the complements of the stars are
subcomplexes of C. ‘

REMARK 2. - If x is any point of a cell o € D, then stp(x) = stp(c).
In fact in |D| it results x e T o C 7.

DEFINITION 8. - Let D be a subset of cells of a finite cellular
complex C. A cell = € D is said to be maximal in D if it is © = stp(7).

REMARK. - A cell is maximal in D iff it is an open set in |D|.
Consequently the cells maximal in a star are the cells maximal in
C which are included in the star.

DEFINITION 9. - Let D be a subset of cells of a finite complex C,
x a point of |D| and X a subset of |D|. We denote by str(x)
(resp. sty (X)) the set of the maximal cells of D, whose closure
includes x (resp. has non-empty intersection with X). If D=C
simply we write stm(x) and st™(X), rather than st?(x) and stg’(X).

REMARK. - Let x be any point 07 a cello € D, then obviously it
results st (x) = st?(c). 4

DEFINITION 10. - Let C be a finite cellular complex and G a fi-
nite graph. A function f:|C|— G is called quasi-constant w.r.t. C
or C-constant if f is quasi-constant w.r.t. the partition determined
by the cellular decomposition of |C|. Then, if D is a non-empty
subset of cells of C, the function f:|C|— G is called properly quasi-
constant in D w.r.t. C or properly C-constant in D, if, for all the
cells ¢ non-maximal in D, there exists a cell = € D (different from
c), such that: A

i) the restrictions of f to ¢ and to < are identical.

ii) cc 7.
At least if D = C the function f:|C|— G is called properly quasi-
constant w.r.t. C or properly C-constant.

REMARK. - A function f:|C|— G (properly) C-constant is also
(properly) quasi-constant w.r.it. a cellular decomposition C’ finer
than C. |
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PrROPOSITION 4. - Let C be a finite cellular complex, D a subset
of cells of C, G a finite graph and f:|C|—> G a C-constant function.
Then it results (f(x)) = f(st(x)), Vx € |C|.

Moreover, the function f is properly C-constant in D iff it is
f(sto(9)) = f(sty(s)), Yo € D.

At least, if D =C, the previous relation is equivalent to

(f(x)) = f(stm(x)), Vx € |C]|.

Proof. - i) Let v be any vertex of G and ¢ any cell of C, then i
follows: '

velf(x))oxeVie Jo/xeq and f(o) =ve Jo/cest(x) and
f(c) =vevef(st(x)).

ii) If it is f(stp(o)) = f(st#(c)), Vo € D, the function f is prop-
erly C-constant in D, since, Vo € D, from f(c) € f(st"(c)) we obtain

there exists in D a maximal cell = such that ¢ € T and f(s) = f(=).
The converse follows from the definition of properly quasi-constant
function.

iii) By Remark 2 to Definition 7, by Remark to Definition 9 and
by i), the condition (f(x)) = f(st™(x)), Vx € |C]|, is equivalent to
f(st(c)) = f(stm(c)), Vee C. O

In order to employ briefer notations, we give the following:

DEFINITION 11. - Let C be a finite cellular complex and G a finite
directed graph. A completely o-regular function f:|C|—> G, which
is properly C-constant is called a function pre-cellular w.r.t. C or a
C-pre-cellular function.

PROPOSITION 5. - Let C be a finite cellular complex and G a finite
directed graph. Then every C-pre-cellular function f:|C|—>G is
characterized, up to complete o-homotopy, by the restriction of f to
the set of the maximal cells of C.

Proof. - Let g:|C|— G be a C-pre-cellular function which takes
the same values as f on all the maximal cells of C. By Proposition 4
it results (f(x)) = f(stm(x)) = g(stm(x)) = {g(x)), Vxe€ |C|. Since
g is c.oregular, it is g(x) €e H((g(x))) = H({f(x))), ie. g is an
o-pattern of f and then g is c.o-homotopic to f. (See [5], Pro-
position 7). O

THEOREM 6. - (The third normalization theorem). Let S be a
compact triangulable space, G a finite directed graph and f:S—>G
a completely o-regular function. Then, for every finite cellular de-
composition C of S with suitable mesh, there exists a C-pre-cellular
function h:S—> G which is completely o-homotopic to f.

Proof. - Let C be a cellular decomposition of S with mesh < 7,
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where r = 1/2 inf(enl(A:1,...,As)), Vai, ..., a, non-headed n-tuple of
G (see Remark 2 to Theorem 3). Then we construct the function g

by choosing, Vo;eC, a vertex 'in H ({f(s:)}) rather than in
H({f(ci)}) (see Remark 1 to Theorem 3). Hence, Vxe|C|, it is

H(g(stm(x))) € H({g(x))). Given, indeed, a vertex a € H(g(st"(x)))

and a cell T € st™(x) such that g(t) = aq, ie. a € H({f(z)}), we prove
that a is a predecessor of all the vertices of (g(x)). In fact if
b € (g(x)) and a is not a predecessor of b, b is the image of a non-

maximal cell ¢, while, by definition of g, we have b e H({f(s)}).
Since ¢ c 7, and also ¢ C 7, it is b € f(z). Hence a is not a head
of f(=). Contradiction.

By remarking that, Vx € o, it is g(st™(x)) = g(stm(c)), we can
define the o-pattern % in the following way:

h(c) = a vertex of H(g(st"(c))), V o € C.

The function % is properly C-constant since, if T is a maximal
cell, from g(st™(t)) = {g(<)} it results h(t) = g(<). Hence, by de-
finition, we have h(c) € g(st™(c)) = h(stm(c)), Vee C. O

REMARK. - If G is an undirected graph, it is not necessary to
construct also the o-pattern to obtain a properly quasi-constant
function. In this case the condition iis reduced to % (¢c) = a vertex of

g(stm(c)).

4. - The third normalization theorem for homotopies

Let e,f:S—> G be two functions pre-cellular w.r.t. two finite
decompositions C and K of S and F:S X I - G a complete o-homo-
topy between e and f. Then, for every sufficiently fine finite cellular
decomposition T' of S X I, by Theorem 6, the function F can be re-
placed by a I-precellular function %2:S X I - G. In order that the
function # may also be a homotopy between e and f, the restrictions
of i to S X {0} and S X {1} must coincide with e and f. Hence it
is necessary that & characterizes on S X {0} and S X {1} two de-

compositions C and K finer than € and K, since e and f are prop-
erly quasi-constant (see Remark to Definition 10). Nevertheless,
as, for example, the value of the function # on S X {0} depends on
the value assumed by the function F on the maximal cells of the
star st(C), in general the restriction #/|C| is different from e.
Consenquently, at first, we must replace the homotopy F by a ho-
motopy M given by: :

e(x) VxeS, Vt e [0,1/3]
M(x,t)= { F(x,3t1) VxeS, Vtel[1/3,2/3]
f(x) VxeS, Vtel2/3,1]
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Then we have to construct suitable cellular decompositions of
the three cylinders S X [0,1/3], S X [1/3,2/3] and S x [2/3,1].

PROPOSITION 7. - Let S be a compact triangulable space, C a fi-
nite cellular decomposition of S, G a finite graph and e:S—>G a
properly C-constant function. If we consider the decomposition
L={{0},10,1[,{1}} of I and the product decomposition T = C X L
of the cylinder S X I, then the function F:S X I—> G, given by
F(x,t) =e(x), Vxe€S, Vtel, is properly T-constant.

Proof. - We have only to remark that a cell © is maximal in T
iff t=71"%X10,1[, where *’ is a maximal cell in C. Then it results
F(z) =¢€e(<'). O

REMARK. - Since the restrictions F / S x {0} and F / S >< {1}
coincide with e, f they are obviously C-constant

So we obtain:

THEOREM 8. - (The third normalization theorem for homotopies).
Let S be a compact triangulable space, G a finite directed graph,
C, D two finite decompositions of S and e, f:S—> G two functions
precellular w.r.t. C and D respectively, which are completely
o-homotopic. Then, from any finite cellular decomposition T» of
S X [1/3,2/3] of suitable mesh which induces on the bases S X {1/3}
and S X {2/3} decompositions € and D finer than C and D, we
obtain a finite cellular decomposition T of S X I and a homotopy
between f and g which is a T-pre-cellular function.

Proof. - Let F:S X I— G be a complete o-homotopy between
e and f. We define the complete o-homotopy M : S X I — G between
e and f as in the introduction of this paragraph. Then, if we con-
sider the restriction of M to S X [1/3,2/3], we can determine the
real number r, upper bound of the mesh. Now if I, is a finite
cellular decomposition, satisfying the conditions of the theorem
and with mesh <r, we can consider the cellular decomposition
I'=T1 UT, U T of the cylinder S X I, such that:

i) T is the product decomposition € X L; of S x [0,1/3], where
L, ={{0},10,1/3[,{1/3}}.

ii) I3 is the product decomposition D X L3 of S x [2/3,1], where
Ly ={{2/3},12/3,1[, {1}}.

Then we define the function g:S X I — G, given by:
i M(c), Voel — I},
g(c) = -
a vertex of H({M(c)}), Voel,.

Afterwards, by Theorem 6, we construct the o-pattern % of 2,
by choosing as element of H(g(st"(c))), the value g(c) = M(c) if



72 ' MARCO BURZIO and DAVIDE CARLO DEMARIA

g €I’ — T, By construction zisa I‘-pfe’-cellular function. Hence %2 is the
sought homotopy since % / Sx{01=¢ and 7 / S x {1} =f 0O

REMARk. - The finite cellular éieco-mposition I' induces on the
bases S X {0} and S x {1} the decompositions € and D.

5. - The second normalization themJem between pairs

Given a set A, a non-empty sub‘set A’ of A, a finite graph G and

a subgraph G’ of G, we can generalize Definition 4, by considering

functlons f AA’— G, G’ which are quasi-constant w.r.t. a partition

={X;}, j € J, of A. In this case it follows that the image of every

X,, such that X; N A’ 2 ¢, necessary is a vertex of G’. Moreover, if

A is a topological space and A’ a subspace of A, we can also gen-
eralize the definition of weakly P—constant So we have:

PROPOSITION 9. - Let S be a compact space, the filter ) the uni-
formity of S, S’ a closed subspace of S, U a closed neighbourhood of
S’, G a finite directed graph, G’ a subgraph of G and f:S,U—G,G’

a completely o-regular function. Iff we choose in U a closed neigh-
bourhood K of S’ we can determine a vicinity W € @) such that,
for all the W-partitions P ={X;}, je€J, there exists a function

h:S, K - G,G’, which is completely o-regular, weakly P-constant
and completely o-homotopic to f: §,8—>G,G.

Proof. - At first there exists a closed neighbourhood K
of §’, included in U, since S is normal. Then, by following
the proof of Theorem 3, we determine a vicinity V € 9 such that
V(Af) n...nNn V(Af) = ¢, Vn-tuple ai, ..., a, non-headed of G. More-
over, if 6)/))’ is the trace filter of 9 on U X U, we obtain, as before,
a vicinity Z’ € )’ such that Z’(A’f) n. ﬂZ’(A’f ) = ¢, Vm-tuple

ai,...,a'm nonheaded of G’ Smce Z’e%))’ necessanly it is
Z = V1 N (Ux U), where Vie ). Then we choose a symmetric
vicinity W € Q) such that WeW cV NV, and W(K) c U. Now,
given a W-partition P ={X;}, jeJ, of S, we define a relation

g:Ss, I°<—>G, G’, by putting, for evéry X;, j € J, the constant value:
a vertex of Ho({f(X;)}) if X;NK=4¢,
g(Xj) = { a vertex of Ho-({f’(Xi)}): if X; N K s ¢.
We verify that g satisfies the following conditions:
i) g is a function. In fact it results:

a) VX;/X; N K = ¢, the set {f(X;)} is headed in G. For proving
this we go on as in i) of the proof of Theorem 3.

b) VX;/ X;NK = ¢, the set {f’(X;)} is headed in G’. At first we
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prove that X; C U. Let z€ X;NK, Vye X; it is (z,y) e X; X X; S W,
ie. X; € W(z) € W(K) S U. Then, if we go on as in i) of Theorem 3,
we obtain that {f’'(X;)} is headed in G’. Moreover, we remark that
the vertex g(x), chosen in He ({f'(Xj)}), is also an element of
He({f(X;)}), since f(X;) = f'(X;).

From a) and b) it follows that there exists g(x), for every
x € S; hence g is a function.

it) and iii) The function g:S, Io(—> G,G’ and the homotopy
F:S8X I,IO( X I—G,G’ between f and g given by:
f(x) VxeS, Vtel0,1/2[
g(x) VxeS, Vtell/2,1]

are completely quasi-regular functions.

F(x,t)={

a) g:S—>G and F:S X I -G are c. quasi-regular functions. We
obtain this result as in ii) and iii) of Theorem 3.

b) The restrictions g’:I°(—>G' and F': K X I —-> G’ are c. quasi-
regular. At first we observe that, by the definition of g, it is g(K) c G’
and then F(K X I) c G’ Secondly we go on as in ii) and iii) of

0 o
Theorem 3, by choosing, Vx' € K, the neighbourhood W(x’') N K,
rather than W(x’), and by using the vicinity Z’ rather than V. Then,
for example, if we suppose that the m-tuple a’1,...,a'm € (g'(x’))
is non-headed, we obtain the contradiction

x' € Z’(A'{') n...n Z’(A’f; ).
From a) and b) it follows ii) and iii).
Now if we consider any o-pattern % of g, we obtain the sought
function. In fact we have: '
i')h:S, IO(-—>G, G’ is completely o-regular (see [5], Proposition 15).

ii’) h is weakly P-constant by the definition of o-pattern of a quasi-
constant function.
iii’) h is completely o-homotopic to f:S,S’'— G, G’. Since the homo-

o 0
topy F:S,K—G,G’ is c. quasi-regular by iii) and K is open,
there exists an o-pattern E (which is c. o-regular by [5], Propo-
sition 15) of F. We can choose E such that E(x,0) = f(x) and
E(x,1) = h(x), Vx € S, for f and g are c. oregular ie.:

a) f(x) € He({f(x))) = He({F(x,0))) and h(x) € He({g(x))) =
= H¢({F(x,1)), Vx € S.

b) f'(x) €e He({f'(x))) = He((F'(x,0))) and HW’(x) € He:({g(x)}) =
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= Ho({F'(x,1))), Vx e K.
Hence the o-pattern h(x) = E(x, 1 ) is c. o-homotopic to f by E. [

REMARK. - If S is a compact metric space, we can determine a
positive real number r and choose partitions P with mesh < r. In
fact, we put & = inf (enl(Af e, A:; )), Vn-tuple a4, ..., a, non-headed
of G and & = inf(enl (A’f AT )), Vm-tuple a’y,...,a’» non-head-
ed of G’ and we choose £3 such that Ws(K)cU. Then the real number

&2
r is en b — —
giv y mf( >3 , €3).

THEOREM 10. - (The second normalization theorem between pairs).
Let S be a compact space, the filter ) the uniformity of S, S’ a
closed subspace of S, G a finite directed graph, G’ a subgraph of
G and f:S8,8 = G,G’ a completely o-regular function. Then we can
determine a closed neighbourhood K of S’ and a vicinity W € Q)
such that, for all the W-partitions P = {X;}, j€J, there exists a

function h:S,IO( — G, G, which is completely o-regular, weakly P-
constant and completely o-homotopic to f.

‘Proof. - By Proposition 28 of [5] and Theorem 16 of [4] there
exists a closed neighbourhood U of S’ and an extension k& : S,U—G,G’
which is c. oregular and such that k:S,S’— G, G’ is c. o-homotopic
to f. Then we obtain the result by using Proposition 9 for the
function ¥:S,U—-G,G. I

REMARK. - If G is an undirected graph, the function g can be
choosen quasi-constant. Moreover if S is a compact metric space,
we have only to consider the couples of vertices rather than the
n-tuples and to determine & = inf(d (Af Af ), V couple a;, a; of non-

adjacent vertices of G, & = inf(d (Af’ Af ) ), Y couple a, as of non-
adjacent vertices of G’. Then, if we put r’ = inf(ey, €2), as in Remark
3 to Theorem 3, we can choose a covering P = {X;}, j € J, with

mesh < %— (see [8], Corollary 8).

6. - The third normalization theorem between pairs

Now we consider pairs of spaces given by a finite cellular
complex C and by a subcomplex C’ of C; it follows that |C’| is a
closed subspace of | C|. Since we use completely o-regular functions

f:1C|,|C"|— G, G’ balanced by the open set | st(C’)| (see [5], Def-
initions 6 and 12), we put:

DEFINITION 12, - Let C be a finite complex, C' a sub-
complex of C, G a finite graph and G’ a subgraph of G. A function
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f:lC|,|C|=>G,G’ is called precellular wr.t. C,C’ or C, C'-pre-cel-
lular if:

i) f:|C|,|st(C’)|—G,G’ is completely o-regular.
ii) f:|C|— G is properly C-constant.
iii) f:|C|— G is properly C-constant in C’.

THEOREM 11. - (The third normalization theorem between pairs).
Let S be a compact triangulable space, S’ a closed triangulable sub-
space of S, G a fzmte directed graph, G’ a subgraph of G and
f:5,8—>G,G a completely o-regular function. Then for every
finite cellular decomposition C,C’ of the pair S,S’, with suitable
mesh, there exists a function h:S,S — G, G’ which is C, C'-pre-cel-
lular and completely o-homotopic to f.

Proof. - By proceding as in the proof of Theorem 10,
at first we consider an extension k:S,U—G,G’, where U is
a closed neighbourhood of S’. Then, by Remark to Proposi-

tion 9, we determine a positive real number r = inf(— F'l 22 , €3),
where g = inf(enl (A’C ,A : )), Vn-tuple ai, ..., a, non-headed of G,
= inf( enl(A’k A’f; ) ), Vm-tuple a1,...,a’» non-headed of G’

€3 is such that WEa(S’) < U. Since we can use |st(C’)| as an open
neighbourhood of S’, now it is not necessary to construct, as in
Proposition 9, a closed nelghbourhod K of §’, included in U, and to

consider the interior K
Then, if C,C’ is a finite decomposition of S, S’ with mesh < 7,

it results |st (C’)| < Wr (S’), since all the cells have diameter
< r. Afterwards, we construct the c.quasi-regular function
g:|C|,|st(C’)| = G,G by putting, Vo € C, (see Proposition 9 and
Remark 1 to Theorem 3):

a vertex of He ({k(c)}) if o€ C-st(C’)
g (o) { a vertex of He'({k(c)}) if o€ st(C’).

To construct a c. o-regular o-pattern %, we must separate the cells
of C wr.t. st(C’) as before. Moreover, to obtain % properly quasi-
constant, we must separate the cells of C w.r.t. C’ in the following
way:

1) cells ©* maximal in C

a) cells included in C-C*: {2) cells ¢ non-maximal in C

1) cells © maximal in C

2) cells ¥’ maximal in ¢’ and non-max-

b) cells included in C’: imal in C

3) cells ¢’ non-maximal in C’.
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Now (see Theorem 6), by induction, we construct the o-pattern #,
by putting at the first step:

i) hit) =g(x)

ii) h(c) = avertex of Hr(g(st™(c))) where
I'=Gifo e C-st(C’)

=G ife e st(C) E
iii) h(<’) = a vertex waHG»(g(st"’('r’)E)).

If we define, as before, the irﬁages of the cells maximal in C,
at the second and last step, we put:

h(c’) = avertex of He (h(st™ (o) )),
Hence h:|C|,|st(C’)|—G,G’ is the sought function. [J

REMARK. - If G is an undirected graph, it is not necessary to
construct the extension of the function f:|C|,|C’|— G, G". In fact,

if we determine the upper bound % of the mesh as in Remark to

Theorem 10, and, consequently, if we consider the cellular de-
composition C,C’, we can obtain the strongly regular function
g:S,|st(S’) |-G, G, by putting, Vo € C:

J a vertex of f(v) if o € C-st(C’)
glo) = | a vertex of f(o) N o if o€ st(C’).

Moreover, in the construction of the o-pattern %, we have only to
separate the cells w.r.t. C and C'.

Theorem 8 can be generalized by:

THEOREM 12. - (The third normalization theorem for homotopies
of functions between pairs). Let S be a compact triangulable space,
S’ a closed triangulable subspace of S, G a finite directed graph,
G’ a subgraph of G, C,C’ and D, D’ two finite cellular decompositions
of S,S" and e, f:S,8—>G,G two functions precellular w.r.t.
C,C’ and D,D’ respectively, which are completely o-homotopic.
Then, from any finite cellular decomposition T, I, of the pair
S x [1/3,2/31, S’ x [1/3,2/3] of suitable mesh, which induces on
the pairs of bases S X {1/3} and S’ X {2/3} decompositions C, €’
and D, D’ finer than C,C’ and D,D’, we obtain a finite cellular de-
composition T, I of the pair S X I, S’ X I and a homotopy between
e and f which is a T, I'-pre-cellular function.

Proof. - Since [st(C’)| and |st(D’)| are rispectively bal-
ancers (see [5], Definition 12) of e and f in S’, the open set
U=|st(C’)| N |st(D’)| is a commbn balancer of e and f. Now let
F:SX1, S8 XI1-G,G be a complete o-homotopy between e and f
and, by Proposition 30 of [5] we can construct a closed neighbour-
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hood V of S’ X I and a c. oregular function k:S X I,V—=G,G,

which is a homotopy between e and f. Then, the c. o-homotopy '12
can be replaced by the c. o-homotopy M given by:

e(x) VxeS, Vtel0,1/3]
M(x,t) =14 F(x,3t1) VxeS, Vtel[l/3,2/3]
f(x) VxeS, Vte[2/3,1]

and, by considering the restriction of M to S x [1/3,2/3], we de-
termine the real number r, upper bound of the mesh (see the
proof of Theorem 11). Moreover, if I, I"; is a cellular decompo-
sition, which satisfies the conditions of the theorem and with mesh
< r, we can construct the cellular decomposition I' =Ty U I, U T3,
I'=T1UTI2UTI" of the pair of cylinders S X I, S’ X I, where
I, I, T, T, are the product decompositions, respectively, of € X L,
€' X Ly, D X L;, D’ X L3 (see Theorem 8).

Then we define the function 2:8 X I, S’ X I - G, G’ by putting:
M(c), VoelTI;

g(c) = 1 a vertex of Hg ({M(c)}) if o € I'»stra(T™2)

a vertex of Ho'({M(5)}) if o€ stra(T™2).

Hence, by Theorem 11, we construct the o-pattern & of g, by choo-
sing, if o € I''I;, as value of %(c), the value g(c) = M(c). In this
way h coincides with M on S X [0,1/3] and S x [2/3,1]. O

REMARK. - If G is an undirected graph, it is not necessary

A
to construct the extension k of the function F. (See Remark to
Theorem 11).

1. - Case of n subspaces and n subgraphs

The previous results can be easily generalized to the case be-
tween (n + 1)-tuples (see [3], § 8b and [5], § 11).

Let S be a compact topological space, G a finite directed graph,
S1,...,Sn closed subspaces of S and Gi,...,G, subgraphs of G,
such that S; is a subspace of S; and G; a subgraph of G;
Vi,j=1,...,n,j>1i In this case we have to consider functions
:88,...,8%—>G, Gi,...,G, between (n +1)-tuples and their
restrictions f1:S1—>G1,...,fn: Sn— Gn

7a) Given a c. oregular function :S,S1,...,8:.—G,Gy,..., Gy,
where S is compact and Si,...,S. are closed subspaces, by [5],
§ 116, we can construct n closed neighbourhoods U; of S;
i=1,...,n and a c. oregular extension k:S,U;,...,U.—G,
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Gi,...,G, such that k:S,81,...,8.—G, Gl,.. , Gn .is c. o-homo-
topic to f. Now, for all the pairs *U,, S;, i=1,...,n we determine

a closed neighbourhood K; of S;, included in U, Then, if the filter
8 is the uniformity of S, by following the proof of Proposition 9,
we can obtain:

i) a vicinity V € ®) such that V(Af) N...N V(Ak) == ¢, Vr-tuple
a,...,a- non-headed of G;

ii) Vi=1,...,n a vicinity Z; of the trace-filter @; of 9 on U;XU,,
such that Z,-(Afi) n. ﬂZ,(Ak) = ¢, Vstuple ai,...,as non-
headed of G and consequently, we obtain a vicinity
V,-(-:G)./))/Z.-=V,~ﬂ(U,-><U) |

At least, we choose a syrﬁmetric vicinity W,' such that
WoeWcecvVnvin...NVy,and W(K;))SU;, i=1,...,n

Given, now, a W-partition P = {X;}, jel, of the space S, we

define a relation g: S, Ki,...,Kxa=G,G1,...,G, by putting, VX,
j € J, the constant value:

a vertex of He({f(X;)}) if X;NK1= ¢

g(X) _Ja vertex of HG]({fI(Xi) }) if XinKl # ¢ and X,'ﬂKz = ¢
1 - i

-----------

a vertex of Heg,({f2(X;)}) if X;NK, = ¢.

Similarly to Proposition 9, we ver%fy that g is c. quasi-regular and
that every o-pattern 2 of g is c. o-homotopic to f. Hence we can
give: '

TueoreM 13. - (The second normalization theorem between n-
tuples). Let S,Si1,...,S» be a (n+ 1)-tuple of topological spaces,
where S is compact and Si,...,Sn. are closed subspaces of S,
GGi,...,Gn. a (n+1)-tuple of finite directed graphs and
1:8,81,...,8—>G,Gy,...,Gn a completely o-regular function. Then,
if the leter W is the umformzty of S, we can determine n closed
neighbourhoods K; of Si, i=1,...,n and a vicinity W € ) such
that, for all the W-partitions P = {X }, j €J, there exists a function

h:S, Io{l yenes IOC,, ->G,Gt,...,Gy Which is completely o-regular,
weakly P-constant and completely o-homotopic to f. O

REMARK 1. - If S is a compacf metric space, we can determine
a positive real number r and consider partitions with mesh < r.

REMARK 2. - If G is an undirected graph, the function g can be
choosen P-constant. Moreover, since it is not necessary to replace
f with an extension k, we have only to consider a symmetric vicin-
ity WWeWecVnVin...NVa
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7b) Now let C,Ci,...,C, be a (n + 1)-tuple of spaces which
consists of a finite cellular complex C and of n subcomplexes
Ci,...,Cn A function f:|C|,|Ci|,...,|Ci|—>G,Gi,...,G, is called
pre—cellular w.rt. C,Ci,...,C, if:

i) f:1C|,|st(Ci)],...,|st(Ca) | >G,G1,...,Gx is c. oregular;
ii) f:|C|— G is properly C-constant;
iii) f:|C|— G is properly C-constant in C; (in C,,..., Cy).
Now, if f:S,81,...,8:—>G,Gy,...,G, is a c. oregular function,

where S is a compact triangulable space, Si,...,S. closed trian-
gulable subspaces of S, we can consider a c.o-regular extension

k:S,Up,...,Us—>G,Gi,...,G, and determine the positive real num-
€ € €n

ber r = inf(—, 7’ oM, ) Where e = inf (enl (A, .., 45)),

Vrtuple ai,...,ar non-headed of G, ¢ = inf(enl (A"i A" i)),

V situple ay,..., as, non-headed of G; and m; are such that
Wﬂ,-(S,-) cU;,i= 1,...,n

Given then a finite cellular decomposition C,Ci,...,C, of
S,81,...,S, with mesh < r, we consider the following partition
of C:Dy = C-st(Ci), Dy = st(Cy)-st(C2),...,D, = st(Cn) and we con-
struct the c. quasi-regular function

g:|C|,|st(Ci)|,...,|st(Ca)|—>G,Gi,...,Gn

by putting, VD;, Vo e D;, g(s) = a vertex of Hg, ({k(c)}), where

Gy = G. We separate the cells of C, besides usmg the subsets D;,
also in the following way:

1) cells * maximal in C
i) cells included in C-C; . .
2) cells ¢ non-maximal in C

(1) cells T maximal in C

2) cell imal in C; and non-maxi-
i) cells included in Ci-C, 1 2 cells T maimal in C; and non-maxi

| 3) cells o1 non-maximal in Ci.

(1) cells © maximal in C

2) cells 71 maximal in C; and non-maxi-
mal in C

;1. + 1) Eeils T, maximal in C,

(1 + 2) cells ¢, non-maximal C,.

n+1) cells included in C, 1

At least, we can construct, by induction, the o-pattern % in
n + 1 steps by putting:
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(h(t) =g(z)
in the first step: | k(o) = a vertex of Hr(g(st"(c)))
' | h(71) = a vertex of Hr(g(st™(<1)))

h(c =évefte of Hr(h(ste (o
in the second step: - (1) X r(h(ste,(o1)))

| i(72) = a vertex of Hr(h(st'g1 (2)))

h(c2) = a vettex of Hr(h(stc,
in the third step: { (% — & Vertex of Hr(h(ste,(22)))

| 71(vs) = a vertex of Hr(h(ste,(3)))

in the (n + 1) step: h(cn) = a vertex of Hr(h(strgn(an))), where,
VreC, we put T' =G; if A € D,

Hence we obtain:

THEOREM 14. - (The third normalization theorem between (n+1)-
tuples). Let S,S1,...,S, be a (n+ 1)-tuple of topological spaces,
where S is a compact triangulable space, Si,...,S. are closed
triangulable subspaces, G,Gi,...,Gn a (n+ 1)-tuple of finite di-
rected graphs and f:S,S1,...,8.—>G,G1,...,G, a completely
o-regular function. Then, for every finite cellular decomposition
C,Ci,...,Chof S,S1,...,S, with suitable mesh, there exists a funct-
ion h:S,81,...,8.—>G, Gi,...,G, pre-cellular w.r.t. C,Ci,...,Cy
and completely o-homotopic to f. [O

By a procedure similar to that one used in the proofs of
Theorems 8 and 12, we also obtain:

THEOREM 15. - (The third normalization theorem for homotopies
of functions between (n+ 1)-tuples). Let S,Si1,...,S, be a (n+ 1)-
tuple of topological spaces, where S is a compact triangulable space,
Si,...,Sa.are closed triangulable subspaces, G,G1,...,G,a (n+ 1)-
tuple of finite directed graphs, C,Ci,...,C, and D,D,,...,D, two
finite cellular decompositions of S, S1,...,S.and ¢,f:S,S1,...,Sx—
->G,Gy,...,Gs two functions pre-cellular w.r.t. C,Ci1,...,C, and
D,Dy,...,D, respectively, which are o-homotopic. Then, from any
finite cellular decomposition of the (n+ 1)-tuple S X [1/3,2/3],
S1x [1/3,2/31,...,8.x [1/3,2/3], of suitable mesh, which in-
duces on the bases decompositions finer than C,Ci,...,C, and
D,D,,...,D, we obtain a finite cellular decomposition I',Ty1,...,T,
of the (n+ 1)-tuple S X1, St x1I,...,S, X 1, and a homotopy be-
tween e and f, which is a pre-cellular function w.r.t. T,T1,..., T O



THE SECOND AND THIRD NORMALIZATION etc. 81

8. - Case of homotopy groups

Since the n-cube I" is a triangulable compact manifold, we can
apply the results of the previous paragraphs to the case of absolute
and relative n-dimensional groups of regular homotopy. So we can
choose, as representative of any homotopy class, a loop which is
pre-cellular w.r.t. a suitable cellular decomposition of I". Now, the
cellular decompositions of I* which are relevant for applications, are
the triangulations and the subdivisions into cubes (the latter are
determinated by a partition into k parts of equal size of every edge
of I*). To construct the absolute groups Q.(G,v) we consider o-reg-

ular loops i.e., oregular functions f: I, I"—> G,v where I” is the
boundary of I” and v a vertex of G, whereas, in the case of relative
groups Q(G, G’,v) we use the o-regular relative loops, i.e. o-regular

functions f: I~ i”, J'-1 G,G’,v where Jr-! is the union of the
(n — 1)-faces of I7, different from the face x, = 0. Since the sub-

spaces I, Jn-! are an union of faces of I", they are closed subspaces,
which can be triangulated and subdivided into cubes. So, by apply-
ing the third normalization theorem (see Theorems 11 and 14),
directly we obtain:

THEOREM 16. - On the previous assumptions, in every o-homo-
topy class of the group Qu.(G,v) (resp. Q.(G,G’,v)) there exists a
loop which is pre-cellular w.r.t. a suitable triangulation (subdivision
into cubes) of I". ‘

Proof. - Let o be an o-homotopy class and f € « a loop. By [4],
Theorem 15 and its generalization, we can replace f by a c. o-regular
function g € a. Moreover, by Theorems 11 and 14, we can replace g
by a function s € &« which satisfies the sought conditions, since
there always exist triangulations and subdivisions into cubes with
mesh < r, where 7 is a predeterminate real number. [

REMARK. - If G is a finite undirected graph, we obtain Property
13 of [8] again. Nevertheless, we remark that the meaning of pro-
perly quasi-constant function of Definition 10 is weaker than that
one given there. In fact, now, the constant value of a cell ¢ is equal
to the value of a maximal cell T € st(c), whilst, before, the value
of ¢ must also correspond to that one of a cell of properly upper
dimension.

To obtain the third normalization theorem for homotopies, we
recall that the cellular decompositions Iy and I'; are product de-
compositions. Consequently, we have:

i) To obtain a triangulation of I" X I, first we must triangulate
every prism of the product. To this aim, we remark that it can
be done by retaining the same triangulations ¢ and D on the
respective bases.



82 MARCO BURZIO and DAVIDE CARLO DEMARIA

ii) Whilst, to obtain a subdivision of I” X I into k"*+! cubes (where
k is a multiple of 3), we must complete the subdivision of
I" x [1/3,2/3] into 1/3 k"+1 cubes, by giving a subdivision into
cubes of the parallelepipeda of the product cellular decompo-
sitions I'1 and TI&. (

Then we have: i

THEOREM 17. - On the previous assumptions, let f,g be two
o-homotopic loops which are pre-céllular w.r.t. the triangulations T
and T’ (subdivisions into cubes Q and Q') of I". Then, between f
and g there exists a homotopy which is pre-cellular w.r.t. a suitable
triangulation (subdivision into cubes), which induces on I" X {0}
and I" X {1} triangulations (subdzwszons into cubes) finer than T
and T’ (than Q and Q’). [

REMARK 1. - If G is a und.lrected graph we obtain Property 14
of [8] again. Moreover now we can avoid the extension k of the c.
o-regular function, by choosing as image of a cell ¢, whose closure
intersects the basis S X {0} (S X {1}), the value of any maximal

cell of o N (S X {0}) (c N (Sx{1})).

. REMARK 2. - The subdivision into cubes is useful to obtain the
regular homotopy groups by blocks of vertices of G. (See [10]).
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