BASES OF CONVERGENCE AND DIAGONAL CONDITIONS (*)

by Piotr Mikusiński (in Katowice) (**)

- Sommario. Per le strutture di convergenza (di successioni ordinarie) si confrontano quattro condizioni di tipo diagonale; si costruisce un esempio di convergenza che, aggiunto alle implicazioni già note, dimostra che le quattro condizioni sono a due a due non equivalenti.
- SUMMARY. For convergences (of ordinary sequences) four diagonal conditions are considered; a counterexemple is given allowing to conclude, together with some previous results, that any two among the four conditions are not equivalent.
- 1. When studying convergences, we usually assume the following conditions:
- **F** Each subsequence of a convergent sequence is convergent to the same limit.
- **U** If from each subsequence of x_n we can select a subsequence which is convergent to x, then x_n is convergent itself to x.
- **S** A constant sequence x, x, \ldots is convergent to x.

In minute investigations these three conditions are not sufficient. The following condition turned out to be very useful and was considered by many authors independently.

D If $x_{mn} \to x_m$ for each $m \in N$ and $x_m \to x$, then there exists a sequence of indices $p_n \to \infty$ such that $x_{np_n} \to x$.

^(*) Pervenuto in Redazione il 30 giugno 1981.

^(**) Indirizzo dell'Autore: Institute of Mathematics - Polish Academy of Sciences - Wieczorka, 8 - 40-013 Katowice (Poland).

By N we denote the set of all positive integers. Condition **D** says that if we have an infinite matrix whose n-th row is convergent to x_n and the sequence x_n converges to x, then the matrix has a diagonal convergent to x. By a diagonal we mean any sequence whose n-th element is in the n-th row of the matrix and which has at most a finite number of elements in each column. A subsequence of a diagonal is called subdiagonal.

Condition **D** is not the only condition of diagonal type appearing in literature. In [1] there are considered three other diagonal conditions. One of them ensures existence of a subdiagonal instead of the diagonal.

D' If $x_{mn} \to x_m$ for each $m \in N$ and $x_m \to x$, then there exist two sequences of indices $p_n \ q_n \to \infty$ such that $x_{p_n q_n} \to x$.

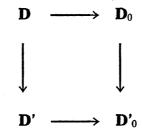
In another condition, limits of rows are assumed to be equal:

D₀ If $x_{mn} \to x$ for each $m \in N$, then there exists a sequence of indices $p_n \to \infty$ such that $x_{np_n} \to x$.

It is possible to join assumptions of \mathbf{D}_0 with thesis of \mathbf{D}' :

D'₀ If $x_{mn} \to x$ for each $m \in N$, then there exist two sequences of indices $p_n, q_n \to \infty$ such that $x_{p_n q_n} \to x$.

We have the following trivial interferences:



It is not difficult to give an example of convergence satisfying condition \mathbf{D}_0 but not \mathbf{D}' (see [2], p. 87). The aim of this note is to give, under Continuum Hypothesis, an example of convergence \mathbf{D}' but not \mathbf{D}_0 . In this way we proved that if we assume Continuum Hypothesis, then any two conditions from among \mathbf{D} , \mathbf{D}' , \mathbf{D}_0 , \mathbf{D}' 0 are not equivalent.

To construct this example we use the notion of a base of convergence at a point introduced by Dolcher in [2]. At the end of this note we discuss some facts concerning diagonal conditions and bases of convergences.

2. Let X be a nonempty set endowed with a convergence satisfying conditions $\mathbf{F} \mathbf{U} \mathbf{S}$. To define a base of convergence we shall use the notation introduced in [4] and [5]. If \mathfrak{A} is any family of sequences of elements from X, then by $S\mathfrak{A}$ we denote the family

of all subsequences of sequences from α . In symbols:

$$SA = \{\langle x_n \rangle \in X^N; \exists \langle y_n \rangle \in A \quad x_n < y_n \},$$

where $x_n < y_n$ means that x_n is a subsequence of y_n . By $E\mathfrak{A}$ we denote the family of all sequences from X^N which have a subsequence in \mathfrak{A} . In symbols:

$$E\mathfrak{A} = \{\langle x_n \rangle \in X^N; \exists y_n < x_n \quad \langle y_n \rangle \in \mathfrak{A}\}.$$

The family of all sequences whose all subsequences belong to α is denoted by $R\alpha$. In symbols:

$$RA = \{\langle x_n \rangle \in X^N; \ \forall y_n < x_n \ \langle y_n \rangle \in A\}.$$

By RESA we mean a composition of operations S, E, R on A.

A family of sequences \mathcal{B}_x is said to be a base of convergence at x, iff $RES\mathcal{B}_x$ is the family of all sequences converging to x.

We can say that \mathfrak{B}_x is a base at x if each sequence converging to x has a common subsequence with a sequence from \mathfrak{B}_x . A convergence generated by such bases at each point of X satisfies conditions $\mathbf{F}\mathbf{U}$. If we additionally assume that for each $x \in X$ the constant sequence x, x, \ldots belongs to \mathfrak{B}_x , then we obtain a convergence satisfying condition \mathbf{S} . It is obvious that every convergence having properties $\mathbf{F}\mathbf{U}$ has a base at each point. It suffices to take for \mathfrak{B}_x the family of all sequences converging to x. In applications, bases of minimal number of sequences are of main importance.

Two sequences will be called *independent*, if they have no common subsequence. So, x_n and y_n are independent iff $S\{\langle x_n\rangle\} \cap S\{\langle y_n\rangle\} = \phi$. Saying a family of independent sequences, we mean that any two sequences from it are independent. If a sequence x_n is independent of each sequence from a family of sequences \mathcal{F} , we say that x_n is independent of \mathcal{F} .

Now we introduce some lemmas which are useful in presentation of the example to be constructed.

LEMMA 1. Let \mathcal{F} be a family of independent sequences. If $\mathcal{F}_1, \mathcal{F}_2 \subset \mathcal{F}$ and $\mathcal{F}_1 \cap \mathcal{F}_2 = \phi$, then $RES \mathcal{F}_1 \cap RES \mathcal{F}_2 = \phi$.

Proof. Assume, on the contrary, that $\langle x_n \rangle \in RES \mathcal{F}_1 \cap RES \mathcal{F}_2$. Then there exists a subsequence y_n of x_n which is a subsequence of a sequence from \mathcal{F}_1 . Farthermore, there exists a subsequence z_n of y_n which is a subsequence of a sequence from \mathcal{F}_2 . Hence, z_n is a subsequence of two different sequences from \mathcal{F}_2 , but this is in contradiction with independency of sequences from \mathcal{F}_2 .

LEMMA 2. Let, for each $x \in X$, \mathfrak{B}_x be a base of convergence at x. Condition \mathbf{D}' is equivalent to the following condition

* If, for each $m \in N$, $\langle x_{mn} \rangle \in S \mathcal{B}_{x_m}$ and $\langle x_m \rangle \in S \mathcal{B}_x$, then there

exist two sequences of indices $p_n, q_n \to \infty$ such that $x_{p_n q_n} \to x$.

Proof. From each row of any matrix with convergent rows we can select a subsequence which is a subsequence of a sequence from the base.

This lemma allows us, when verifying \mathbf{D}' , to restrict our considerations to matrices whose rows are subsequences of sequences from the base. Similar lemmas can be formulated for conditions \mathbf{D} , \mathbf{D}_0 , \mathbf{D}'_0 .

We say that a matrix M_0 is a submatrix of a matrix M, iff the n-th row of the matrix M_0 is a subsequence of the n-th row of the matrix M.

LEMMA 3. Conditions \mathbf{D}_0 is equivalent to the following condition

** If each row of a matrix M converges to x, then there exists a submatrix of M such that all its diagonals converge to x.

Proof. Let each row of a matrix M converge to x and let M_1 be a matrix whose rows are from M and each row repeats in M_1 infinitely many times. For M_1 we can take the following matrix

where x_{mn} are the elements of M. Since each row of M_1 is convergent to x, there exists a diagonal of M_1 convergent to x, by \mathbf{D}_0 . This diagonal has a common subsequence with each row of M. The matrix of this subsequences has the required properties. Thus ** follows from \mathbf{D}_0 .

The converse implication is obvious.

LEMMA 4. Let \mathcal{F} be a family of independent sequences and let M be a matrix the rows of which are subsequences of different sequences from \mathcal{F} . Let $\mathcal{G} = \{g_1, g_2, \ldots\}$ be a countable subset of \mathcal{F} . If each row of M has infinitely many different elements, then there exists a subdiagonal of M independent of \mathcal{G} .

Proof. We divide the proof into two cases.

First case. There are infinitely many rows in M not belonging to $S \mathfrak{G}$. Denote by M^* the matrix containing only these rows. Then from the n-th row of M^* we take an element which does not appear in g_1, \ldots, g_n . In this way we obtain the sequence which is a subdiagonal of M independent of \mathfrak{G} .

Second case. Almost all rows are sequences from $S \mathcal{G}$. These sequences form a matrix M^* . Let e_1, e_2, \ldots be the remaining sequences of \mathcal{G} , i.e., sequences from \mathcal{G} which are independent of rows of M^* . Then from the n-th row $(n \ge 2)$ we take an element which does not appear in the initial n-1 rows of M^* or in e_1, \ldots, e_n . In this way we obtain a sequence which is a subdiagonal of M, independent of \mathcal{G} .

3. To construct the required example we shall use the following

THEOREM 1. Let K be a countable set. Then there exists a family \mathfrak{F} of infinite subsets of K such that

- i) F has the power of Continuum,
- ii) If $F_1, F_2 \in \mathcal{F}$ and $F_1 \neq F_2$, then $F_1 \cap F_2$ is a finite set.
- iii) For each countable subset G of K there exists $F \in \mathcal{F}$ such that $F \cap G$ is an infinite set.

A simple proof of this theorem is given in [1]. (The Kuratowski-Zorn Lemma is used).

EXAMPLE. Let $X = \{\varepsilon_0, \varepsilon_1, \varepsilon_2, \ldots\}$. By Theorem 1, there exists a family \mathfrak{F} of subsequences of $\varepsilon_1, \varepsilon_2, \ldots$ such that

- I F has the power of Continuum,
- II If $a, b \in \mathcal{F}$ and $a \neq b$, then a and b have no common subsequence,
- III Each subsequence of $\varepsilon_1, \varepsilon_2, \ldots$ has a subsequence belonging to SF.

Assuming Continuum Hypothesis, we arrange all matrices whose rows are subsequences of different sequences from \mathcal{F} in a transfinite sequence M_{α} , where $\alpha < \omega_1$. By ω_1 we denote the first uncountable ordinal number. Since \mathcal{F} is a family of independent sequences, each row of M_{α} is a subsequence of only one sequence from \mathcal{F} . Consequently, the following set

 $\Phi M_{\alpha} = \{a \in \mathcal{F}; \text{ such that there exists a row in } M_{\alpha} \text{ which is a subsequence of } a\}$

is countable for each $\alpha < \omega_1$.

By transfinite induction, we shall define two subsets $\mathfrak A$ and $\mathfrak B$ of the family $\mathfrak F$. Let

$$A_1 = \{\Phi M_1 \cup \{a_1\}\}$$

where a_1 is an element of \mathcal{F} containing a subsequence which is a subdiagonal of M_1 . Such an element exists, by III. Let

$$B_1 = \{b_1\}$$

where b_1 is an element of \mathcal{F} containing a subsequence which is a subdiagonal of M_1 and is independent of A_1 . Such an element exists, by III and Lemma 4.

Assume that we already defined A_{α} and B_{α} for all $\alpha < \beta$. We define A_{β} and B_{β} by the equalities:

where a_{β} is an element of \mathfrak{F} independent of $\bigcup_{\alpha < \beta} B_{\alpha}$ and containing a subdiagonal of M_{β} (such an element exists, by III and Lemma 4; $\bigcup_{\alpha < \beta} B_{\alpha}$ is a countable subset of \mathfrak{F}) and

$$B_{eta} = \mathop{\cup}\limits_{lpha < eta} B_{lpha} \ \mathsf{U} \ \{b_{eta}\}$$

where b_{β} is an element of \mathcal{F} independent of A_{β} containing a subdiagonal of M_{β} .

Let

$$\mathfrak{A} = \bigcup_{\alpha < \omega_1} A_{\alpha}$$
 and $\mathfrak{B} = \bigcup_{\alpha < \omega_1} B_{\alpha}$

Consider convergence in X which at ε_0 has a base $\{\langle \varepsilon_0, \varepsilon_0, \ldots \rangle, \mathfrak{A} \}$ and at points ε_n a base $\{\langle \varepsilon_n, \varepsilon_n, \ldots \rangle \}$.

The convergence satisfies condition \mathbf{D}' . In fact, let M be any matrix satisfying assumptions in *. If there are in M infinitely many rows which are constant sequences, then obviously M has a convergent subdiagonal. Similarly, it is not difficult to point out a convergent subdiagonal in the case when there are infinitely many rows which are subsequences of one sequence from \mathfrak{A} . In other cases, after canceling some rows, we obtain one of matrices M_{α} which have convergent subdiagonal.

The convergence does not satisfy \mathbf{D}_0 . By Lemma 1, no sequence from $S\mathcal{B}$ is convergent. Thus, each matrix whose *n*-th row is a subsequence of the *n*-th row of M_1 has a nonconvergent subdiagonal. Consequently, by Lemma 3, the convergence cannot satisfy \mathbf{D}_0 .

Note that, in the above example, each convergent sequence converges to a unique limit.

4. In this section we prove some facts concerning the bases of convergence and diagonal conditions.

We say that a convergence satisfies condition \mathbf{D}_0 for a point x, if each matrix whose rows converge to x has a diagonal convergent to x.

THEOREM 2. If a convergence has a countable base at x and satisfies condition \mathbf{D}_0 for x, then it has a finite base at x.

Proof. Let b_1, b_2, \ldots be a base at x. We put $a_1 = b_1$. Then we denote by a_2 the sequence of all elements which do not appear in a_1 from the first sequence b_n in which there are infinitely many such elements. Generally, we denote by a_n the sequence of all elements which do not appear in a_1, \ldots, a_{n-1} from the first sequence b_m in which there are infinitely many such elements. If for some n it is impossible, then a_1, \ldots, a_{n-1} is a base at x. In other case we obtain the sequence a_1, a_2, \ldots which is a countable base of independent sequences. Then no diagonal of the matrix which rows are a_1, a_2, \ldots is convergent. This contradicts \mathbf{D}_0 .

REMARK 1. If a convergence satisfies condition \mathbf{D}_0 for x, then there does not exist a countable base at x of independent sequences.

REMARK 2. If a convergence has a finite base at x, then satisfies \mathbf{D}_0 for x.

From Lemma 3 we easily obtain

THEOREM 3. Let, for $n = 1, 2, ..., G_n$ be convergences on X_n and let G be the product convergence on $X = X_1 \times X_2 \times ...$ If G_n satisfy \mathbf{D}_0 , then G satisfies \mathbf{D}_0 .

Proof. Let M be any matrix of elements from X satisfying assumptions in \mathbf{D}_0 . Then there exists a submatrix M_1 of M whose all diagonals are convergent on X_1 . Next we select a submatrix M_2 of M_1 whose all diagonals are convergent on X_2 , and so on. We obtain a sequence M_n of submatrices of M. Let M^* be a matrix whose n-th row is equal to the n-th row of M_n . The matrix M^* has all its diagonals G-convergent, so the convergence G satisfies condition \mathbf{D}_0 .

REMARK 3. From Lemma 3 it follows that, in condition \mathbf{D}_0 , we can assume that p_n is increasing.

For more results on diagonal conditions see [3] and [6].

REFERENCES

- [1] M. CONTESSA, F. ZANOLIN, On a question of Josef Novák about convergence spaces, Rend. Sem. Mat. Univ. Padova, Vol. 58 (1977) 155-161.
- [2] M. DOLCHER, Topologie e strutture di convergenza, Ann. Scuola Norm. Sup. di Pisa, III vol. XIV, fasc. I (1960) 63-92.
- [3] A. KAMINSKI, On characterization of topological convergence, Proc. of the Conference on Convergence Szczyrk 1979, 50-70.
- [4] J. MIKUSIŃSKI, P. MIKUSIŃSKI, Algebra of convergence, ibid., 81-83.
 [5] P. MIKUSIŃSKI, A general concept of convergence, (to appear).
 [6] J. NOVAK, On convergence groups, Czech. Math. Journ., 20 (95) (1970), 357-374