BASES OF CONVERGENCE
AND DIAGONAL CONDITIONS (*)

by PI1oTR MIKUSIKSKT (in Katowice) (**)

SoMMARIO. - Per le strutture di convergenza (di successioni ordina-
rie) si confrontano quattro condizioni di tipo diagonale; si co--
struisce un esempio di convergenza che, aggiunto alle implica-
zioni gia note, dimostra che le quattro condizioni sono a due a
due non equivalenti.

SUMMARY. - For convergences (of ordinary sequences) four diagonal
conditions are considered; a counterexemple is given allowing
to conclude, together with some previous results, that any two
among the four conditions are not equivalent.

1. When studying convergences, we usually assume the following
conditions:
F Each subsequence of a convergent sequence is convergent to the
same limit.

U If from each subsequence of x, we can select a subsequence
which is convergent to x, then x. is convergent itself to x.

S A constant sequence x,x,... is convergent to x.

In minute investigations these three conditions are not suffici-
ent. The following condition turned out to be very useful and was
considered by many authors independently.

D If Xwn—> xm for each m € N and x.,— x, then there exists a se-
quence of indices p,—> « such that x,,,— x.

(*) Pervenuto in Redazione il 30 giugno 1981.
(**) Indirizzo dell’Autore: Institute of Mathematics - Polish Academy of Scien-
ces - Wieczorka, 8 - 40013 Katowice (Poland).
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By N we denote the set of all positive integers. Condition D
says that if we have an infinite matrix whose n-th row is converg-
ent to x, and the sequence x, converges to x, then the matrix has
a diagonal convergent to x. By a diagonal we mean any sequence
whose #n-th element is in the n-th row of the matrix and which has
at most a finite number of elements in each column. A subsequence
of a diagonal is called subdiagonal.

Condition D is not the only condition of diagonal type appearing
in literature. In [1] there are considered three other diagonal con-
ditions. One of them ensures existence of a subdiagonal instead of
the diagonal.

D' If xun—>xm for each m e N and x,—>x, then there exist two
sequences of indices p. g»— o such that x,,4,— x.

In another condition, limits of rows are assumed to be equal:

Dy If xXwn—>x for each m € N, then there exists:a séquence of
indices p,~—> o such that xup,— x.

It is possible to join assumptions of Dy with thesis of D’:

D'y If xmn—>x for each m € N, then there exist two sequences of
indices pn, gn—> o such that xp,4, = x.

We have the following trivial interferences:

D —-—>'D0

.

D — D'o

It is not difficult to give an example of convergence satisfying
condition Dy but not D’ (see [2], p. 87). The aim of this note is to
give, under Continuum Hypothesis, an example of convergence D’
but not Dy. In this way we proved that if we assume Continuum
Hypothesis, then any two conditions from among D, D’, Do, D’y are
not equivalent.

To construct this example we use the notion of a base of con-
vergence at a point introduced by Dolcher in [2]. At the end of
this note we discuss some facts concerning diagonal conditions and
bases of convergences.

2. Let X be a nonempty set endowed with a convergence satis-
fying conditions FUS. To define a base of convergence we shall
use the notation introduced in [4] and [5]. If & is any family of
sequences of elements from X, then by S8 we denote the family
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of all subsequences of sequences from d. In symbols:
S8 = {(xn) € X¥; I{yu) € &  xu<yn},

where x,<y., means that x, is a subsequence of y,. By E& we denote
the family of all sequences from X" which have a subsequence in
d. In symbols: |

EA = {(xx) € X¥; Iya<xn (yu) €4}

The family of all sequences whose all subsequences belong to
d is denoted by R4. In symbols:

RA = {{xn) € XN; Vyu<xn (y.) € @}.
By RES8 we mean a composition of operations S, E,R on &.

A family of sequences & is said to be a base of convergence
at x, iff RES®, is the family of all sequences converging to x.

We can say that &3, is a base at x if each sequence converging
to x has a common subsequence with a sequence from &, A con-
vergence generated by such bases at each point of X satisfies con-
ditions FU. If we additionally assume that for each x € X the
constant sequence x, x,... belongs to . then we obtain a conver-
gence satisfying condition S. It is obvious that every convergence
having properties FU has a base at each point. It suffices to take
for 3. the family of all sequences converging to x. In applications,
bases of minimal number of sequences are of main importance.

Two sequences will be called independent, if they have
no common subsequence. So, x, and y., are independent iff
S{{x:)} N S{{yn)} = ¢. Saying a family of independent sequences,
we mean that any two sequences from it are independent. If a
sequence X, is independent of each sequence from a family of se-
quences &, we say that x, is independent of &.

Now we introduce some lemmas which are useful in presenta-
tion of the example to be constructed. :

LEMMA 1. Let & be a family3 of independent sequences. If
&1, &.c§ and §:N&F, = ¢, then RESFNRES &, = ¢.

Proof. Assume, on the contrary, that (x,) € RES& NRES ..
Then there exists a subsequence y, of x, which is a subsequence of
a sequence from &;. Farthermore, there exists a subsequence z, of
y» which is a subsequence of a sequence from &, Hence, z. is a
subsequence of two different sequences from &, but this is in con-
tradiction with independency of sequences from §&.

LeMMA 2. Let, for each x € X, 8. be a base of convergence at x.
Condition D’ is equivalent to the following condition

* If, for each me N, {xm) € S B, and (xm) € S B, then there
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exist two sequences of indices pn,q.—> o such that xp,q,—> X.

Proof. From each row of any matrix with convergent rows we
can select a subsequence which is a subsequence of a sequence
from the base.

This lemma allows us, when verifying D’, to restrict our consid-
erations to matrices whose rows are subsequences of sequences
from the base. Similar lemmas can be formulated for conditions
D, Dy, D'.

We say that a matrix My is a submatrix of a matrix M, iff the
n-th row of the matrix M, is a subsequence of the n-th row of the
matrix M.

LEMMA 3. Conditions Dy is equivalent to the following condition

#% If each row of a matrix M converges to x, then there exists a
submatrix of M such that all its diagonals converge to x.

Proof. Let each row of a matrix M converge to x and let M; be a
matrix whose rows are from M and each row repeats in M; infi-
nitely many times. For M; we can take the following matrix

Xun X2 X3
Xa X2 X3
X1 X1z X3
X2 X2 X23 .
X331 X2 X33
Xu X2 X3

where xmn are the elements of M. Since each row of M; is convergent
to x, there exists a diagonal of M; convergent to x, by Do. This
diagonal has a common subsequence with each row of M. The matrix
of this subsequences has the required properties. Thus ** follows
from D,.

The converse implication is obvious.

LEMMA 4. Let & be a family of independent sequences and let
M be a matrix the rows of which are subsequences of different
sequences from §. Let 8 = {g, g&,...} be a countable subset of &.
If each row of M has infinitely many different elements, then there
exists a subdiagonal of M independent of S.

Proof. We divide the proof into two cases.

First case. There are infinitely many rows in M not belonging
to S 6. Denote by M* the matrix containing only these rows. Then
from the n-th row of M* we take an element which does not appear
in g1,...,g: In this way we obtain the sequence which is a sub-
diagonal of M independent of g.
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Second case. Almost all rows are sequences from S ¢&. These
sequences form a matrix M*. Let ey, e,, ... be the remaining sequen-
ces of 8, i.e., sequences from ¢ which are independent of rows of
M*. Then from the n-th row (n > 2) we take an element which does
not appear in the initial » — 1 rows of M* or in ei,...,e. In this
way we obtain a sequence which is a subdiagonal of M, independent
of ¢.

3. To construct the required example we shall use the following

THEOREM 1. Let K be a countable set. Then there exists a family
& of infinite subsets of K such that

i) & has the power of Continuum,
ii) If F,F2€ & and Fy = F,, then F1 N F, is a finite set.

iii) For each countable subset G of K there exists F € § such that
F N G is an infinite set.

A simple proof of this theorem is given in [1]. (The Kuratowski-
Zorn Lemma is used).

EXxaMPLE. Let X = {&,¢£1,¢,...}. By Theorem 1, there exists a
family & of subsequences of ¢, ¢, ... such that

I & has the power of Continuum,

II If a, b €& and a= b, then a and » have no common subse-
quence,

III Each subsequence of €, s, ... has a subsequence belonging to S§.

Assuming Continuum Hypothesis, we arrange all matrices whose
rows are subsequences of different sequences from & in a transfinite
sequence M., where a < w;. By w; we denote the first uncountable
ordinal number. Since § is a family of independent sequences, each
row of M, is a subsequence of only one sequence from &. Conse-
quently, the following set

DM, = {a € §; such that there exists a row in M, which is a
subsequence of a} '

is countable for each a < wi.

By transfinite induction, we shall define two subsets € and &
of the family &. Let

Ay ={oM: U {a1}}

where a; is an element of § containing a subsequence which is a
subdiagonal of M;. Such an element exists, by III. Let

By = {b4}
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where b; is an element of § containing a subsequence which is a
subdiagonal of M; and is independent of Ai. Such an element exists,
by III and Lemma 4.

Assume that we already defined A. and B, for all a < . We
define Ag and Bg by the equalities: '

U A, if oMp N UaBaL#‘I’
a<

a<f

Ag =
U A, UM U {ag} if ®MgN U B, = ¢
a<f ’ a<f

where ag is an element of & independent of U B, and containing a

a<fB
subdiagonal of Mg (such an element exists, by III and Lemma 4;
UBB,, is a countable subset of &) and
a <

Bg= U B, U {bs}
a<f

where bg is an element of & independent of Ag containing a sub-
diagonal of Msa.

Let
8= U A, and 8= U B,

a<wy o<Wy
Consider convergence in X which at g has a base {(s,¢,...), 8}
and at points €, a base {(&s, €n,...)}.

The convergence satisfies condition D’. In fact, let M be any
matrix satisfying assumptions in *. If there are in M infinitely many
rows which are constant sequences, then obviously M has a con-
vergent subdiagonal. Similarly, it is not difficult to point out a
convergent subdiagonal in the case when there are infinitely many
rows which are subsequences of one sequence from €. In other
cases, after canceling some rows, we obtain one of matrices M,
which have convergent subdiagonal.

The convergence does not satisfy Dy. By Lemma 1, no sequence
from S& is convergent. Thus, each matrix whose n-th row is a
subsequence of the n-th row of M; has a nonconvergent subdiagonal.
Consequently, by Lemma 3, the convergence cannot satisfy D.

Note that, in the above example, each convergent sequence
converges to a unique limit.

4. In this section we prove some facts concerning the bases of
convergence and diagonal conditions.

We say that a convergence satisfies condition Do for a point x,
if each matrix whose rows converge to x has a diagonal convergent
to Xx.
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THEOREM 2. If a convergence has a countable base at x and
satisfies condition Do for x, then it has a finite base at x.

Proof. Let by, by, ... be a base at x. We put a1 = b;. Then we
denote by a; the sequence of all elements which do not appear in
a1 from the first sequence b, in which there are infinitely many
such elements. Generally, we denote by a. the sequence of all ele-
ments which do not appear in ai,...,a.,—1 from the first sequence
bm in which there are infinitely many such elements. If for some
n it is impossible, then ai,..., a.-1 is a base at x. In other case we
obtain the sequence aj, ai, ... which is a countable base of inde-
pendent sequences. Then no diagonal of the matrix which rows
are ai, az, ... is convergent. This contradicts D.

REMARK 1. If a convergence satisfies condition Dy for x, then
there does not exist a countable base at x of independent sequences.

REMARK 2. If a convergence has a finite base at x, then satisfies
Do for x.

From Lemma 3 we easily obtain

TueoreM 3. Let, for n=1,2,...,G, be convergences on X, and
let G be the product convergence on X = X1 X X2 X ... If G, satisfy
Dy, then G satisfies Dy.

Proof. Let M be any matrix of elements from X satisfying as-
sumptions in Do. Then there exists a submatrix M; of M whose all
diagonals are convergent on X; Next we select a submatrix M, of
M; whose all diagonals are convergent on X, and so on. We obtain
a sequence M, of submatrices of M. Let M* be a matrix whose
n-th row is equal to the n-th row of M,. The matrix M* has all its
diagonals G-convergent, so the convergence G satisfies condition D.

REMARK 3. From Lemma 3 it follows that, in condition Dy, we can
assume that p, is increasing.

For more results on diagonal conditions see [3] and [6].
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