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SOMMARIO. — Si considera un problema di discriminazione statistica
subordinata. Si effettuano delle osservazioni congiunte (xi, y:);
le osservazioni x; sono usate ai fini della discriminazione solo
come informazione collaterale. Si paragonano i risultati con
quelli della teoria classica di Neyman e Pearson. Il lavoro
vuol essere un contributo alla costruzione di una teoria delle
decisioni a piu terminali.

SUMMARY. — A problem of conditional hypothesis discrimination
is considered. A sample of joint observations (xi, y:) is taken.
The x-observations are used only as side information for
discrimination. Comparisons are made with standard Neyman-
Pearson theory. This paper is meant as a contribution towards
a theory of multi-terminal decision making.

1. Introduction.

In this paper we consider a problem of statistical hypothesis
discrimination over product sets. Assume that n joint observations
(x1, y1), (x2, y2), «., (xu, y») are taken independently from a
finite product set & X 9; for example, x; and y; might be correlated
attributes of the i-th item of a certain lot. The decision-maker
knows that either (P, V) or (Q, W) is the true probability distribut-
ion ruling the random behaviour of the sample (above the pro-
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bability vectors P and Q correspond to marginal distribution over
o while the stochastic matrices V and W correspond to conditional
distributions over 9f). The n observations are used to discriminate
the simple hypotheses (P,V) and (Q, W).

A classical solution is the following: after fixing an allowed
first error probability a, 0 <a <1, a dichotomy (&., &.) of
& x 6f* is constructed according to Neyman-Pearson criterion
with Probeyv) (B.) <a; (P,V) is chosen if (x*, y*) belongs to
d.; else (Q,W) is chosen (X" =2x1%2...%Xn, y" = y1Y2...Yn). It is
known that this decision rule is optimal in the sense that the
second error probability Probpw) (d.) is minimal.

So far no use of the product structure of the observations
has been made; instead, in our model such a structure is explicitely
used. First, we assume that P = Q, so that the (unconditional)
behaviour of the &%-observations is perfectly known; by them-
selves they give no information for discrimination. Second, we
assume that some sort of processing is needed to obtain the
9f-observations so that, at first, only the non-informative marginal
sample x" = x;x2...x, is known to the decision-maker. He might
now argue that the probability behaviour of the 9f-observations
is ruled either by the conditional distribution V" (-|x") or by
the conditional distribution W~ (-|x"); therefore he might pre-
fer to use Neyman-Pearson criterion for discriminating the
conditional distributions over @ rather than the joint distri-
butions over 9" X @f". In this case he will construct a (condi-
tionally optimal) dichotomy (&., #.) of o, V" (8.|x") < a, with
the decision rule: choose (P,V) if y" belongs to &., else choose
(P, W). (We remark that the use of an «objective) criterion such
as the one of Neyman and Pearson is consistent, at least within
the bounds of classical statistics, because the marginal observation
x" is non-informative by itself.)

Of course the second error probability is a function of the
% -observations; in order to assess the overall effectiveness of
our conditional decision rule it is more appropriate to consider
this error probability averaged with respect to the probability
of the ®C-observations. In this paper we give an asymptotic evaluat-
ion of the average second error probability.

Note that x" = x1x2... x, is used somehow as side information
for discriminating (P, V) and (P, W). The notion of side information
has inspired much research work in probabilistic information theory
(cf. [1] where this notion was first introduced in a source coding
problem, or [2]). Since the problems of source coding and hypo-
thesis discrimination are deeply related (cf., e.g., [3] or [2]),
it is to be hoped that side information may have to play an
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important role also in statistics. More generally there might arise
a theory of multi-terminal decision-making, as there is now a theory
of multi-terminal information theory. This paper is meant as a
(very small) contribution in this direction.

In section 2 we give some technical preliminaries and nota-
tions. In section 3 the problem is formally described. In section
4 we prove our main result. Its consequences are discussed in
section 5; comparisons are made with a standard use of Neyman-
Pearson theory for discriminating (P,V) and (P, W) or for discri-
minating the corresponding marginal probability distributions over
9f when no side information is available.

2. Preliminaries and notations.

Let & ={a, a2, ..., ak} and ¢&f ={b1, b2, ..., bu} be two
alphabets, that is two non-empty finite sets. Probability distribut-
ions (p.d.’s) over & and over 9f will be identified with the
corresponding probability vectors. We shall consider also stochastic
matrices with rows indexed in &% and columns indexed in 9.
Such matrices will be denoted by symbols like V :% — 8f; the
entry corresponding to row a; and column b; will be denoted by
V (bj|ai). A pd. P over & and a stochastic matrix V:9% — 9y
identify a joint p.d. (P,V) over the Cartesian product 9 X 9f;
the corresponding marginal p.d. over @f will be denoted by PV.

We need also stationary memoryless extensions of p.d.s and
of stochastic matrices. For example, if P = (p1, p2, ..., pk) is a
p.d. over &, P" is the p.d. over the Cartesian power %" defined by

Pr(a.a_..a )= l|P(a” ) = ||pl,a,l e € KM

j1 7" f2 In

If C, is a subset of %, P (C,) means X P»(x").

xn e Cn
In the language of information theory, " and ©f" would
be called the input alphabet and the output alphabet, P* and (P V)"
the input p.d. and the output p.d. and V* the channel connecting
input and output.

A dichotomy (8, &) of a set & is a partition of &: X = dU B,
adn®d = J; |C| denotes the cardinality of a set C.

The divergence of two p.d’s P= (p1, p2, ..., px) and Q =
= (q1, g2, .., gk) is defined as

K pi
D (PHQ) = 'leilog'—é—_—

if P is absolutely continuous with respect to Q; else set D (P || Q)
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equal to + o (logs and exps are taken, e.g., to the base 2). For
the properties of the divergence we refer, e.g., to [2]; here we
recall only that D (P||Q) = 0, with equality iff P = Q.

If Pis a pd. over & and V and W are stochastic matrices
& — 9f, we shall use also the average divergence

K
D (V||W|P)= X piD (Vi|| Wy)

Vi and W; being the i-th row of V and of W, respectively.

Consider the following equivalence over &": two sequences
are equivalent iff they are a permutation of one another. The
corresponding equivalence classes will be called types of order n.
A type is identified by the numbers N (a|x") where x" is any
sequence in the type and N (a|x") is the number of occurrences
of letter a in sequence x". By dividing these numbers by the
sequence length n, one obtains a p.d. over &, T» = {n-!'N (a1 |x"),
n-'N (az|x"), .., n~'N (ax|x")}. Also such p.d.’s will be referred
to as types and the same symbols will be used as for sets; this
will cause no misunderstanding.

If T, is a type in &" and P is a p.d. over %, one has:
(1) m+1)"Xlexp{—nD (Tn||P)} < P (Tn) < exp{—nD (Tu||P)}

Let ¥ be a positive real number. A sequence x" in $" is called
a P-typical sequence of constant v if

[N (a:|x") —npi|<n%y, 1<i<K.

Clearly the set of P-typical sequences of constant vy is a union
of types. (For details about typicality cf. [2].)

3. The problem stated.

Let P= (p1, p2, .., px) be a pd. over & and V and W two
stochastic matrices % —9f (equivalently, let (P,V) and (P,W)
be two p.d.s over %% X 9f).

We want to discriminate the two hypotheses Hy = «(P,V) is
the true p.d.» and Hw = «(P, W) is the true p.d.»; this amounts
to discriminating the channels V and W. We shall not follow the
standard Neyman-Pearson approach. Rather, as explained in the
introduction, we assume that the 9C"-observation is available before
the @f"observation. Suppose x" = x1x2..Xx, is observed. At this
step the random behaviour of the ¢f"-observation is ruled either
by the conditional p.d. V*(-|x") or by the conditional p.d.
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W= (. | x*), according whether Hy or Hw is true. We now choose
a dichotomy (8., B.) of of", &, =, (x*), B.= B, (x7); if the
6fr-observation belongs to &, we decide that Hy is true, otherwise
we decide that Hw is true. The dichotomy of 9f* will be chosen
using the criterion of Neyman and Pearson for discriminating
Vn (- | x*) and W* (- | x*). Namely, let « be a real number, 0 < a < 1.
(8., B,) is any dichotomy verifying the following requirements:

i) Ve (Qu|x*) 21 —a;
ii) W= (.| x*) = min W” (C,|x"), the minimum being taken

with respect to all subsets C. of 9f* which verify require-
ment i.

For reasons explained in the introduction, the following average
error probability is of concern to us:

P.(n) =P.(n,P,V, W)= X P (x") Wr (Qn|x").
xne®Cn

In section 4 we shall investigate the asymptotic behaviour
of P, (n).

4. Result.

In order to prove the theorem below we use as a lemma the
following known fact (for a proof cf., e.g., chapter 1 of [2]).

LEMMA. Let {Ei},,, and {Fi},,, be two sequences of p.d.s
over the alphabet ©f. Let E™ and F™ be the product p.d.s over

ofr defined by E(")='|_|‘E,- and F(")=T_TFi. Set s(n, o) =
i=1 i=1

= min F™ (C,), the minimum being taken with respect to all sub-
sets C, of 9" such that E™ (C,) 2 1 — a. Assume that |logF; (b;) |
is bounded by a constant vy independent of i and b;. Then, for
all 8, 0<8<1, there exists an nmo=mno (|9 |,v,, 8) such that,
for n = neo

|logs (n,0) + D (E™ || F®™) | < n3d.

(Note that {E;},,, and {Fi}i>1 identify two memoryless non
stationary stochastic processes over 9f.)

We stress that no above depends on {E},,, and {Fi};5, only
through |9f| and .

THEOREM. If the entries of W are all strictly positive
limn-'log P, (n) = —minD (R, V || P, W)
n R
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the minimum being taken with respect to all p.d’s R over °K.
Proof.

Fix 8, 0 < & < 1. Using the lemma, for any x", x" € 9", one has:

) |ntlog W" (8|27 + D (V|| W |Tw) | < ==

it n=zn=mn (%Y]|v,a08); above y= max log|W (b|a)| <+
(a,b)eSC x Of
and T, is the type of x". We have used the ><fact that
D V(- |x) [|[Wr (- |xm)) = Z DW([x)||W(|x))=

= I N @[+ DV ( |a)||W( |a)) =nuD (V||W|T.).

If 8. denotes the set of types of order n, one has:

P.(n) = X Pr(x") Wr(8.|x") =

anedxn
= X I Pr(xn)Wr(@,|x") <
T,e8, x1€Ty,
(@) )
<Tzs P (T,) exp {— n[D(V||W|Tn)—7]}
)
<TZ exp { — n[D(TnllP)-i—D(VHWITn)———]}

for n 2 ny, no not depending on T,.. Above (a) follows from (2)
and (b) follows from (1) Since |8.| is trivially bounded by
(n+ 1)I%!, one has:

3) ,
P.(n) < (n+1)l mTaxexp {—n[D (T.]|P)+D (V||W|T,) —% 1} =

= (n + 1D)Xlexp{—n [minD (Tn, V||P, W) — —§— 1%

(An ‘easy computation shows that D (R |PYy+D (V||W|R) =
=D (R, V| P, W) for any p.d. R over ¢.)

A lower bound for P. (n) is obtalned much in the same way.
One has, for n = np: :

@) P.(n)> P"(T)exp{—n[D(V||W|T)+—]}/

The8n
(d)
Z I (n+1)-%lexp {—n[D (T, VHP,-W), +—2—]} >

T,e8n

> (n+ )7l exp {~ n[minD (T, V|| P,W) + -1
Tn
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Above (c) follows from (2) and (d) follows from (1). We now
put together (4) and (5). Using standard approximation arguments
(we recall that types are dense in the set of all p.d.’s) one obtains,
for n large enough:

(n+ 1)-Xlexp{— n[min D (R V|P,W)+8]}<P.(n) <
R
S (n+ )X exp{—n[minD (R, V|| P,W) — 8]1}.
R

This gives soon the theorem, because § is arbitrary and

limn-1tlog (n +1)I%l = 0.
QED

5. Final remarks.

When Hyv and Hw are discriminated using Neyman-Pearson cri-
terion for the product set " X 9f" one obtains the optimal exponent
D (P, V|| P,W) (cf., eg., [2]), which obviously can be strictly greater
than minD (R, V || P, W). This is no surprise since our partitions

R

of 9" induce partitions over %" X 9" which are constrained to
have the product structure

(U {x}xa(x?), U {x} X B.(x7))
xne8Cn xneSCn
From a different standpoint it can be of some interest to com
pare our exponent with the case obtained using Neyman-Pearson
criterion to discriminate the marginal distributions over 9", that is
with D (PV || P W). Below we give an example where D (PV || P W)
is strictly smaller than min D (R,V||P,W): in a way, in this case
R

the side information x" is actually useful for discriminating PV
and PW.

Example. Let 9 =af = {0,1}, P=(%,_;_), Ve (- |0) =

=W.(-|)=0—¢¢), Ve(-|1)=W.(-]0)=(, 1 —¢). Then
D (PV | PW) =0 while limD (R, V.|| P, W.) = + o uniformly in R.

-0

It is interesting to observe that by a «slight» modification of
our decision procedure our exponent can be improved as to reach
the asymptotical theoretical maximum, D (P, V || P, W). Consider the
set ©. of &"-sequences which are P-typical in composition for a
chosen constant. It is well-known that the probability of this set
goes to 1 when n goes to infinity (cf. [2]). If the side information
x" belongs to G, we do not modify our decision rule. If however
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x» does not belong to . we choose the dichotomy &, = 9, B, = ",
that is we decide that Hw is true whatever the @f"-observation. By
using the standard properties of P-typical sequences it can be
shown that the modified error exponent — n—!logP} (n) goes to
D (P,V| P,W) as n goes to infinity (for details see [4]).

Some questions were left open. The theorem was proved on the
assumption that all the entries of W be strictly positive: this is
a rather ad hoc condition, depending only on our proving technique.
Moreover it would be interesting to know whether the inequality
minD (R, V ||P,W) = D (PV ||PW) is generally true (cf. the example

R .

above). This would much help in assessing the effectiveness of our
decision procedure.
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