THE FIRST NORMALIZATION THEOREM
FOR REGULAR HOMOTOPY
OF FINITE DIRECTED GRAPHS

by Marco BUrzio and DAVIDE CARLO DEMARIA (in Torino) *#%)

SOMMARIO. Dati uno spazio topologico normale S ed un grafo finito
ed orientato G, si dimostra che ogni funzione regolare di S
in G é omotopa ad una funzione completamente regolare, vale
a dire priva di singolarita.

SUMMARY. Given a normal topological space S and a finite directed
graph G, we show that any regular function of S in G is homo-
topic to a completely regular function, i.e. without singularities.

INTRODUCTION. — Keeping on [2] and using the results obtained
there (see Background), we prove that every regular function from
a normal ® topological space S to a finite directed graph G is
homotopic to a completely regular function, i.e. without singularities
(see Theorem 12). (The first normalization theorem).

In order to define the singularities, we consider particular subsets

(*) Pervenuto in Redazione il 17 luglio 1980.
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(C.N.R.,, G.N.ASA).
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(1) Consequently, we distinguish between normal space and T:-space, accord-
ing to whether it is a T:-space or not.
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of the graph G. Precisely, we say that a subset of G is headed
(resp. tailed) if it includes a vertex which is a predecessor (resp.
successor) of all the others; while it is totally headed (resp. totally
tailed) if all its subsets are headed (resp. tailed). (See Definition 1).

We note that a totally headed set is also totally tailed and
vice-versa. (See Proposition 4).

Then, a n-tuple vi, .., v, of the graph G is called a singularity
for an o-regular (resp. o*regular) function f, if it is non-headed
(resp. non-tailed) and if the intersection t-! (v;) N ... N f-! (v,) is
non-empty. (See Definition 5). (In particular, in a finite undirected
graph there are only singular couples).

Moreover, we give the first normalization theorem for regular
functions from a pair of topological spaces S, S’ to a pair of graphs
G, G’, where S is a normal topological space and S’ a closed sub-
space of S. (See Theorem 15). At least, in similar conditions, we
prove that two homotopic completely regular functions are also
completely homotopic. (See Theorem 16).

The previous results and, particularly, the first normalization
theorem in its different statements will be used in the next papers
in order to prove that:

1) If S is a paracompact topological space, there is a bijection
between the sets of homotopy classes Q (S,G) and Q* (S, G).
(Duality theorem).

2) The homotopy groups of a finite directed graph G are isomorphic
to the classical homotopy groups of the polyhedron of a suitable
simplicial complex associated with G.

As concerns 1), we note that the first normalization theorem
allows us to identify the sets Q (S,G) and Q* (S,G) of regular
homotopy classes with the ones Q. (S, G) and Q.* (S, G) of completely
regular homotopy classes. Consequently, the duality theorem follows
from a natural bijection between Q. (S,G) and Q.* (S, G), as we
prove in a paper near to appear.

As concerns 2), to obtain the above-mentioned isomorphisms,
we can now anticipate that we will associate with G the simplicial
complex, whose simplexes are the totally headed subsets of G.

0. - Background @
Let G be a finite directed graph.

(2) The references are relative to [2].
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If v, w are two vertices of G, we use the symbol v—>w (resp.
v+ w) to denote that vw is (resp. is not) a directed edge of G.
If v—>w, we call v a predecessor of w and w a successor of v.

If, for all v,w e G, we have (v—>w) e (w—v), the graph is
called undirected.

Let S be a topological space.

Given a function f:S— G from S to G, we denote by capital
letter V the set of the f-counterimages of v € G, and if we must
display the function f, we put Vi = f-1 (v).

A function f:S — G is called o-regular (resp. o*-regular) if, for
all v, we G such that v=w and v w, it is V NW=é (resp.
vonw =¢). (See Definition 3).

That is equivalent to saying:
v==w,VN W = ¢ and f o-regular)=>v—>w

v=w,V N W = ¢ and f o*regular) > w—v.

A function f:S — G is called strongly o-regular (resp. strongly
o*-regular) if:

i) f is oregular (resp. o*-regular);

ii) for all v, w € G such that v # w, v w and w v it follows
V NW=¢. (See Definition 4).

Let I =[0,1] be the unit interval in R!. Two o-regular (resp.
o*regular) functions f,g:S—G are called o-homotopic (resp.
o*-homotopic) if there exists an o-regular (resp. o*-regular) function
F:SXI—>G such that, forall xe€ S, F (x,0)=f (x) and F (x,1)=g (x).
The function F is called an o-homotopy (resp. o*-homotopy) between
f and g. (See Definition 5).

The previous o-homotopy (resp. o*-homotopy) relation is an
equivalence relation in the set of o-regular (resp. o*-regular) func-
tions from S to G. We denote by Q (S,G) (resp. Q* (S,G)) the
set of the o-homotopy (resp. o*-homotopy) classes of o-regular
(resp. o*-regular) functions.

The graph G* with the same vertices of G and such that
(u—>v in G) © (v—>u in G*) is called the dually directed graph
as regards G. (See Definition 6). Hence, we have:

DUALITY PRINCIPLE. — Every true proposition in which appear
the concepts of o-regularity, o*-regularity, strongly o-regularity,
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strongly o*-regularity, o-homotopy, o*-homotopy, Q (S, G), Q* (S, G),
remains true if the concepts of o-regularity and o*-regularity
(strongly o-regularity and strongly o*-regularity, o-homotopy and
o*-homotopy, Q (S,G) and Q* (S,G)) are interchanged throught
the statement of the proposition.

Moreover, let S’ be a subspace of S and G’ a subgraph of G.
A function f from the pair S, S’ to the pair G, G’ is called o-regular
(resp. o*-regular, strongly o-regular, strongly o*-regular) if both
the function f:S— G and its restriction f =f;sr:S" > G’ are
oregular (resp. o*regular, etc.) functions. (See Definition 7).

Two o-regular (resp. o*regular) functions f,g:S,S = G,G’ are
called o-homotopic (resp. o*-homotopic), if there exists an o-regular
(resp. o*regular) function F:S XI, S8’ X I - G, G’, such that for all
x€S, F(x,0) =f(x) and F (x,1) = g (x). The function F is called
an o-homotopy (resp. o*-homotopy) between f and g. (See Defini-
tion 8).

In [2] we proved the following results:

R.1 — Let f be an o-regular function from a normal topological
space S to a finite directed graph G and Y a closed subset of S.

Then, if for a€ G we have AAN Y = ¢ and A N Y = ¢ there exists
an o-regular function g:S— G, which is o-homotopic to f and such

that A5NY = ¢. (See Lemma 6).

R.2 — In the construction of R.1, if there exists n vertices
Pi, ., Pn € G, such that Fﬁ n..n Eﬁ: ¢ then also it follows
p—lli n..n f)g = ¢. (See Corollary 7).

R3. — Let f be an o-regular function from S,S’ to G,G,
where S is a normal topological space, S’ a closed subspace of

S, Y a closed subset of S’, G a finite directed graph and G’ a
subgraph of G. Then if for a€G we have ATNY = ¢ and

AfNY = ¢, there exists an o-regular function g:S,S’—=G,G,
which is o-homotopic to f and such that A2NY = ¢. (See Lem-
ma 11).

R4 — In the construction of R.3, if there exist n vertices
Pi, -, Pn€G and m wertices qi .., dm € G’, such that —ls—f n..
NPENQEN .. NQU=¢ then also it follows that ~ PEN ..
NPENQEN..NQE =¢. While, from PL N.. N PEN S = ¢, it
results PEN ... N PEN S’ = ¢. (See Corollary 12).

By Duality Principle, the results dual to the previous ones
are also true for o*-regular functions.
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1. — Headed and totally headed subsets of a graph

DEFINITION 1. — Let G be a directed graph and X a non-empty
subset of G. A vertex of X is called a head (resp. a tail) of X in G,
if it is a predecessor (resp. a successor) of all the other vertices
of X. We denote by (Hc (X) (resp. Ts (X)) or, more simply, by
H (X) (resp. T (X)) the set of the heads (resp. tails) of X in G.
Then X is called headed (resp. tailed) if H (X)=¢ (resp. T (X) > ¢),
otherwise, X is called non-headed (resp. non-tailed).

Finally X is called totally headed (resp. totally tailed), if all
the non-empty subsets of X are headed (resp. tailed).

REMARK 1. — If X is a singleton, we agree to say that H (X) =
=T (X) =X, then X is totally headed and also totally tailed. If
X is a pair, X headed & X totally headed & X tailed & X totally
tailed.

REMARK 2. — This definition and the following ones can be
extended to undirected graphs. (See Proposition 6).

REMARK 3. — The concepts of head and tail (headed and tailed
subset, etc.) are dual to each other.

DEFINITION 2. — A nown-headed (resp. non-tailed) subset X is

called minimal if all its non-empty proper subsets are headed (resp.
tailed).

DEefFINITION 3. — A finite directed graph G is called almost
complete if the set of its vertices is totally headed.

REMARK. — A complete finite undirected ghaph is also almost
complete.

PROPOSITION 1. — A finite directed graph G is almost complete
iff the diagram® of the relation (=) includes the diagram of
a total order relation (<) in G.

Proof. — i) Since G is almost complete, we can choose a vertex
v1 € G, which is a predecessor of all the other vertices of G, as the
first one; then a vertex v, € G — {v1}, predecessor of all the other
vertices of G — {v1}, as the second one; and so on.

ii) Since the diagram of the relation (—) includes the diagram
of a total order relation (<) in G, we can totally order the vertices
of G. Then every vertex of G is a predecessor of the vertices
subsequent in the order relation.

(3) We use the term diagram rather than graph because graph is already
used in another sense. '
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Hence G is almost complete.

REMARK. — By ordering the vertices of G as in ii) of Proposition
1, we say that the order relation (<) of G is compatible with the
relation (=) of G.

PrROPOSITION 2. — Let G be an almost complete graph. Then
the dually directed graph G* is also almost complete.

Proof. — Let (<) be a total order relation, compatible with
the relation (—) of G. Then the dual order relation (>) is
compatible with the relation (<) of the dually directed graph G*.

DEFINITION 4. — Let G be a directed graph and X a subset
of G. We call maximal subgraph induced by X the subgraph of G
consisting of those directed edges of G, whose vertices are in X.

PrROPOSITION 3. — A subset X of G is totally headed iff the
maximal subgraph induced by X is almost complete.

PrOPOSITION 4. — A subset X of G is totally headed iff it is
totally tailed.

Proof. — By Remark 3 to Definition 1 and by Proposition 2,3
we have:

X totally headed in G & the maximal subgraph induced by
X is almost complete < the dually directed graph of the maximal
subgraph induced by X is almost complete & X is totally headed
in G X is totally tailed in G.

PrROPOSITION 5. — A subset X of G is non-headed minimal iff
it is non-tailed minimal.

Proof. — Since all the subsets of X are totally headed, by
Proposition 4, they are also totally tailed. If we assume that X is
tailed, then, by Definition 1, it is totally tailed. Hence, by Prop-
osition 4, it is also totally headed. Contradiction.

REMARK. — Then almost complete graph, totally headed subset,
non-headed minimal subset are selfdual concepts, while it does not
follow for headed or tailed subset.

PRrROPOSITION 6. — In an undirected graph there does not exist
any nown-headed minimal n-tuple X with n > 2.

Proof. — 1f all the pairs of vertices of X are headed (i.e. they
are vertices of edges), then the maximal subgraph induced by
X is complete. Hence it is also totally headed.
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EXAMPLES.

1) Let G={q,b,c,d,e} be the graph with the edges a— b,
a—>c, a—>d, b—>d, b—>e, c—d. Then the subset {a, b, e} is non-
headed and non-tailed, but it is not minimal non-headed (i.e.
minimal non-tailed); {a, b,c} is headed and non-tailed; {b,c, d}
is non-headed and tailed; {a, b, ¢, d} is headed and tailed, but not
totally headed (tailed).

2) The graphs G = {u, v, w} with the edges u—»v, u—»w, vow
and G' ={q,7,s,t} with edges g—>7r, g—>s, g—>t, r—>s, r—>t, s—>t
are examples of almost complete graphs. Moreover, the sets
{u,v,w}, {q,1,5,t} are examples of totally headed (i.e. totally
tailed) subsets. Their compatible orders are, respectively, u < v < w,
g<r<s<t.

3) In the graphs G = {f, g, h} with the edges f—g g—h,
h—f and G' ={l,m,n,p} with the edges l—»m, |—>n, m—n,
m—>p, n—>1, n—>p, p—>1l, p—>m the sets {f, g h} and {I,m,n, p}
are examples of non-headed minimal (i.e. non-tailed minimal) subsets.

2. — Singularities of a regular function

PROPOSITION 7. — Let S be a topological space, G a finite
directed graph, £:S— G an o-regular function from S to G and
X ={vi, v2, .., o} a non-headed subset of G (n = 2). Then it holds:

VENVEN .. NVE = g;
VinvEN L. NVE = ¢

--------------------

vin. NVE NVE=¢
Proof. — Since X is a non headed subset, there is no vertex v;,

which is a predecessor of all the other n — 1 vertices. Then, for
every i=1,..,n let w; be a vertex such that v:-% w;. From
oregularity of f it is V; N W; = ¢. Since w; is one of the vertices
Vi, oo Vit Vig ., Ve it follows VIN . NV NVINTVI N..
nNvi =¢.

DEFINITION 5. — Let S be a topological space, G a finite
directed graph, f:S— G an o-regular (resp. o*-regular) function
from S to G and X ={v1, vz, .., va} a n-tuple of vertices of G
with n = 2.
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Then X is called a singularity of f or a singular set of f if:

i) X is non-headed (resp. non-tailed);
i) VENVEN .. N VE = ¢,

Moreover, X is called a proper singularity of f if i) is re-
placed by: ' '

i’) X is non-headed minimal (i.e. non-tailed minimal).

Finally, the closed set _\_ff n V‘Z n..n \72 is called the support
of the singularity.

PROPOSITION 8. — If X ={vi, vz, .., W} is a singularity of f,
then X has an empty intersection with the image of its support,

ie. f(VIN..NVE)NX=4¢
Proof. — It follows from Proposition 7.

REMARK. — Since every non-headed (non-tailed) subset of G
includes a non-headed minimal (non-tailed minimal) subset of G,
every singularity includes a proper singularity, Hence, every singular
couple is a proper singularity.

DEFINITION 6. — Let S be a topological space, G a finite directed
graph and f£:S—G an o-regular (resp. o*regular) function from
S to G. The function f is called completely o-regular (resp. com-
pletely o*regular) or simply c.o-regular (resp. c.o*regular), if
there are no singularities of f.

We note that Definitions 5,6 can be extended to undirected
graphs. Then it follows:

PROPOSITION 9. — Let S be a topological space and G a finite
undirected graph. Then a strongly regular function (see [5], Defi-
nition 3) £:S—G from S to G is also c.regular.

Proof. — By definition of strongly regular function there is no
singular couple of vertices. Besides, by Proposition 6, there does
not exist any non-headed minimal n-tuple with n > 2, then there
are no proper singularities of f. Hence, by Remark to Proposition
8, f is c. regular.

DEFINITION 7. — Let S be a topological space, S’ a subspace
of S, G a finite directed graph, G’ a subgraph of G and £:S,S’—G, G’
a function from the pair, S,S’ to the pair G,G'. The function f
is called completely o-regular (resp. completely o*regular) or
simply c.oregular (resp. c.o*regular), if both f:S—G and its
restriction ' : §’— G’ are c.o-regular (resp. c.o*regular).
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REMARK. — If S§” is a subspace of S’, G’ a subgraph of
G including G, f:S5,8 - G,G’ a c.oregular (resp. c.o*regular)
function, then also the functions f:S,S"—>G,G, :S5,S—>G,G"
and f:S,S”"—> G,G"” are c.oregular (resp. c.o*-regular).

ProproSITION 10. — Every strongly regular function from a pair
of topological spaces S,S’ to a pair of finite undirected graphs
G, G’ is also c.regular.

3., — The first normalization theorem

PropoSITION 11. — Let S be a normal topological space, G a
finite directed graph, f:S— G an o-regular function from S to G
and X = {v1, ..., vn} a singularity of f. Then there exists an o-regular
function g from S to G, which is o-homotopic to f and such that:

i) X is not a singularity of g;
it) all the singularities of g are also singularities of f.

Proof. — i) Since X is a singularity of f, by Definition 5 and
Proposition 7, it follows VinN v_fzﬂ . N Wn = ¢ and V{ n V{z n..
ﬂVfl = ¢. If we put 7720 .. N Wﬂ:Y, by R.1 there exists an
oregular function g from S to G, which is o-homotopic to f and
such that V!f N Y = ¢. Now, by Proposition 8, vi, ..., vn € f Viny).
Since, from the definitions of functions g¢? (see [2], Proof of
Lemma 6), only the couterimages of elements of f(V{ NY) are
increased, it follows:

Y=vinvin.nvi o.2vedn.

nvetd o oVeEN .. NVE;
hence (Vfﬂ Y=¢)=>(V_§OT/'?20 . NVE =9).

ii) If, for a non-headed subset {wi, .., wm} of _G we have
Wen .. NWes=¢, by R2 it follows W/N..NW, =¢ ie
{wi, .., Wa} is also a singularity of f.

THEOREM 12. — (The first normalization theorem). Let S be a
normal topological space, G a finite directed graph and f an
o-regular function from S to G. Then there exists a completely
o-regular function, o-homotopic to the function f.

Proof. — Let v1, v2 be a singular couple of f. By Proposition
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11, we construct an o-regular function g, which is o-homotopic
to f and such that Vf n I—/-g2 = ¢. Now if wi, w, is another couple,
which is a singular set of g (and then of f), by repeating the
argument, we can remove also this singularity. Hence, by a finite
number of steps, we eliminate, at first, all the proper singular
couples, then, all the proper singular terns, etc., and at last, all
the proper singular n-tuples. Since the number of vertices is
finite, the argument comes to an end and, by Remark to Proposition
8, every singularity is eliminated. Hence we obtain the assertion.

REMARK. — If we just limite ourselves to eliminate the singular
couples, we obtain the weak normalization theorem: Under the as-
sumptions of Theorem 12, every regular function is homotopic to a
strongly regular function. (See [2], Theorem 10).

If we now consider functions between pairs, we can obtain,
similarly to the proof of Proposition 11, the following results by
R.3 and RA4:

PROPOSITION 13. — Let S be a normal topological space, S’ a
closed subspace of S, G a finite directed graph, G’ a subgraph
of G, £:5,8' > G, G’ an o-regular function, f: S’ — G’ the restriction
of £:8S—>G to S’ and X' ={w, .., un} a singularity of f'. Then
there exists an o-regular function g:S,S’ — G, G’, which is o-homo-
topic to f and such that:

i) X' is not a singularity of g’;
ii) all the singularities of g’ are also singularities of f’;
iii) all the singularities of g are also singularities of f;

iv) all the singularities of g with a non-empty support in S’
are of the same type for f, ie.

ﬁ@nWNQnS¢¢huannﬁn9¢¢)

PROPOSITION 14. — Under the assumptions of Proposition 13, let
X ={v1, .., \n} be a singularity of f with a non-empty support

in 8, ie. VEN ..N VI NS 5 ¢. Then there exists an o-regular
function g:S,S’— G, G’ which is o-homotopic to £ and such that:

uﬁnmnﬁns=m
ii) conmdition ii), iii), iv) of Proposition 13 are true.

THEOREM 15. — (The first normalization theorem between pairs).
Let S be a normal topological space, S' a closed subspace of S, G



48 MARCO BURZIO and DAVIDE CARLO DEMARIA

a finite directed graph, G' a subgraph of G and f:§5,8—>G,G’
an o-regular function. Then there exists a completely o-regular
function k:S,S’— G, G’, o-homotopic to the function f.

Proof. — By using Propositions 13, 14 we proceed as in the
proof of Theorem 12. So, at first, we can construct an o-regular
function 4 : S, S’— G, G’, which is o-homotopic to f and such that:

1) W :S8 =G’ is a c.oregular function;
2) every singularity of # has an empty support in S’

Hence the singularities of 4 have the support in the open set
S-S’. Then, in order to obtain the c.o-regular function k: S, S’ — G, G/,
we use Theorem 12. But now we choose the closed neighbourhoods
Wen, which we employed in the proof of R.2 (see [2], Lemma 6),
such that they are disjoint from S’. Then k is the sought function.

REMARK 1. — By using Theorem 20 (Extension theorem) and
Corollary 21 of [2], we have two other ways for proving this
theorem or, more exactly, for obtaining the previous function #.

The first way consists in contructing an o-regular function
g:S,S" = G, G, which is o-homotopic to f and such that its restrict-
ion g’: S’— G’ is c.o-regular, and then by taking an extension % of g.

The second way lies in constructing an extension g:S,U— G, G’

of f, where U is a closed neighbourbood of §’, and then an o-regular

function 4 :S,U— G,G’, such that its restriction Z:U—> G’ is
c.o-regular.

REMARK 2. — If we just limit ourselves to eliminate the singular
couples of vertices, we obtain the Weak normalization theorem
between pairs. (See [2], Theorem 16).

THEOREM 16. — (The first normalization theorem for homo-
topies). Let S X1 be a normal topological space, S’ a closed
subspace of S, G a finite directed graph, G’ a subgraph of G,
f,g:S—>G (resp. £,g:S,8—>G,G’) two o-homotopic completely
o-regular functions. Then between the functions f and g there
also exists an o-homotopy, which is a completely o-regular function.
(See [2], Theorem 17). ;

Proof. — Let F:S X I—-> G be an o-homotopy between f and
g We define the homotopy J:S X I — G, given by:
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Pf(x) VxeS Vte —0,_;_-]'»

. . —.1 2

J(x,t): <F(x,3t—1) Vxesl VIGLT’T]
g (x) ' Vzes, vteLg,l]

If we call Ji, J2, J5 the restrictions of J respectively to

Sx [0%] Sx [%%] Sx [% ,1], it follows that J is o-regular

since the functions Ji, J2, J; are such. Moreover, J; and J; are
also c.o-regular, in fact a singularity of J,, for example, implies
directly a singularity of f. Consequently, also the restriction of J to

Sx{[O —;-] U [%—'1]} is c.oregular. By Theorem 12 (resp.

Theorem 15), we can replace J with a c.o-regular functlon K Wthh
coincides with J on S X {0} and S X {1}, by choosing the closed
neighbourboods W@ (resp. L¢i0), which we employed in the
proof of R.2 (resp. R4) disjoint from the closed sets S x {0}
and S X {1}.

FINAL REMARKS.

i) We can generalize the foregoing results to the case of n
closed subspaces Si, .., S» of S and of n subgraphs Gi, .., G
of G such that S; is a subspace of S; and G, a subgraph of G,,
Vij=1,.,nj>1i (See [2], § 8 b)).

For example, in the case similar to Theorem 15, in order to
construct a c.oregular function k:S,Si, ..., Si—>G,Gy, .., G,
o-homotopic to a given function f:S, Si, ..., S»—>G, Gy, ..., G,, at
first, we construct a function A/ which is o-homotopic to f and
such that:

1) its restriction 4! :S! — G, is c.o-regular;

2) every singularity of h!':S—G and of the restrictions
h!:Si—>Gi, Vi=1,..,h — 1, has an empty support in S,

Then, by choosing the closed neighbourhoods, which we em-
ploy, disjoint from S, we construct a function #? which is
o-homotopic to A!' and such that:

1) its restriction h%_,: Sn_1—> Gu-1 is c.o-regular;

2) every singularity of #4?:S—G and of the restrictions
K2:Si—>Gi, Vi=1,..,n~—2, has an empty support in S,_;
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And so on.

ii) The previous propositions and theorems can be translated

by duality for o*-regular functions.

iii) A further generalization can be obtained by asking that

the spaces S or S X I are T3 + T, spaces rather than normal. (See
[2], Lemma 23).
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