UNCONDITIONAL CONVERGENT SERIES AND SUBALGEBRAS OF $C_o(X)^{(*)}$

by Bolis Basit (in Cairo) (*)

Sommario. - In questo lavoro si dimostra che una subalgebra di $C_o(X)$ non contenente un sottospazio isomorfo allo spazio c_o di Banach è di dimensione finita. Si dà inoltre una nuova dimostrazione di certi risultati di analisi numerica (teoremi di Helson e di Segal).

SUMMARY. - In this paper we prove that subalgebras of $C_o(X)$ not containing a subspace isomorphic to the Banach space c_o is finite dimensional. Also we give new proofs for certain results in harmonic analysis (Helsons and Segals theorems).

1. Introduction. Let X be locally compact Hausdorff space. Denote by $C_b(X)$ the Banach algebra of bounded continuous functions defined on X, and $C_o(X)$ the subalgebra of functions vanishing at infinity.

In this paper we give the proofs of the results announced in [1] and continue the study of subspaces of $C_b(X)$ not containing any subspace isomorphic to the Banach space c_o of convergent to zero complex sequences. As a consequence we improve some results of C.F. Dunkl and D.E. Ramirez [4] and gave new proofs of certain results in harmonic analysis (theorem of H. Helson [3], [6] and theorem of L.E. Segal [5], [7], [8], [10]).

The paper is divided into four sections. In the second section we prove a technical lemma concerning certain subspaces of $C_b(X)$.

^(*) Pervenuto in Redazione il 29 febbraio 1980.

^(**) Indirizzo dell'Autore: Department of Mathematics, Fac. of Sciences, University of Cairo - Cairo (Egypt).

2

In section 3 we extend the results of [4] to the case of subalgebras of $C_o(X)$ not containing a subspace isomorphic to c_o . Finally, in section 4 we give applications to harmonic analysis.

We conclude this section by recalling some needed notions. Let B be a Banach space, and B' its dual Banach space. We write $B \supset c_o$ ($B \not\supset c_o$) if B contains (does not contain) a subspace isomorphic to c_o . The series $\sum x_n$ of elements of B is said to be weakly unconditionally convergent (w.u.c.) iff $\sum_{n \in N} |x'(x_n)| < \infty$ for each $x' \in B'$. The series $\sum_{n \in N} x_n$ is unconditionally convergent (u.c.) iff for each permutation σ of N the series $\sum_{n \in N} x_{(\sigma)n}$ is convergent. Our proofs are based only on the fact that w.u.c. series are u.c. iff $B \not\supset c_o$ [2].

In what follows subspaces of a Banach space are closed.

2. Technical lemma. Let K be compact Hausdorff space and C(K) be the Banach algebra of complex valued continuous functions on K. We prove

LEMMA 2.1. Let B be a subspace of C (K) satisfying the following condition (P_1) : for each open subset U of K and each $\varepsilon > 0$ there exists $f \in B$ such that ||f|| = 1 and $|f(x)| < \varepsilon$, $x \notin U$. Let K be infinite set. Then $B \supset c_0$.

Proof. Since K is infinite, there exists a sequence U_n of open subsets of K such that $U_i \cap U_j = \emptyset$, $i \neq j$. Using (P_1) for each U_i one can find $f_i \in B$ such that $||f_i|| = 1$, $|f_i(x)| < \frac{1}{2^i}$, $x \notin U_i$. We have $\sup_{x \in K} \sum_{i=1}^{\infty} |f_i(x)| < 2$, hence the series $\sum_{i=1}^{\infty} f_i$ is w.u.c. Since $\sum_{i=1}^{\infty} f_i(x)$ is not uniformly convergent on K, the series $\sum_{i=1}^{\infty} f_i$ is not u.c.. Hence $B \supset c_0$.

COROLLARY 2.1. Let A be a subalgebra of C (K) satisfying the condition (P₂): for each open subset $U \subset K$ there exists $f \in A$ such that ||f|| = 1, |f(x)| < 1, $x \notin U$. Let K be infinite. Then $A \supset c_0$.

The proof follows from the fact that (P_2) implies (P_1) .

COROLLARY 2.2. Let E be a subspace of $C_0(X)$ satisfying the condition (P): for each compact K of X and each $\varepsilon > 0$ there exists $f \in E$ such that ||f|| = 1, and $|f(x)| < \varepsilon$, $x \in K$. Then $E \supset c_0$.

Proof. Condition P implies that X is not compact, hence it is infinite. Take the one point compactification X_0 of X. Then E is isometric to a subspace of $C(X_0)$ satisfying the condition (P_1) of Lemma 2.1. Hence $E \supset c_0$.

COROLLARY 2.3. Let Y be locally compact group which is not compact. Denote by E the subspace of C_0 (Y) generated by the left translations of a function f of C_0 (Y), ||f|| = 1. Then $E \supset c_0$.

Proof. Since $f \in C_0(Y)$, for each $\varepsilon > 0$ there exists a compact subset K_0 of Y such that $|f(x)| < \varepsilon$, $x \notin K_0$. Let K be a compact subset of Y. Then there exists an element $a \in Y$ such that $a K \cap K_0 = \emptyset$. The function f(ax) satisfies the condition (P) of corollary 2.2. This proves the needed result.

3. Subalgebras of $C_0(X)$. In this section we prove the following

THEORFM 3.1. Let A be a subalgebra of $C_0(X)$. If $A \not\supset c_0$ then A is finite dimensional.

Proof. Noticing that each positive function of $C_0(X)$ attains its maximum on X, we show that A satisfies the condition (P'): there exists a compact subset K_s of X such that $\{y:f(y)==\|f\|\}\cap K_s\neq\emptyset$, $f\in A$. Indeed, assuming the contrary, for each compact subset K of X there exists an element $f\in A$ such that $\{y:\|f\|=f(y)\}\cap K=\emptyset$. This condition is equivalent to (P) of corollary 2.2. Hence $A\supset c_0$. This is a contradiction which proves (P'). Now using transcendental induction we can assume that K_s is a minimal subset satisfying (P') (i.e. K_s contains no proper subset satisfying (P')). Hence for each point $x\in K_s$ and each open subset U(x) containing x, there exists $f\in A$ such that

$$\max_{K_s \setminus U(x)} |f(x)| < ||f|| = \max_{K_s} |f(x)|$$
 (P")

Otherwise, there exists $x_0 \in K_s$ and an open subset $U(x_0)$ containing x_0 such that $\max_{x \in K_s \setminus U(x_0)} |f(x)| = ||f||$, $f \in A$. This contradicts

the fact that K_s is a minimal subset satisfying (P') and proves (P''). Now consider the linear isometric mapping $f \to f|_{K_s}$ of A onto the closed subalgebra $A|_{K_s}$ consisting of the restrictions of elements of A on K_s . Noticing that $A|_{K_s}$ satisfies (P_2) of corollary 2.1., we conclude that K_s is finite. This implies that $A|_{K_s}$ is finite dimensional and hence A is finite dimensional.

Let B be a Banach space and $B \not\supset c_0$, let A be infinite dimensional subalgebra of $C_0(X)$. We prove the following.

THEOREM 3.2. Let $\rho \in L(B, A)$. There does not exist a section $\pi : A \to B$, that is $\pi \in L(A, B)$ for which $\rho_0 \pi = id$.

Proof. Assume that π of L(A,B) is a section. Let $\sum_{n=1}^{\infty} a_n$ be w.u.c. series of A. Then $\sum_{n=1}^{\infty} \pi a_n$ is also w.u.c. series of B, therefore it is u.c. [2]. Consequently, the series $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (\rho_0 \pi) a_n$ is also u.c. Again using [2] we conclude that $A \not\supset c_0$. By theorem 3.1. the subalgebra A is finite dimensional, a contradiction which proves the theorem.

Remark 3.1. Weakly sequentially Banach spaces are not containing c_0 . This shows that theorem 3.1. and 3.2. are the improvement of [4].

4. Application to harmonic analysis. Let P be a Helson subset of the locally compact abelian group G and M(P) the Borel measures concentrated on P.

Theorem 4.1. (Helson). If μM (P), $\mu \equiv 0$, then $\mu \notin C_0$ (Γ). Proof. We consider only the case when G is nondiscrete, for the proof in the discrete case is trivial. The dual group Γ is noncompact locally compact group. The space M (P) is isomorphic to the subspace E of C_b (Γ) consisting of the Fourier transforms of M (P), and hence the space E contains its translates ([9] p. 115). If $\mu \in M$ (P), $\hat{\mu} \in E \cap C_0$ (Γ), then using corollary 2.3. the subspace generated by $\hat{\mu}$ and its translates contains c_0 which means that $E \supset c_0$. This contradicts the fact that E is isomorphic to the weakly sequetially complete Banach space M (P) and proves the theorem.

THEOREM 4.2. (SEGAL). If $L^{1}(G)$ is isomorphic to $C_{0}(\Gamma)$, then G is finite [8], [10].

The proof follows from corollary 2.3. or theorem 3.1. using the fact that $L^1(G) \not\supset c_0$.

The same result is true for the Banach space $L^{p}(G)$, p > 1.

Also if $L^p(G)$ is isomorphic to the space $AP(\Gamma)$ of almost periodic functions on Γ , then G is finite [7].

Finally, Let G be compact group and Σ be its dual object. If $L^1(G)$ is isomorphic to $C_0(\Sigma)$, then G is finite.

REFERENCES

- [1] B. BASIT, Series commutativement convergentes et analyse harmonique, C.R. Acad. Sc. Paris, t. 285, Serie A (1977), 849-850.
- [2] C. BESSAGE and A. PELCZENSKI, On basis and unconditional convergence of series in Banach spaces, Studia Math., T. 17 (1958), 151-164.
- [3] R. DOSS, Elementary proof of a theorem of Helson, Proc. Amer. Soc., 27 No 2 (1971), 418-420.
- [4] C. F. DUNKL, and D. E. RAMIREZ, Sections induced from weakly sequentially complete spaces, Studia Math. T. 39 (1973), 95-97.
- [5] R. E. EDWARDS, On fuctions which are Fourier transforms, Proc. Amer. Math. Soc. 5 (1954), 71-78.
- [6] H. HELSON, Fourier transforms on perfect sets, Studia Math., 14, (1954) 209-213.
- [7] E. HEWITT, Representation of functions as absolutely convergent Fourier-Stieltjes transformations, Proc. Amer. Math. Soc. 4, (1953), 663-670.
- [8] M. RAJAGOPALAN, Fourier transform in locally compact groups, Acta Litt. Sco. Szeged 25 (1964), 86-89.
- [9] W. RUDIN, Fourier analysis on groups (Interscience, N.Y. 1962).
- [10] I. E. SEGAL, The class of functions which are absolutely convergent, Fourier transforms, Acta Litt. Sci. Szeged 12 (1950), 157-161.