SEMISIMPLENESS, COMPLETENESS, AND DIMENSION OF A BANACH ALGEBRA (*)

by Warren Page (in New York) (**)

Sommario. - In questa nota si caratterizzano la semisemplicità, la dimensione e certe proprietà di completezza di un'algebra di Banach combinando e facendo intervenire contemporaneamente proprietà algebriche, topologiche e di teoria della misura le quali sono naturalmente associate ad una tale algebra. La caratterizzazione ottenuta per le algebre semisemplici in termini di normalità, continuità e proprietà T_2 completano alcuni risultati precedenti di [3]. La caratterizzazione della completezza e della dimensione estende considerevolmente il lavoro di Cohen e risponde ad alcune delle questioni da lui poste in [1].

Summary. - This note characterizes semisimpleness, dimension, and certain completeness properties of a Banach algebra by combining and interlacing algebraic, topological, and measure-theoretic properties naturally associated with such an algebra. Our characterization of semisimpleness in terms of normability, continuity, the T₂ property, and denseness nicely rounds out some earlier results in [3]. Our characterizations of completeness and dimension considerably extend Cohen's work and answer some of the questions raised by him in [1].

1. Preliminaries.

Let $\mathcal H$ and $\mathfrak M$ respectively denote the non zero homomorphisms and the maximal ideals of a complex, commutative Banach algebra $(X,\|\cdot\|)$ with identity e and continuous dual X'. If $M \in \mathfrak M$, then

 ^(*) Pervenuto in Redazione il 3 gennaio 1979.
(**) Indirizzo dell'Autore: Department of Mathematics, New York City Technical College (City Univ. of New York), Brooklyn, N. Y. 11201.

 $X/M=\mathbf{C}$ and x+M=x (M) (e+M) for each $x\in X$. Therefore each fixed $x\in X$ determines a mapping $\hat{x}\colon\mathfrak{M}\longrightarrow\mathbf{C}$, and $M\longrightarrow\mathbf{C}$, and $M\longrightarrow\mathbf{C}$ topology under which every member of $\hat{X}=\{\hat{x}:x\in X\}$ is continuous. As is well known, the bijection $\mathcal{H}\longrightarrow\mathfrak{M}$ is bicontinuous when \mathcal{H} carries the $h\longrightarrow\mathbf{C}$ $h\longrightarrow\mathbf{C}$ $(x\in X)$ weakest topology $\sigma(\mathcal{H},X)$ under which every $\xi_x\colon\mathcal{H}\longrightarrow\mathbf{C}$ $(x\in X)$ is continuous.

It is assumed throughout that ν is a probability measure on \mathfrak{M} which is positive on non-empty open subsets of \mathfrak{M} . For example, if \mathfrak{M} is separable with $\overline{\{M_n:n\in N\}}=\mathfrak{M}$ [as will be the case ([2], 426) when X is separable or \mathfrak{M} is metrizable], then $\nu=\sum\limits_{n=1}^{\infty}2^{-n}\chi_{M_n}$ meets our requirements (here χ_{M_n} denotes the characteristic function of $M_n\in\mathfrak{M}$).

2. Semisimpleness Property.

By definition, X is semisimple if $\bigcap M = \{0\}$. One can readily \mathfrak{M} show that the following are also equivalent: (1) X is semisimple; (2) the seminorm $r_{\sigma}(x) = \sup_{\mathfrak{M}} |\hat{x}(M)| = \sup_{\mathfrak{M}} |h(x)|$ is a norm on X; (3) the mapping $\psi \colon X \xrightarrow{} \hat{x}$ is injective (in fact, an $r_{\sigma} - ||\cdot||_{\sigma}$ congruence since $r_{\sigma}(x)$ coincides with the $\sup_{X \to \infty} norm ||\hat{x}||_{\sigma}$ on \mathfrak{M} for each $x \in X$).

Semisimpleness may be characterized in terms of normability, continuity, the T_2 property, and denseness once we prove the following.

LEMMA. Distinct members of H are linearly independent.

Proof. By induction. The result is trivially true for n = 1. If $\alpha_1 h_1 + \alpha_2 h_2 = 0$ and $h_2(x_o) \neq h_1(x_o)$ for some $x_o \in X$, subtract $h_2(x_o) \{\alpha_1 h_1(x) + \alpha_2 h_2(x)\} = 0$ from $\alpha_1 h_1(x) h_1(x_o) + \alpha_2 h_2(x) h_2(x_o) = 0$ to obtain $\alpha_1 \{h_1(x_o) - h_2(x_o)\} h_1(x) = 0$ for each $x \in X$. Thus, $\alpha_1 = \alpha_2 = 0$. If every set of n distinct members of \mathcal{X} is linearly independent and $\sum_{i=1}^{n+1} \alpha_i h_i = 0$, then $h_{n+1}(x_o) \neq h_1(x_o)$ for some $x_o \in X$ and $0 = \sum_{i=1}^{n+1} \alpha_i h_i(x) h_i(x_o) - h_{n+1}(x_o) \sum_{i=1}^{n+1} \alpha_i h_i(x) = \sum_{i=1}^{n} \alpha_i \{h_i(x_o) - h_{n-1}(x_o)\} h_i(x)$ for all $x \in X$. By hypothesis, $\alpha_1 = 0$

and $\sum_{i=2}^{n+1} \alpha_i h_i = 0$ implies that $\alpha_i = 0$ for all i = 2, 3, ..., n+1.

THEOREM 1. The following are equivalent for X:

- (i) X is semisimple
- (ii) The seminorm $p_{\alpha}\left(x\right)=\left\{ \int\limits_{\mathfrak{M}}\left|\,\hat{x}\,\right|^{\alpha}d\nu\right\} ^{1/\alpha}$ $(\alpha\geq1)$ is a norm
- (iii) There is a Hausdorff TVS Y and a collection $\mathfrak{A}: X \longrightarrow Y$ of $p_{\alpha}-$ continuous linear mappings satisfying $\bigcap_{\mathfrak{S}} A^{-1}(0) = \{0\}$
- (iv) $\sigma(X, \mathcal{H})$ is T_2
- (v) $\overline{[\mathcal{X}]}^{\sigma}(X',X) = X'$

Proof. By definition, $x \in M$ iff x(M) = 0 and $x \in \bigcap M$ iff $\hat{x} \equiv 0$.

If X is semisimple and $p_{\alpha}(x) = 0$, then $\hat{x} = 0$ a.e. relative ν . Since $u = \{M \in \mathfrak{M}: x (M) \neq 0\}$ is open, $u = \emptyset$ and $\hat{x} \equiv 0$ yields x = 0. Conversely, if p_{α} is a norm and $x \in \bigcap M$, then $\hat{x} \equiv 0$ and $p_{\alpha}(x) = 0$ gives x = 0.

Thus, (i) \Leftrightarrow (ii). Since (ii) is precisely the requirement that the p_{α} topology be T_2 , one has (i) \Rightarrow (iii) by taking $Y = (X, p_{\alpha})$ and $\mathcal{C} = \{1\}$. If \mathcal{C} satisfies (iii), the weakest topology on X making all $A \in \mathcal{C}$ continuous is T_2 and (by definition) weaker than p_{α} . Therefore, p_{α} is T_2 and (ii) holds. Surely (i) \Leftrightarrow (iv) since (i) means $\bigcap_{\mathcal{V}} h^{-1}(0) = \{0\}$

and $\sigma(X,\mathcal{H})$ is determined by the seminorms $\{p_h(x) = |h(x)| : h \in \mathcal{H}\}$. Finally, the polar $[\mathcal{H}]^o$ always contains $\{0\} \subset X$. The reverse inclusion holds iff $\bigcap_{\mathcal{H}} h^{-1}(0) = \{0\}$. Therefore, X is semisimple iff $\{0\} = [\mathcal{H}]^o$

which is equivalent to $\{0\}^o = X'$ being equal to $[\mathcal{X}]^{oo} = \overline{[\mathcal{X}]}^\sigma (X', X)$ [See [5], 274, for example].

Remark. If X is semisimple, $(x, y) = \int_{\mathfrak{M}} \hat{x} \, \overline{\hat{y}} \, dv$ defines an inner product on X.

COROLLARY 1.1. A finite dim Banach algebra X is semisimple iff \aleph (\Re) = dim X.

Proof. Dim $X < \infty$ assures that dim $X' = \dim X$ and $[\mathcal{X}] = \overline{[\mathcal{X}]}^{\sigma}(X', X)$.

Therefore, X is semisimple iff $[\mathcal{X}] = X'$.

3. Dimension and Completeness.

Throughout this section, X is assumed to be semisimple. For convenience, we let X'_{τ} abbreviate the continuous dual of (X, \mathcal{C}) and we let $|| \cdot ||_1 \sim || \cdot ||_2$ denote norm equivalence.

THEOREM 2. The following are equivalent for X:

(i) $Dim X < \infty$

(i)' Dim L (\mathfrak{M}, ν) $< \infty$

(ii) (X, p_{α}) is complete

(ii)' $(\hat{\mathbf{X}}, || \cdot ||_{\alpha})$ is complete

(iii) $p_{\alpha} \sim r_{\sigma}$ on X

(iii)' $|| ||_{\alpha} \sim || ||_{0}$ on \hat{X}

Proof. Clearly (i) \Leftrightarrow (i)' by virtue of $\hat{X} \subset C(\mathfrak{M}) \subset L_{\alpha}(\mathfrak{M}, \nu) \subset \pi \mathbb{C}$, Corollary 1.1 and the bijective nature of $\mathcal{H} \to \mathfrak{M}$. Furthermore, (ii)' \Leftrightarrow (ii) and (iii)' \Leftrightarrow (iii) since ψ : $(X, p_{\alpha}) \rightarrow (\hat{X}, || \cdot ||_{\alpha})$ $\psi: (X, r_{\sigma}) \to (\hat{X}, || \cdot ||_{\sigma})$ are congruences. It suffices therefore to prove (i) - (iii) equivalent. First, (i) ⇒ (ii) since a finite dim vector space has exactly one T_2 topology compatible with its linear structure. Next, (ii) ⇒ (iii) by the uniqueness of complete norm on the semisimple algebra X ([5], 262). Since $p_{\alpha}(x) \leq r_{\sigma}(x) \ \forall \ x \in X$, condition (iii) is equivalent to the existence of some $\lambda > 0$ satisfying $r_{\sigma}(x) \leqslant \lambda p_{\alpha}(x) \ \forall \ x \in X.$ Therefore ${p_{\alpha}(x)}^{\alpha} \leq {r_{\alpha}(x)}^{\alpha-1} p_{1}(x)$ $\leq \lambda^{\alpha-1} p_1(x) \ \forall \ x \in X$ and the norm topologies on X satisfy $r_{\sigma} = p_{\alpha} \subset p_1$. At the same time, (Riesz-Markoff Theorem) there is a $\Phi_{\nu} \in C'$ (M) satisfying $\Phi_{\nu} (f) = \int_{\mathfrak{M}} f \, d\nu \, \forall f \in C$ (M). Since $C (\mathfrak{M}) \longrightarrow C (\mathfrak{M})$ is continuous, $p_1: x \longrightarrow \{\Phi_{\nu} | \psi |\} (x) =$

is continuous, $p_1: x \longrightarrow \{\Phi_v | \psi | \}$ $(x) = f \longrightarrow |f|(x) = |f(x)|$ $\int |\hat{x}| dv \text{ is } r_\sigma \text{-continuous. In particular, } p_1 \text{ is } \sigma(X, X'_{r_\sigma}) \text{-continuous}$ and $p_1: x \longrightarrow \{\Phi_v | \psi | \}$ $(x) = f \longrightarrow \{\Phi_v | \psi | \}$ and dim

and $p_1 \subset \sigma(X, X'_{r_{\sigma}}) \subset r_{\sigma}$. Therefore, $p_1 = \sigma(X, X'_{r_{\sigma}})$ and dim $X < \infty$ ([5], 167).

COROLLARY 2.1. X is finite dim iff $X'_{p_{\alpha}} = X'$.

Proof. Dim $X < \infty$ implies that $p_{\alpha} = || ||$. Conversely, $p_{\alpha} = \tau (X, X'_{p_{\alpha}})$ (the Mackey topology on X) and $X'_{p_{\alpha}} = X'$ implies that $p_{\alpha} = \tau (X, X') = || || \supset r_{\sigma}$. Thus, $p_{\sigma} = r_{\sigma}$ on X.

As is well known, (X, r_{σ}) is complete if and only if \hat{X} is $|| \cdot ||_{\sigma}$ - closed in C (M). By comparison, $(L_{\alpha}(\mathfrak{M}, \nu), || \cdot ||_{\alpha})$ - completeness yields

COROLLARY 2.2. (X, p_{α}) is complete if and only if \hat{X} is $|| ||_{\alpha}$ -closed in L_{α} (M, ν). The completion of (X, p_{α}) is $\overline{\hat{X}}^{|| \cdot ||_{\alpha}}$, $|| \cdot ||_{\alpha}$) $\subset L_{\alpha}$ (M, ν).

The nature of ν can be exploited to generalize the fact (Theorem 2) that p_{α} — completeness implies r_{σ} — completeness.

EXAMPLE 1. If $\mathcal{C} \subset r_{\sigma}$ and $x_n \xrightarrow{\mathcal{C}} x$ implies that $x_n \xrightarrow{\text{measure}} x$, then \mathcal{C} — sequential completeness implies r_{σ} — completeness. Verification: If \mathcal{C} above is sequentially complete and $f \in \overline{X}^{||\cdot||_{\mathcal{O}}} \subset C$ (\mathfrak{M}), there exist $x_n \in X$ such that $||\hat{x}_n - f||_{\mathcal{O}} < 1/n$. Since $\{\hat{x}_n\}$ is $||\cdot||_{\mathcal{O}}$. Cauchy in \hat{X} , the sequence x_n (being r_{σ} , therefore \mathcal{C} -Cauchy) is \mathcal{C} -convergent to some $x \in X$. In particular, $\hat{x}_n \xrightarrow{\text{measure}} \hat{x}$ and (since $\hat{x}_n \xrightarrow{\text{mean}} f$) $\hat{x} = f$ a.e. on \mathfrak{M} . The reasoning in Theorem 1 confirms that $\hat{x} = f$ and $\hat{X} = \overline{X}^{||\cdot||_{\mathcal{O}}}$ in C (\mathfrak{M}).

4. Additional Comments.

The preceding results may be specialized [4] as well as extended [3]. In fact, all our results remain valid for complete $LMCT_2$ Q-algebras with identity; that is, topological algebras with a nbd. base of absolutely convex idempotent sets (LMC algebras) whose set of units is open (Q-algebras). This generalization is non vacuous.

EXAMPLE 2. The algebra, under pointwise operations, of infinitely differentiable functions on $[a, b] \subset \mathbb{R}$ determined by $\{q_n(f) = \sup_{[a, b]} |f^{(n)}(t)| : n \in \mathbb{N}\}$ is a semisimple, *LMC*, Frechet *Q*-algebra which ([5], 278) is non normable.

REFERENCES

- [1] S. COHEN, «An Inner product for a Banach Algebra», Boll. UMI IV (1973), 35.41
- [2] N. DUNFORD and J. T. SCHWARTZ, Linear Operators, PartI., Wiley-Interscience, New York, 1958.
- [3] W. PAGE, «Measure-Induced Seminormed Topologies on a Banach Algebra», Rend. Mat. (2), Vol. 6 (1973), 238-255.
- [4] W. PAGE, «Characterizations of B* and Semisimple A*-Algebras», Rev. Rom. Mat. Pures Appl (8) XVIII (1973), 1241-1244.
- [5] W. PAGE, Topological Uniform Structures, Wiley-Interscience, New York, 1978.