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SOMMARIO. - Di recente, si & riscontrato un crescente interesse per lo studio di
equazioni differenziali di ordine n in cui figura loperatore differenziale
di ordine n

Lix(t)=x (), L,x(t) = x(1), 1<i<n,

—_— L.
r, @ dt 1
r,() =1,

che da luogo a termini smorzati.

In questo lavoro, vengono studiati criteri oscillatori per le soluzioni limi-
tate di equazioni funzionali di ordine n, con argomenti devianti di tipo
generale, aventi la forma

) Lx(t) + H(tx[g®D = Q¢ x[g®1), n even

e vengono date condizioni sufficienti per H e Q, tali da assicurare che
tutte le soluzioni limitate di (E) siano oscillatorie.

SUMMARY. - Recently, there is an increasing interest in studying the n-th order
differential equations involving the so called n-th order r-derivative of x

1 d .
Lyx(®) = x (), Lx(t)_—(z)— 5 L_;x®), 1<i<n,

r,(®) =1,

which causes damped terms.
Here, are studied the oscillatory criteria of bounded solutions of n-th
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order functional differential equations with general deviating arguments of
the form

(E) L,x(®)+ H(tx[g®])=Q(tx[g®]), n even

and are given the sufficient conditions on H and Q, which guarantee that
all bounded solutions of (E) are oscillatory.

1. Introduction.

In this paper we consider the n-th order functional differential
equations with general deviating arguments of the form

(E) Lox()+H (4, x [g ()])=Q (t, x [g (O]), 1 even,

where the differential operator Ly is recursively defined by

Lox ()=x (), Lix(z)z%(t) %Li_lx 0, 1<i<n,
e () =1.

We note that g(f) is a general deviating argument, that is, it
is allowed to be advanced (g (f)=1), or retarded (g (£)<f) or otherwise.
A solution x (f) of (E) is said to be continuable if the exists on some
ray [a, «),a>0. A nontrivial solution of (E) is oscillatory if it is
continuable and has arbitrary large zeros. By a nonoscillatory solution
we mean a continuable solution which is not oscillatory. The term
« solution » for the remainder ~of this work will mean a nontrivial
continuable solution. |

The motivation for this study comes from a recent article by
Kartsatos [4]. In [4], Kartsatos considers a special class of n-th order
functional differential equation of the form

XM (O+H (t, x [ (0)])=Q (t, x [g.(D]), n even,
and derives some oscillation criteria. We also refer to the works of

Chen-Yeh [1] - [2], Kartsatos [3] and Lovelady [5].
The following assumptions are made without further mention:

(@ reC(R,=[0, =), R,\{0}),
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and
fri(t)dtzoo, 1<i<n—1;
(b) g€C (R, R=(— o0, ))
and

lim g ()=eo for j=1,2;
t - co

(¢) H, QeC(R; X R,R), H(t,u) is increasing in u and
uH (t,u)=0 for u=+0.

Our purpose here is to give the sufficient conditions on H and Q
under which all bounded solutions of (E) are oscillatory.

2. Main results.

THEOREM 1. Let

(i) for each a>0 there exists a function Q,e€C (R, R,) such
that

|Q (¢, W] =Q. (9
for each u€R with ju| <a;

(i) for each ¢>0, >0

(o]

fwn_l O {H(t, £c)FQ. ()} dt==* oo,

where wn-1(t) is defined by

w ()= f 1 (8) ds, wy ()= / tx (8) twx—1 (8) ds,

Then if x (t) is a bounded eventually positive (negative) nonoscilla-
tory solution of (E), there exists a sequence {t.}, n=1,2, ... such that
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llm tn— ©o di’ld H (tn, X [gl (tn)] <Q (tm X [gZ (tn)]), (H (tl’l’ X [gl (tn)])>

"N — o0

>Q (tn, x [ (t)]1)). Now, in addition to the above assume that g ()=
=g, (t) and that the inequality \

H (tn, ) = Q (ts, x1) (H (ts, x,)=Q (¢, X))

jor a sequence {t,} with lim t,=oo and a sequence {x.} which is

n —-o00!

positive (negative) and bounded, is impossible; then every bounded
solution of (E) is oscillatory.

ProoF. Let x (f) be a bounded eventually positive nonoscillatory
solution of (E). Then there exist #=0 and # such that x (/)>0 for
t=t and g ()=t for t=t, and j=1,2. Thus x [g ()]>0 for t=t,
and j=1, 2. Since x (t) is bounded, there is a @ >0 such that |x (t)] <«
for each ¢t=t. Thus, by (i),

(1) 1Q (¢, x [&(OD] <Q. (®
for t=1t,. Assume that
Htx[a®D—-Q @t x [g:(H)]>0

for t=T, where T=t, is a fixed number. Then, by (E), L.x (1) <0 for
t=T. It follows from Lemma of [1] (or, cf. [4]) that

(2) (=1 L,x (>0, x=1,2,..,n—1
for ¢t=T. 1t T is large enough, fhen, for t=T

(=1 L.x [g®]>0, x=1,2,..,n—1, j=1,2.
It follows from x’ [g1 (©)]1>0 fqr t=T that

x[g®]>x [g(T)]=c.
Thus

3) H (& % [g OD=H (¢, o).

- From (E), (1) and (3), Weihave
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t
( not (5) Ln % () ds+

T

+ f wnr () {H (s, % [&1 () —Q (5, x [ (5)]) } ds=0
T
i. e.

@  x@=x@+DH—D D)+ [ @nct () {H (5, ©)—Qa (5)} ds
T

n—1

where D (f)= 3.7 (=D w; (0 L; x (0).
Hence, by (2), (4) and (ii),

x()>x(T)—D (T)+ [wn_l ) {H(,¢0)—Q.(s)}ds—> oo
‘T

as t—> oo, a contradiction. Consequently, there exists at least H=T
such that

H (t, x [g ()] —Q (1, x [& (t)])<O0.

Since T was arbitrary, it follows that there exists a sequence {f,},
n=1,2,..., such that #,=¢ and

(5) H (ts, x [81 (t)])—Q (tn, x [8: (t)]) =<0, n=1,2, ...,,

Similarly, we can prove the case for an eventually negative bounded
nonoscillatory solution x (f). As for as the second part is concerned,
it is obvious from (5) with g (t.) =g (t.) and the corresponding inequa-
lity for a negative solution x (f). This completes our proof.

REMARK 1. Taking r; (f)=1 for i=1,2,...,n—1, a result of
Kartsatos (Theorem 1, [3]) is a special case of our theorem.
We now state an auxiliary lemma, which is due to Chen-Yeh [2].
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LEMMA. Consider the equation
(6) L.x ()+H (¢, x (£))=0,
and the inequality
(7) L. x ()+H (¢, x (£) <0,

where HEC (RXR, R) is increasing with respect to x.

If there exists a solution (bounded solution) x (t) of (7) with
x (t)=ui>0 for some t;>0 and x' (1)=0, t€[t;, o), then there is a
solutoin (bounded solution) y(t) of (6) with y(t)=uw and y' (£)=0,
L€ [t, o) for some t:=t,.

THEOREM 2. Let H (t, u) be strictly increasing in u and such that
for every t€R., g, o€R with pi >0, || < |u,

IH (t’ ﬂl)l <k (:ul, ,uZ) IH (t’ ﬂz)l,

where k is a constant depending on i, t» with k (w1, u2)€(0, 1).
Let every solution (bounded solution) of

(8) Lox@®)+p H(x(8)=0

be oscillatory for every u>0. Let the inequality

()] L.x (t)+H (¢ x (1))=Q ()

have an eventually positive solutiqn x1 (¢), and the inequality
(9): L.x(?) +H (t, x ())=Q (1)

have an eventually negative solut?o»n x2 (t) such that

(10) | lim x,(t) 0, j=1,2.

t—»> oo
Then every solution (bounded sdlution) of
(11) Lux(+H (6 x)=Q ()

is oscillatory.
|

PrOOF. Let x2 (1) <0, t=£>0, satisfy (9),, and let every solution
of (8) be oscillatory. If x (¢) is a positive solution of (11), then u ()=
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=x (t)—x, (¢) is a solution of
(12) Lou(O+H (t, u (t)+x: (1)) —H (¢, x2 (£)) <O0.

Assume that u (£)>0 for t=t,=¢#. Then L,u(t)<0 for t=t,.
Since # is even, u’ (£)>0 for t=1t,, where #, is large enough. We choose

1 .
e>0 so that e<7u(t2) and, lxz (t)l <e for every t=t;, for some
t:=t,. It follows from (12) that

(13) Lou®+H(tu®)—e)—H(t o)<
=L.u@®+H {tu@)+x @)—H({ x (t)<0
for t=t;. Since u () —2e>u (t,)—2¢>0 for 1=t
(14) H(tu(@)—e)—H(te)>0, t=t.
Let v(t)=u (t)—e, then v (¢),t=1#; is a positive solution of
(15) Lov(O)+H (v ()—H(t =<0, t=t,

and such that v (f)>0 and v (f)>¢ for t=t.. It follows from Lemma
that this is also true for the equation

(16) Loz (O)+H(t,z()—H (t,)=0.

Let z (f) be such a solution of (16) with z (¢¥),z’ ()>0 for t>t
and z (t3) >¢. Since H (¢, x) is strictly increasing in x,

H(t,e)<k (e,z (t)) H (t,z (1)) <
<k (¢,z (&) H (¢, z (1))
for t=t;. Letting u=1—k (¢, z (), we obtain that

H(t,¢) _
Gz (—t)—)—}H (&, W ()=0

17) LnW(t)—I—gl—

have a positive solution z (¢),1=1#;, with the coefficient of H (t, W (¢))
bounded below by the constant u. Since every solution of (8) is oscilla-
tory for every p=0, we obtained by Theorem of [2], that every
solution of (17) must also be oscillatory, a contradiction. Hence there
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exists a sequence {f»}, m=1,2,.., such that lim #t»,=eco and

m — O

x (tm) <% (tw)<0, m=1,2, ..., which contradicts the positiveness of
x (¢). Similarly, we can prove the'case where x; () is a positive solution
of (9); and the case where every solution of (8) is bounded oscillatory.

REMARK 2. Taking r;()=1 for i=1,2,..,n—1, a result of
Kartsatos (Theorem 2.1, [4]) is a special case of our theorem.

From the proof of Theorem 2, we can obtain the following two
corollary.

CoroLLARY 1. Let the assumption on H, Q of Theorem 2 be
satisfied. Let x:(t) is a solutzon of (9 with lim x; (£)=0. If every

{ — o

solution of (8) is oscillatory (bounded oscillatory) for every u>0, then
every eventually positive (negative) [bounded and positive (bounded
and negative)] solution x (f) of (11) satisfies lim inf x (£)=0.

: t —co

COROLLARY 2. Let the assumption on H, Q of Theorem 2 be
satisfied. Let x; (t) is an eventually positive (negativé) solution of (11)
with lim x, (1)=0. Assume that x,(t) is another solution of (11) with

t - oo

the same property. If every bounded solution of (8) is oscillatory for
every >0, then x; (f)—x; (t) is an oscillatory function.
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