‘COHEN’S ITERATION PROCESS FOR BOUNDARY VALUE
PROBLEMS FOR FUNCTIONAL DIFFERENTIAL EQUATIONS (*)

by ALFREDO BELLEN (**)

SoMMARIO. - Si estende il metodo iterativo introdotto da Cohen per il problema
di Dirichlet, a vari tipi di problemi al contorno per certe classi di equazioni
differenziali anche funzionali. In questo modo si ottengono, in maniera co-
struttiva, alcuni risultati noti ed alcuni nuovi sulle soluzioni periodiche di
equazioni differenziali funzionali ed altri problemi al contorno. Il metodo
appare efficiente anche dal punto di vista numerico.

SUMMARY. - The iteration process introduced by Cohen in connection with the
Dirichlet problem is extended to various boundary value problems for
ordinary and functional differential equations. In this way some known and
some new results on periodic solutions of functional differential equations
and other b. v. p., can be obtained in a constructive way providing an
efficient numerical method for approximating the solutions.

In [6], Cohen introduced a new iteration process for the approx-
imation of a solution of some elliptic problems in presence of upper and
lower solutions. Successively, this process has been extended to other
elliptic and parabolic problems by Amann[1] and Sattinger [16]. On
the other hand, the existence of solutions in presence of upper and
lower solutions has been stated for various other b. v. p. by Deuel-Hess
[8], Kaplan-Lasota-Yorke [11], Knobloch [12]-[13], Grim-Schmitt [9]
and Schmitt [17], however without a constructive approach.

In particular for elliptic differential equations of second order, many
results and a complete bibliography can be found in the survey of
Schmitt [18].

(*) Pervenuto in Redazione il 27 gennaio 1979.
(**) Indirizzo dell’Autore: Istituto di Matematica - Universitd - Piazzale
Europa 1 - 34100 Trieste.
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As far as numerical methods for functional differential -equations
is concerned, they found a growing interest in the last years. Dealing
with periodic solutions, various methods can be found in [21, [3], [4],
[14]. Other boundary value problems seem more hard to solve numeri-
cally, and few papers are avalaible. In particular, the shooting method
has been investigated by De Nevers and Schmitt [7], and the conver-
gence of the collocation method with spline functions has been proved
by Reddien and Travis [15]. Recently, Chocholaty and Slahor [5]
have introduced an iterative method which consists in solving a se-
quence of non-linear ordinary b. v. p. by quasilinearization.

In this note we observe that Cohen’s iteration process can be put
in an abstract way in order to unify the above theoretical results. Moreover,
it can be successfully used to state some known and some new
existence results and to provide an efficient numerical method for
various b. v. p. for differential equations with deviating argument of
the form

L (x, u (0))=f(x, u, (x), u (g (x)))

where L is a first or second order linear differential operator.
I am grateful to G. Vidossich for suggesting this research.

1. The differential operator and boundary conditions considered in
this paper.

In this paper we shall consider linear functional differential
operators L and linear boundary operator B acting on suitable
functions defined on R2CR" and 92 respectively, and having the
following properties. There exist a dense subset AC]O 4 oo[ and a

Banach space B CC (£2) such that:

(i) The cond1t1ons AEA, L (x, u (x)) Au(x)=0, B(x,u)=0
imply u=0.

(i) For each heM and AeA, the boundary value ptoblem

L (x, u (x))— i (x)=h
- B(x,u)=0

has exactly one solution ©we€.

(iii) If (ua)n and (L (x,un)). are uniformly bounded and
B (x, u)=0 for all n, then there is a subsequence (u.,): converging
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, umformly

(iv) The COIldlthIlS hm U, = u and hm h, = h uniformly,

L(x un) h, and B (x, u,)=0 for n=1 imply L(x u)=h, B (x,u)=0.

These hypotheses are satisfied by many b. v. p. for elliptic and
parabolic partial differential equations, as weil as for ordinary differen-
tial equations of first and second otder. This follows from the well
known “maximum principles and Schauder estimates for elliptic and
parabolic problems, while for 6rdinary differential equations (L (x, u)=
=a(x)uv’ and L (x,u)=a(x) ") we may proceed as follows. Hypo-
thesis (i) follows from a simple direct argument in case of periodic
solutions for first and second order differential equation, as well as
for the most common (two points, Nicoletti, etc.) linear b. v. p. of
second order equations. Hypothesis (ii) is obvious, while (iii) follows
from Taylor’s formula and (iv) from Taylor’s formula and the well
known results on the d1ﬂerent1ab1hty of limits of sequences of differen-
tiable functions. :

2. Cohen’s iteration scheme fogr operators satisfying (i)-(iv).
- We call ‘upper solutlon of the boundary value problem

L(x, u(x)=f(x, u(x) u(@ ) B(xuw=0

any functlon ﬁ (x) such that

L(x ﬂ(x))<f(x,.3 (x) B (g (x))) B (x, ) Z0

and is SO smoovth that L x, p) and B (x, f) makes sense. Substituing =, =
with the strong sign <, > we have a strict upper solution. Reversing
‘the above inequalities, we have the notion of lower solution and strict
lower solution. The following theorem states the abstract version of
Cohen’s iteration process and, in view of the remarks at the end of the
§ 1, it implies the claims made' in the introduction on the known results
concerning upper and lower solutions. -

LEmMMA 1. Let a and B bé lower and upper solutions of the b. v. p.
1 L, u(x)) f(x u(x) u(g (), B uw=0

;wzth a<ﬁ and f (x, u,- ) non imcreasmg If Of/0u exists continuous in
={(x, u,v) | x€2,a (¥) = uW=Px), a0 (@ (*)<v @)=L ()}
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and ueB=f(-,u(-),v(g(-)eB then the b. v. p. (1) has a solution
u, with a=u=p, which is the uniform limit of the increasing sequence
(0tn)n deﬁned inductively by

(2) e (X)=a (x), L (¥, ani1 (%)) —Cans1 (X)=
=f (%, &n (%), @n (8 (D)) —C 0n (¥), B (X, Gus1 () =0
where c is any fixed positive number such that c= maxilrgmm of(x, u, v)/du.

If o (x)=R(x), the sequence (an). is decreasing and converges to a
solution v such that u=<wv.

At the beginning of the proof it is shown that the sequence (an)»
is well defined. When L is an ordinary differential operator and

2=[a, b], then usually we have B =C [a, b], and when L is an elliptic
or parabolic operator then B is usually a suitable space of Holder
functions.

Proof of lemma 1. First let’s remark that the sequence (an). is
well defined by (ii). Let’s show that, if ap=a

(3) a,=f for all n.

This is known for n=0. Assume it true untill n and let’s state it for
n-+1. We have

L (x, B () —@ns1 (X)) —¢ (B (X) — 011 (%)) =
=L (x, [ x)—cf x)—F(x, an (x), 0u (g X))+ an (X)=

Efx,B(x),B@E@)—chx)—( ¥, @ (), @ g @) —ca. (x)=0

since u <> f (x, u (x), u (g (x)))—cu is decreasing in [a (x), B (x)] in view
of the choice of the constant ¢. Moreover B (x, f—a,+1) =0, and therefore
(i) implies f—0a,41=0 as desired. Now let’s show that

4) | U= 0Olns1 for all n.

For n=0 we have -
L (x, a1 (x) — a0 (x)) —c (a1 (x) — 000 (x)) =
=f (%, a0 (%), 00 (g (¥))) — L (x, @ (¥)) 4 00 (x) =
=f (x, a0 (x), a0 (g (x))) — L (x, &0 (x)) =0

because ao=c. Moreover B (x, o1—a9) =B (x, a1) —B (x, 00) =0, then (i)
applied to u=o1—ao implies a;=op. Now let n>0 and a.=a.1 by
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inductive hypothesis. :I'hen |

5) L% Gurt ()= (1)) = (ot (1) —tn (1)) =

=1 (%, @n (), @ (g () —C an ()= (f (¥, Tn_1(x), n-1(g (X)) — ¢ an-1 (x)).

By the inductive hypothesis and the decreasing behavior of the function
u=>f(x, u(x), u(g(x))) —cu in [a(x), f(x)], the right hand side of (5) is =0.
Since we have also B (x,0,:1—a,)=0, from (i) it follows that
Ani1—0n=0, hence (4). From (3) and (4) we have that (a,), is uni-
formly bounded. From the equation (2) it follows that the sequence
(L (x, an)). is also uniformly bounded. Then, by (iii), for every sub-
sequence (an, )r of (an). there'exists a uniformly convergent subse-

quence (“"k,-)i- Let w (x)= lim a‘nki (x). By (4) uo (x)= sup a, (x), there-

fore we have shown that every subsequence of (a.). has a subsequence
which converges uniformly to a function u= sup a, (¥). A well known

property on limits implies that lim a,=u uniformly. Then we apply (iv)

n
and we get L (x, u (x))=f (x, u (x), u (g (x))), B (x,u)=0 q. e. d.

For the case ap=/ it is sufficient to reverse the inequalities and to
invert the role of @ and f in the proof.

3. Application to periodic solutions of functional differential equations.

Let’s consider the problem iof periodic solutions of the equation
(6) L (x, u () =f (x, u (%), u (g (x)

where L (x, u (x))=u’ (x) or L (X, u (x))=u" (x), f (-, s, {) is a T-periodic
function R — R for each s, teR, and g (x) is T-periodic or satisfies the
more general condition g (x+4T)=g (x)47T which is fulfilled for the
class of deviating argument of the form x+A4 (x) with 4 (x) T-periodic.

The problem of periodic solutions of (6) in presence of upper and
lower solutions has been already investigated by Schmitt [17] for
L(x,u(x)=u"(x) and g deperiding also on u, in case that f(x, u, )
is non-increasing as well as under stronger conditions on the upper and
lower solution a and f, that is:

a”’Zf (x, a (x), ), ﬁ”éf (x, 8 (x),y) ¥Vyela(x),f ®].
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In order to apply the Cohen’s iterations process to equation (6), we need
to prove that properties (i)-(iv) hold for the operator:

(7) L' (x,u(x))=L (x,u(x))—ku(g () kel0, + [
with 2=R and B the space of T-periodic functions of class C° or C".

LEMMA 2. The operator (7) satisfies the properties (i)-(iv) in the space
B for any A€A such that (k+A) T=.1 in case of first order equation,
and such that (k4-1) T?’=8 in case of second order equation.

PrROOF. (1% case: L (x, u (x))=u’ (x)). Property (i) holds by a simple
application of the Taylor’s formula u (x)—u (%)= (x—x0) v’ (§). In fact
let’s suppose u’ (x)—ku (g (x))—Au (x)=0. If u has both positive
and negative values, it has a minimum value u (%)) =0 <0 and a maximum
value u (x)=e>0. Since, by the periodicity of u, we may suppose
X<x, we have : |

e—c=Tmax (' X)=T (k+A)e.

If T (k+A)<1, the last relation should imply 6=0 or £<0, therefore u
has constant sign. It cannot be # =0 because #'(x) =ku(x—g)(x)) + Au(x) =
=0=u" (x)=0= u (x)=0, hence u (x)=0. Property (ii) holds too, by
the Fredholm alternative principle for periodic solutions of linear delay
differential equations (see [10] lemma 2.2) which states the existence
and uniqueness of periodic solutions of the system u’+Au=h, with A
a linear operator of C} (T, R™! into itself, and heC} (T, R"), provided

the homogeneous system has, in C; (T, R"), only the trivial solution.

For n=1 and Au (x)= —ku (g (x))— Au (x), the homogeneous equa-
tion u'+Au=u’ (x)—ku (g (x))—A (x)=0 has, by (i), only the trivial
periodic solution and therefore (ii) holds.

Properties (iii) and (iv) can be verified by the same arguments in
case g (x)=x.

(2" case: L (x,u (x))=u" (x)). Property (i) is easily verified by
analogous considerations on Taylor's formula u (x) — u (%) =
=(x—x0) 1 (x0)+ (x—x0)* Vo u” (§) as in the previous case, provided
(k+2) T?=8.

Since the equation u” (x)—ku (g (x))—Au (x)=h is equivalent to

Q) Cj* (T. R") is the space of T-periodic function R —> R" of class Ci.
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the first order system:

2 (x)—y () =0
(8)
Y (x)—kz (g (x))—Az (x)=h

with z=u and y=u’, choosing the linear operator A, acting on C; (T, Rz),
as

Az, y)=(—y (), —kz (g () —iz (x)),

the omogeneous system associated to (8) has, by (i), only the trivial
solution in C§ (T, R?) and then (i) holds.
Properties (iii) and (iv) are [ulﬁlled as in case g (x)=x.

TueoreM 1. Let a and B d lower and upper solution of the equa-
tion (6) with a=p. If 9f (x,, 2)/dy and 0f (x, y, z)/dz exist continuous
on K ={(x,y,2)|x€R;a(x) Ey=B(x); a@x) =zZ[(gx)},
then the equation (6) has a T-periodic solution u(x)e[a (x),f (x)] if
(c4+k) T=1, in case of first order equation, and if (c+k) T?<8 in case
of second order equation, where ¢ and k are positive reals numbers such
~ that c= max df/dy and k= n;{a;lx df/0z.

ProOF. The problem (6) is;equivalent to
©  Ieu@=hEu@,uEw)
where L’ (x, u (x)) is the operatbr (7) and

(e, 1 (), 1 (8 () =1 (6, u (), 2 (g (0)) —ku (g (x))

which, by the choice of k, is non-increasing with respect to u (g (x))
on the set K’. On the other hand, by the choice of ¢ and by lemma 2,
the operator L’ satisfies the properties (i)-(iv). Then, by lemma 1, we
find an increasing and uniformly convergent sequence (a.). defined
inductively by ;

o (x)=a (x)

(10) L’ (%, @ns1 (%)) =€ @ns1 (X) =h (x, @n (%), @n ((g (X)) =€ @ (%),

whose limit is a solution of (6).
If ao (x)=f (x), the sequence {a.}. is decreasing and converges
to a solution v=u. | \ ‘ R
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CoroLLARY 1. If f (x, u, -) is non-increasing, the process of theorem
1 can be applied for k=0, therefore the left hand operator does not de-
pend on deviating argument and then the thesis holds with no limita-
tion on the derivative of f. This constructive result is the same of theorem
1 in [17] when g does not depend on w.

CoroLLARY 2. If f=f(x, u(g(x))), theorem 1 holds under con-
ditions kT =1 or kT*=8, respectively for first or second order equations.
This can be proved either by a direct argument on equation L (x, u (x))=
=f (x, u (g (x))) or noting that the theorem 1 holds for arbitrary ¢>0.

CoroLLARY 3. If f(x, -,u) is non-increasing the theorem 1 holds
again for kT=1 or kT?>=8 because of the arbitrariness of ¢>0.

4, Some remarks.

REMARK 1.

In case of periodic solutions of first and second order ordinary and
functional differential equations, it is easy to prove that, under the condi-
tions (A+k) T=1 and (A+4k) T*=8, the following properties hold for
the operator L (x, u) =u® (x)+ku (g (x)) i=1,2; k>0 and B as above.
()" The conditions A€A, L’ (x, u (x))+Au (x) =0, ueMB imply
ux)=0 ' ‘ '

(ii)™ For each he B and A€A, the problem

L’ (x, u (x))+Au (x)=h

has exactly one periodic solution ue93.
(iii)” = (iii).
i)™ = @{v).
We can verify that, if o and f§ are a lower and upper solution of
(6) with the reverse relation a=f, then the problem has still a solution

u such that f=u=a. The proof need the prove of the analogues of
the theorems 1 and lemma 1, where ¢ and k are exchanged by —c and —k,

with —c = mindf (x,y,2)/dy and —k = mindf (x,y,2)/3z, K =
. K’ PR K’

={(x, 5, 2)|xeR; B (X)=y=a (x); f (g (X))=z=a (g (x))}. The sequence
(an). turns out to be non-increasing and bounded by B, hence
'it will converge uniformly to a solution Qf (6). However, the existence
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of periodic solutions of small period, when a=f5, has been noted earlier
by Schmitt [19] in ordinary case.

So we can state the following theorem concerning the number of
solutions.

THEOREM 2. If the equation: (6) admits n lower solutions v, ... , v,
and n upper solution wi, ..., w, in Ci (T, R) such that

W,Z" é cee é‘”néWn

s
A
S
A
S
A

and 9Of (x,y,2)/dy and Of (x,y,2)/dz exist continuous on K’ =
={(xy,2)|xeR; vi(X)=y=w,(x); v1(@))=z=w.(g(x)} with
c= max |0f (x, y, 2)/dy| and k= max |0f (x, y, 2)/0z|, then the equation
(6) has 2n—1 T-periodic solution u; such that

vifuy1=w; for i=1,..,n
wiSuyp=viq fori=1,..,n—1

if (c+k)T=1, in case of first order equation, and (c+k) T*=8, in case
of second order equation.

REMARK 2. In view of numerical applications, it is useful to notice
that, for periodic boundary conditions, the property (i) in 1. holds with
strict inequalities. Therefore lemma 1 and theorem 1 state the existence
of a periodic solution u such that a<u<f, provided a and f are strictly
lower and upper solutions satisfying a<f. In this case the sequence
{a.}. is strictly monotone. |

REMARK 3. For the boundafy value problem

u’ (x)=f(x, u (x), u (g (x))) a<x=<b
u(x)=9 (x) x<a
ux)=¢ (x) | x>b

with f (x, u, -) non increasing for fixed (x, u) and g, 9, ¢ continuous on
[a, b], lemma 1 gives a sufficient condition for the existence of a
solution which can be computed by means of the iteration 2. The
result, already stated in [9], can be improved by dropping the mono-
‘tonicity condition on f and adding a further condition obtained by
similar arguments like in lemma 2 and theorem 1, that is (c+k) T?°<2.
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5. Numerical considerations and examples.

The sequence {ax}. in the theorem 1, is given by the solutions of
the linear equations (10). Although many efficient numerical methods
are available for such kind of problems (linear equation with constant

coefficients), at each step, the computed solution ans1 is the exact
solution of a perturbed equation, that is

(11) L’ (%, @nr1 () —C Qus1 ) =F (%, & (), @ (g (%)) — € @ (X) +&n ().

In order to guarantee the monotonicity and the convergence of the

computed sequence {a.}. to the solution u (x), it is sufficient to start
from a strictly lower solution oo (analogous considerations hold for
upper solutions) and to prove that:

if, for each n, a, is a strictly lower solution of (9) such that a.<u
then the following conditions hold for an.1:

Dt (%) <anir (x)
i) L (% tust ())>F (%, @i (%), 0nsr (g (%))
i) @ ) <u (x).

If the numerical method for the equation

(12) L' @ tnst (1)) =€ Qnia ()= (%, 0 (%), @ (g ())) —C 0t (%)
provides a residual &, (x) which is so small to satisfy

(13) & @<L (% o ()= (6 an (1), 0a (g () (>0),

then (j) holds. In fact, (11), the inequality (13) and the condition on
@, imply |

L’ (%, @ne1 () =@ (X)) — € (@1 () — @ (%)) <0

and therefore, by remark 2, cns1> .
On the other hand, if ¢, (x) satisfies

(14) & ()>h (X, T (6), Gnst (€ () —€ @uss (¥)—

—[7 (%, @ (%), an (8 (X)) —c an (1)1,

where the right side term is negative because of j), then (11) implies jj).
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Finally, the condition jjj) is fulﬁlled giving, once againg, a condition
on the residual, that is

& (> (x, u (x),u (g (X)) —cu (x)— [4 (x, an (x), O (g (X)) —c o (¥)]
where the rlght side term is negative.

Summarizing, if (12) is solved by a method which is so good to
verify the conditions j) - jjj), the sequence { ., }. turns out to be monotone
and give a lower bound for u. From a practical point of view, while j)
may be checked by looking at the sequence {an}., and jj) by an «a
posteriori » test on @41, the condition jii) is not verifiable since it
depend on the solution u. However jj) may be used as a test for jjj), in
fact jj) together with a@n,1<f should imply the existence of a solution

v, an1<v<f. Therefore, in case of a unique solution u in (a,f), if
ji) doesn’t hold, jjj) doesn’t too. |

ExaMPLE 1. Let consider the T-periodic solutions of
(’15) ux)—2u @)+t (x—1)= sin-—z— zx T=15.

Since the functions ¢a=—1 and =1 are, respectively, lower and upper
periodic solutions of (15), by theorem 1 and corollary 1, the iteration

(16) @it () =2 Gt () = =% (x— 1)+ sin 57 x

with @..1 T-periodic, provides a'sequence {a.}. which is increasing if
ao=a and decreasing if ap=p. In the last case, we denote the sequence
by {B»}». In table 1 the values of a, and f. are printed in the points
0; 0.5; 1; 1.5; for n=0,...,5.

TABLE 1.
x=0 =05 ¥ =1 x=15 .
Bo 1.0000000 1.0000000 1.0000000 1.0000000
B 0.4999999 0.4556928 05443071 0.4999999
8, 0.0617905 0.0208925 0.1077614 0.0617905
Bs 00002189  — 0.0440256 0.0445505 0.0002189
B, —00000039  — 0.0443021 0.0443075  — 0.0000039
Bs  —00000044  —0.0443026 0.0443071  — 0.0000044
as  —00000044  — 0.0443026 00443071  — 0.0000044
o  —00000049  — 0.0443031 0.0443066  — 0.0000049
as  —00002798  — 0.0445251 0.0440613  — 0.0002798
o  —00651996  —0.1060976 — 00191471  — 0.0651996
@i  —04999999  —0.5443071 — 04556928  — 0.4999999

oo . — 10000000 —1.0000000  —1.0000000 — 1.0000000 -
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The test jj) has been carried out at each step and is fulfilled by a;, i<3
and f;, i<3. Therefore, although the computed sequences {a,}. and
{8} are monotone, a more rigorous analysis according to the previous
ocnsiderations, states that a;<u<f;. At each step, the linear equation
(16) is solved by a fourth-order Runge-Kutta method with step-size 0.001.
The computations are performed on a CDC 170/720 and the CPU

time required for all the computations in table 1, including the test jj),
amounts to ~ 10 sec. -

ExAMPLE 2. Let consider the solutions of

u” (x):—-Tla sinu (X)—(x+1Du(x—1)+x o<x<2

satisfying the boundary conditions

ux)=x— —21— —1=<x<0

u(2)=—%.

The problem is already been investigated in [5], [7], [15], and the
existence and uniqueness of the solution has been proved.

For this problem, our theoretical approach is not satisfactory since,
although it is easy to see that the function f=—0.5 is an upper solution,
it is difficuli to find a lower solution @ such that @< B.

However, by remark 3, the iteration {f,}., defined by

Bt ()= 2 B ()= —2sin i () — e+ 1) o (x— 1)+x—p, (9

0<x<2
i (x):x—% —1<x<0
Bt @)=~ —

where fo=Ff, is decreasing and converges to the solution u provided
u<—0.5.
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" In table 2 the values of B, ate printed in 0.5; 1; 1.5 for n=0, ..., 10.

?TABLE 2.

x=05 : x=1 x=15

[ —0.5000000 | —0.5000000 —0.5000000
b1 — 1.2980322  —1.6108198 — 1.3963463
i) — 1.4869041 — 1.9726863 — 1.8269092
Bs —1.5307820 | —2.0578733 — 1.9322411
Ba — 1.5407254 — 2.0772475 — 1.9564022
Bs — 15429657  —2.0816164 — 1.9618607
Bs — 15434698 ' —2.0825997 — 1.9630898
B> — 1.5435832 — 2.0828209 — 1.9633663
Bs — 1.5436087 — 2.0828707 — 1.9634285
Bo — 1.5436145 —2.0828819 — 1.9634425
Bic — 15436158 = — 2.0828844 — 1.9634456

Here also the computed sequence {f.}. is monotone and the test jj) is
fulfilled by f:, i<5 and therefore u<pfs. Each linear equation is solved
by a fourth order Runge-Kutta method with step-size 0.001 and the
CPU time required for the computations is ~ 10 sec. ’
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