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SoMMARIO. - Si & detto che il principio di massima informazione é un criterio
oggettivo per scegliere la distribuzione di probabilita iniziale nell’inferenza
statistica di tipo neo-bayesiano. In questo articolo si vuol mostrare come
Puso di tale principio non sia coerente, a meno che lo sperimentatore non
si renda conto che si sottace un’ipotesi, la cui accettazione dipende solo
dalla sua scelta soggettiva.

¥

SUMMARY. - The principle of maximum information has been described as an
objective criterion for choosing the initial probability distribution in
Bayesian statistical inference. In this paper we argue that the use of the
principle is inconsistent, unless the experimenter realizes that an assumption
is tacitly understood, which depends only on his subjective choice.

1. Introduction.

The principle of maximum information has been described as an
objective criterion for choosing the initial probability distribution in
Bayesian statistical inference (the initial probability distribution expresses
the beliefs of the experimeter about a parameter before the experiments
are actually carried out). In loose terms the principle reads: if the
initial probability distribution is constrained to belong to a set F and
is otherwise arbitrary, choose the probability distribution of F whose
entropy is a maximum. '

(*) Pervenuto in Redazione il 29 novembre 1978.

Lavoro eseguito nell’ambito del Gruppo Nazionale per I'Informatica Mate-
matica del C.N.R.. ,
_ (**) Indirizzo dell’Autore: Istituto di Matematica dell’Universith - Piazzale
Europa 1 - 34100 Trieste.
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The heuristic justification is that: i) entropy is an adequate measure
of uncertainty, ii) when the experimenter does not know anything
about a parameter, except that its probability distribution must belong
to F, it is natural that he chooses the probability distribution of F
which corresponds to maximum' uncertainty. The use of the principle
is supported by statisticians who, though not disregarding the value of
prior information, believe that' the choice of the initial probability
distribution must be « objective » (they oppose any subjective element
in statistical inference).

As a matter of fact the principle of maximum information is an
extension of the famous « principle of insufficient reason », due to
Laplace, which postulates the choice of the uniform distribution when
there are no constraints, that is when F is the set of all probability
distributions over the parameter space.

Serious objections can be raised against this pretence of objecti-
vization. Suffice it here to recall that the development of Bayesian
inference has been much hampered precisely by the weakness of
Laplace’s principle. ' ‘

Moreover, entropy is an adequate measure of uncertainty only
for discrete probability distributions, while the principle has been
applied even in the continuous case.

In this paper we use also the principle of « minimum difference of
information » which is equally 'motivated both in the discrete and in
the continuous case. A probability distribution P is given and the
experimenter has to choose, out of a set F, that probability distribution
which « resembles » P as much as possible; to put it differently, the
experimenter has to « adapt» P to belong to the constrained set F.
As a measure of « dissimilarity » between probability distributions, the
informational divergence (Kullback’s discrimination) is chosen. The
principle of maximum information, both in its discrete and continuous
version, is formally re-obtained 'when P is the uniform distribution.

By giving a suitable conceptual interpretation of the principle of
minimum difference of information, we shall show in the body of
the paper that the use of the principle of maximum information, at
least in its original « objective » version, is inconsistent: in fact an
assumption is tacitly understood, which depends on a subjective choice
of the experimenter.

The following three sections are devoted to some technical preli-
minaries on entropy and divergence (which the experienced reader
can skip), to the principle of maximum information and its shortcomings,
and to a discussion in which we make use of the principle of minimum
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difference of information to support our arguments. Technicalities have
been avoided whenever possible.

2. Entropy and Informational Divergence.

It is a difficult task to summarize the results about entropy and
divergence (*) which are scattered in the literature; the reader is
referred, e. g., to Guiasu’s book [1] which contains a réasonably
extensive account of the many-sided problems involved (information-
theoretic, statistical, etc.). Here we shall only recall some very basic
points which we need in the sequel. First, let us consider the finite
case. ’ '

Assume A is a finite set of k elements. Then the probability
distributions (p. d.”s) over A can be identified with the probability
vectors of length k: P=(py, ..., pr), pi=0, 1=<j<k, X pj=1 (unspecified
summations are meant over the whole set of indices); p; is the
probability of the j-th element of A.

The entropy H (P) is defined as:

1) H (P)=—Z p;log p;;

if Q=(qi, ..., qx) is also a p. d., the divergence D (P; Q) of P from Q
is defined as:

(2) D (P; Q)=ZX p;log (pi/q))

(0log 0 is to be interpreted és 0; D (P; Q) is infinite when P is not
absolutely continuous with respect to Q).
When Q is the uniform p. d., (2) becomes:

(3) D (P; Q)+ H (P)= log k= const.

Therefore, in this case, minimizing D (P; Q) with respect to P is the
same as maximizing H (P). |

H(P) and D (P; Q) are non-negative quantities; H (P) ranges
from O (when P has a 1 among its components) to log k (when P is
the uniform probability distribution); D (P; Q)=0 iff P=Q.

() The (informational) divergence has been called also discrimination, or
Kullback’s number, or relative entropy.
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There is large evidence in the literature which suggests the follow-
ing heuristic interpretations:

i) H (P) is an adequate measure of the « uncertainty » contained
in the p. d. P;

‘ ii) D (P; Q) is an adequate measure of how much the p. d. P
« differs » from the p. d. Q ().

Instead of A take now the real line R. For simplicity we shall
confine ourselves to p. d.’s defined through density functions f(x): f(x)=0,

XER, f f(x) dx=1 (unspecified lintegrals are meant over R; readers

familiar with measure theory will have no difficulty in extending
properly our arguments).

If the p. d.’s P and Q are defined by the density functions f (x) and
g (x), respectively, definitions (1) and (2) become:

@ H(P)=—ff(x)logf(x)dx,

D (P; Q) ff(x)logf(())

(Set D (P; Q)=+ when P is not absolutely continuous with respect
to Q). :

If Q is the uniform distribution over the interval [a b], and if
the density function of P is constrained to be null outside [a, b], the
following relation holds:

(5) D (P; Q)+.H (P): log (b—a)= const.

Therefore, in this case, minimizing D (P; Q) with respect to P is the
same as maximizing the entropy H (P).

Unfortunately, while the properties of divergence which lead to
the heuristic interpretation ii) are valid also in the -continuous case,
this is no longer true for the continuous entropy, as defined in (4) ().
However the observation which follows (5) will prove useful.

(®) Note, however, that D (P; Q) is not a metric in the topological sense
of the word; D (P; Q) is not symmetric and it must be viewed as a «distance from»
rather than a « distance between »; cf. [2] and [3].

() The continuous entropy is not even necessarily positive.
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3. The Principle of Maximum Information.

The principle of maximum information has been introduced, inde-
pendently, by S. Kullback and R. A. Leibler (1951), E. T. Jaynes (1957)
and R. S. Ingarden (1963). Its use is supported by statisticians who
believe in an « objective » Bayesian approach to statistical inference.
Their views will be made clear by the following quotation from [4]
(passim): «... it appears that statistical practise has reached a level
where the problem of prior probabilities can no longer be ignored or
belittled. The « personalistic » school of thought recognizes this fact,
but proceeds to overcompensate it by offering us many different priors
for a given state of prior knowledge. Surely, the most elementary
requirement of consistency demands that two persons with the same
relevant prior information should assign the same prior probabilities.
Personalistic doctrine makes no attempt to meet this requirement. An
unfortunate impression has been created that rejection of personalistic
probabilities automatically means the rejection of Bayesian methods
in general. This is not the case; the problem of achieving objectivity for
prior probability assignments is not one of psychology or philosophy,
but one of proper definitions and mathematical techniques. Prior pro-
babilities can be made fully « objective » ».

Let us now illustrate the principle of maximum information.

Let F (the constrained set) be a set of probability vectors over A.
Assume an experimenter has to choose a probability vector over A to
express his prior information about a parameter which will be subse-
quently the object of a statistical investigation. Before starting the
investigation the experimenter’s knowledge of the parameter is limited
to the fact that the probability vector to choose is constrained to belong
to F; he lacks any other information. The principle of maximum infor-
mation reads: in this case choose that probability vector in F which
maximizes H (P) (%.

The principle is currently justified by referring to the heuristic
interpretation i) of entropy. The very serious objections which can be
raised against the principle is that the notion of lack of information is
fuzzy and, as it has been repeatedly shown, leads easily to contradictions.

() Here and in the sequel we shall assume that all maximization and
minimization problems have a unique solution; for regularity conditions see [2].
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ExaMPLE 1. Take a coin and assume three possibilities: « head »,
« tail » and «the coin stands upright ». It is reasonable to say that
the entropy-maximizing distribution {1/3, 1/3, 1/3} reflects maximum
uncertainty as to the possible outcome; but it is questionable whether
it reflects maximum lack of information on the side of the experimenter
who is going to flip the coin. Thére seems to be some semantic confusion
between the notions of « uncertdinty » and « ignorance ». Only the first
allows of a formalization, at least in the discrete case.

EXAMPLE 2. Assume F is the set of all real p. d.’s which are null
outside [0, 1] with probability 1. Then the entropy-maximizing p. d.
for the parameter & is uniform. Since the experimenter lacks any

information also about the parameter p=Vd, p should be itself
uniformly distributed over [0, 1], according to the principle of maxi-
mum information. But this is a contradiction, since uniform distribution
for # implies a non-uniform distribution for V2.

Moreover, since the heuristic interpretation i) of entropy is not
generally valid, it would seem that there is no hope of extending the
principle of maximum information to the continuous case. Consider
however the following well-known result (a proof can be found, e. g.,
in [1]): if F contains all the p. d.’s with fixed mean and variance,
H (P) is maximized by the normal distribution. If one has in mind
the role of the normal distribution, it is difficult to resist the temptation
of interpreting the theorem by saying that the normal distribution
contains the largest amount of uncertainty compatible to given mean
and variance; this, however, contradicts our statement that the entropy
is not an adequate measure of uncertainty in the continuous case.

The shortcomings of the principle of maximum information will
be discussed in the next section.

4. The Principle of Minimum Difference of Information.

The principle of minimum difference of information has been
summarily described in section 1. Here we are going to introduce it
in a somewhat different conceptual way.

Let us go back to the situation when an experimenter has to
choose a p. d. to describe his prior information about a parameter.
We shall give up any pretence of formalizing « complete » or « partial
ignorance », or anything of the sort. Before starting his statistical
investigation the experimenter has his own, possibly vague, beliefs: let
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him express them by choosing accordingly a p. d. Q. This is exactly
what the « personalistic » school recommands: no easy recipe is given
to make the choice. :

Assume, however, that later (but before starting the statistical
investigation) the experimenter learns that the prior p. d. must belong
to a certain set F of p. d.’s. Instead of choosing a prior p. d. afresh,
he might prefer to « adapt » his first choice Q, for example by choosing
the p. d. P in F which minimizes D (P; Q). This is reasonable, since the
divergence is an adequate measure of dissimilarity between p. d.’s, both
in the continuous and in the discrete case.

Note that the above procedure is somehow arbitrary: in fact the
divergence is not the only adequate measure of dissimilarity between
p. d.’s; moreover it is not clear why Q should appear as the second
argument of D (-;-) (recall that the divergence is not symmetric).
Thus the choice of D (-; Q) as an adequate measure of dissimilarity
from Q is itself subjective, or « personalistic ». We stress however that
the principle of minimum difference of information is not incousistent,
once its subjective character is realized.

On the other hand our aim is not to support the use of the principle
of minimum difference of information in statistical practice; rather
we want to investigate the real meaning of the principle of maximum
information. Now we see that the latter is re-obtained as a particular
case of the principle of minimum difference of information when the
first choice p. d. Q is uniform over the parameter space; in fact in this
case minimizing the divergence D (P; Q) in F is the same as maximizing
the entropy H (P) in the same set (cf. (3) and (5)).

A clarification is needed when the parameter space is such that
the uniform p. d. over it is improper (5), for example in the case of
the whole real line R. Let us go back to.(5), with [—a, a] instead of
[a, b]. When a=+ oo, then uniform p. d. is improper and D (P; Q)
is undefined. However (5) provides a sound heuristical justification
for the following rule: when Q is the improper uniform distribution over

R, instead of minimizing D (P; Q), maximize H (P)= — [ f (x) log f (x) dx.

Therefore our interpretation of the result at the end of section 3 is the
following: of all the p. d.’s with given mean and variance, the normal

\

(®) We do not intend to give a rigorous definition of improper distributions;
we recall however that the improper p. d. over R induces «proper » uniform
p. d.’s over the intervals of R.
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distribution is the « nearest» to the improper uniform distribution
over R, in the sense of the principle of minimum difference of information.

A consistent experimenter uses the principle of maximum infor-
mation only when he would have chosen (subjectively) the uniform
p. d. over the parameter space, had the constrained set F contained
all the p. d.’s over that space. There are very common cases when
this does not happen: for examiple, in Bayesian inference for normal
populations « complete ignorance » about the variance ¢® is often
expressed by assuming an improper uniform distribution for log ¢, so
that the distribution of ¢* is not uniform.

As a conclusive remark, we obsetve that, in order to get rid of
the inconsistencies of the prin¢iple of maximum information in its

« objective » version, we had to adopt a « personalistic » approach to
statistical inference.
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