A NOTE ON A THEOREM OF KHAN (*)

by Brian Fisher (in Leicester) (**)

Sommario. - T è un'applicazione di uno spazio metrico completo (X, d) in sè, tale che

$$d(Tx, Ty) \leq K \frac{d(x, Tx) d(x, Ty) + d(y, Ty) d(y, Tx)}{d(x, Ty) + d(y, Tx)}$$

dove $0 \le K < 1$, $e \ x, y \in X$. Noi consideriamo ciò che accade se d(x, Ty) + d(y, Tx) = 0.

Summary. - T is a mapping of the complete metric space (X, d) into itself satisfying

$$d(Tx, Ty) \leq K \frac{d(x, Tx) d(x, Ty) + d(y, Ty) d(y, Tx)}{d(x, Ty) + d(y, Tx)}$$

where $0 \le K < 1$, and $x, y \in X$. We consider what happens if d(x, Ty) + d(y, Tx) = 0.

In a recent paper, see [1], M. S. Khan gives the following theorem:

THEOREM. Let (X, d) be a complete metric space and $T: X \rightarrow X$ satisfy

$$d(Tx, Ty) \le K \frac{d(x, Tx) d(x, Ty) + d(y, Ty) d(y, Tx)}{d(x, Ty) + d(y, Tx)}$$
(A)

(*) Pervenuto in Redazione il 23 maggio 1977.

(**) Indirizzo dell'Autore: Department of Mathematics, University of Leicester, Leicester LEI 7RH (England).

where $0 \le K < 1$ and $x, y \in X$. Then T has a unique fixed point.

In the proof of his theorem, Khan does not consider the possibility that

$$d(x, Ty) + d(y, Tx) = 0.$$

If x_0 is an arbitrary point in X and $x_n = Tx_{n-1}$ for n = 1, 2, ..., then it follows that

$$d(x_n, x_{n+1} \leq K \frac{d(x_{n-1}, x_n) d(x_{n-1}, x_{n+1}) + d(x_n, x_{n+1}) d(x_n, x_n)}{d(x_{n-1}, x_{n+1}) + d(x_n, x_n)}$$

$$=K\frac{d(x_{n-1},x_n)d(x_{n-1},x_{n+1})}{d(x_{n-1},x_{n+1})}=Kd(x_{n-1},x_n),$$

only if $d(x_{n-1}, x_{n+1}) \neq 0$. His proof therefore breaks down if $T^2 x_{n-1} = x_{n-1}$ for some n and all we will be able to deduce is that T^2 has a fixed point x_{n-1} . If the sequence $\{x_n\}$ is a sequence of distinct points then it will of course be convergent and its limit point x will be a fixed point of T.

We cannot exclude from the theorem the possibility that

$$d(x, Ty) + d(y, Tx) = 0$$

for some x, y in X since if x is the fixed point of T

$$d(x, Tx)+d(x, Tx)=2 d(x, x)=0$$

and to exclude the possibility that

$$d(x, Ty) + d(y, Tx) = 0$$

for some distinct x, y in X is probably too restrictive. It would probably be best to ammend the theorem so that inequality (A) holds if

$$d(x,Ty)+d(y,Tx)+0$$

and that

$$d(Tx, Ty) = 0$$

if

$$d(x, Ty) + d(y, Tx) = 0.$$

This would then imply that if we did indeed have $d(x_{n-1}, x_{n+1}) = 0$ for some n, then

$$x_{n-1}=x_n=x_{n+1}$$
 which is a column to

and so x_{n-1} would be a fixed point of T.

A trivial example showing that a mapping T can satisfy inequality (A) for all distinct x, y in X with

$$d(x, Ty) + d(y, Tx) \neq 0$$
,

is as follows: let $X = \{0, 1\}$ with metric

$$d(x,y) = |x-y|$$

for x, y=0, 1. Define a mapping T on X by

$$T(0)=1, T(1)=0.$$

Inequality (A) is satisfied with $K = \frac{1}{2}$ for all cases with

$$d(x, Ty) + d(y, Tx) \neq 0$$

but T has no fixed point. T^2 however has two distinct fixed points.

A less trivial example is as follows: let $X=\{0,1,2,3,...\}$ with metric

$$d(0,1)=1,$$

$$d(0,x)=d(1,x)=2$$
,

for x = 2, 3, ...,

$$d(x, y) = 2$$

for x, y=2, 3, ... and $x \neq y$ and

$$d(x,x)=0$$
,

for x=0, 1, 2, ... Define a mapping T on X by

$$T(2x)=0$$
, $T(2x+1)=1$,

for x=0,1,2,... Inequality (A) is again satisfied with $K=\frac{1}{2}$, for

all cases with

$$d(x, Ty) + d(y, Tx) \neq 0$$

but T has no fixed points.

The above comments also apply to the other theorems in [1].

REFERENCES

[1] M. S. Khan, « A fixed point theorem for metric spaces », Rend. Ist. di Matem. Univ. Trieste, vol. VIII (1976).