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SoMMARI0. - Nella nota che segue vengono discusse esistenza e unicita di certi
operatori chiusi definiti su di una somma diretta di potenze tensoriali sim-
metriche di uno spazio complesso di Hilbert. Il risultato ha interesse nella
teoria assiomatica dei campi quantistici.

SUMMARY. - In the following note existence and uniqueness of certain closed
operators defined on a direct sum of symmetric tensor powers of a complex

. "Hilbert space are briefly discussed. The results are of interest in axiomatic
quantum field theory.

1. Introduction.

The purpose of the present note is to show that suitably defined
ladder operators on the direct sum of symmetric tensor powers of a
Hilbert space H are densely defined adjoint endowed operators, which
satisfy to a well-known commutation rule with their adjoints. This
result is of some stress as regards axiomatic quantum field theory (see
[11, [21, [31, [4]1, [5D), especially together with the converse, also
proved, which assures that a direct sum of symmetric tensor powers
of H can be obtained, up to isometry, by the repeated applications of
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the above operator on a specific vector within its domain. We point out
that, although analogous results are well-known (*), our approach holds
under weaker assumptions than the ones in the current literature.

2. Existence.

Let H be any separable Hilbert space over the complex field C.
Let H &0 denote the n-th tensor product of H over C (we pose, as

usual, H®O=C and H ®l_—_H). Let H, be the symmetric n-th.tensor
pover of H over C (%). Let F= X H, be the direct sum of these spaces

(Fock space). Let us denote with ¢, ¢, ... elements in H, with (g, )
the scalar product on H between them, and with ||¢|| =(p, ¢) the norm
of ¢ in H: further, let us denote with {¢)i}icr a countably infinite
orthonormal basis in H, I being a suitable set of indices. Thus, for any
n, let us denote with xu, yu, ... elements in H,, with (xn, y»). the canoni-
cally induced scalar product between them, and with ||x./|.» the norm of
x, in H,. As a countable orthonormal basis in H, we take the one
obtained by collecting together all the normalized vectors of the form
y,fi"é"""'“:gbii@ ¢:,® .. ® ¢, where i; runs the same index set [
(and the tensor product is intended to be symmetric, as said above). We
could also write yn , with keI”; but as a more familiar form we write

the following: y.*= |m, na, ... ; n>, where n; gives the multiplicity of
¢: within ¢; & ¢4, .. .® ¢, and X m=n. Similarly, let us denote

iel

with x,y, .. elements within F, with {x,y} the canonically induced
scalar product on F, and with [|x||s the norm of x on F. A countably
infinite basis in F can be obtained by collecting together all the ortho-
normal vectors y.*, when n assumes all the values between 0 and oo:
the basis is an orthonormal one, as F is a direct sum. Finally, we denote
with A a linear operator, with A* the adjoint of A, and with Dy, Dy
their domains.

Let now us consider the operator - valued map A: ¢ —>A ()
which joins to any ¢€H the linear operators A (¢) () on F, defined as
follows:

(1) See [2], p. 85 and following.

() The extension to the antisymmetric casc is noct dlfﬁr’ult arart from a
few minor modifications: however, it will not be considered here, for
simplicity’s sake.

() Which is said «ladder operator » because of i).
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\ i) for any n and for all basis vectors within H,, the restriction
An(¢) to H, is a correspondence H,—> H,,; given by:

A @) |ty 30> = 2 @GV TT 11y, it 1, s b 1>
1€

[we agree that Ao (¢) xo=¢ (x being a complex number)];

ii) the domain Dyy, of A (¢) is given by taking all the vectors
x€F, x=2X x, such that A () x=2 A, () x, and

2| An @) 2l < oo

Thus we ‘state_ the following result.

- THEOREM 1. Let H be a separable comﬁlex Hilbert space, and let
F be the Fock space, as above. The following statements are true:

a) ¥'x€F, x=ZX x,, x,€H,, MJeH, X€DayZ||A(D) x| 2 < o0
and A () x=2 A, () xu; moreover, A (¢) has an adjoint A* (), defined

on all the basis vectors of Hy,, for any n, and for any ¢eH;
' b) for all geH, A (J) and A* () are closed;

. ¢) the operators' A(J) and A* (J) have a non-void dense
common invariant domain within F; .

d) ¥oeH, [A* (), A(D]ISW, 9) 1 (15 being the identity ope-
rator on F), and Dyss= Dyas;

e) the map of from H to the set of all closed operators on F
is sequentially continuous, whenever this set js endowed with the weak
topology given by the set of seminorms :

A= |(Ax,y)|, with xeDyy).

ProoF. The first part of a) follows from the definition of D,y,.
As concerns the second part, we obsetve that the adjoint of A is defined
through its restriction to A, (which is equal to the adjoint of the restric-
tion of A to H,) in the following way: ’

A @) | 14y ey 11 o 5 n>= I Vo) |ty i1, sn—1>.
1 €. B

Let now us prove statement b). We first prove that any A, (J) is
continuous in H,. We have, for all the basis vectors in H, and for any
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n, ||[An ) | Bty e s By oo s B> Pt S (1) -] |11, oo s B2y e su 1> | =
—(n+1) Al Aty con s By oo 3 B> |[Pri=n41.

Then we take a set {xa }aen (N being the set of natural numbers) of

vectors X.€Dagy, such that lim x,=x. We can put lim A (¢) x.=y,

a— 0o a — 00

with l|y||2p<o<> Thus, by projecting onto the subspaces H, and taking
into account the continuity of the prOJectors, we get (the notations are
self-explaining):

lim x,,=x, and Yn= lim (A (@) xXo)u= lim (A (@) Xon_1)=

a —+ 00 a — 00 o -+ 00

= hm (An--l (¢) xa,n—l)=An—l (¢) lim xa,n—l=An—l (¢) Xn—-1.

a— 0o a —+ oo

Then, by putting yo=0, we can write:

2’ 1A @) xacilPa= Z Iyl = llyll%,

n=j

from which it follows that x€Dagy); moreover:

n==0

A ) x= ; An (¢) Xp= OEOO Vi1 =Y.

This means that A (¢) is closed, for all ¢eH. Same reasoning for
A* (). ¢) is a direct consequence of a): we shall denote with D=
=D,=D+ such a domain.

d) follows from a simple calculation of the commutator between

An* (p) and A, ().
In fact:

[A*1i1 (@) An () —An-1 () Arn* (9)] ' iy eee s Biy v s B> =

= ’?I (Sb’ ¢1) (¢l’3 99) (nl+ 1) I Ny e s Biy oo s B> —
_ZI (¢’ ¢1) (¢i9 ¢) n; I Ry, M2y o003 n>=2;1_(¢, ¢1) (¢i, (D) I S TIRYTIPY (7N n>"9

from which we get the result by using completeness of the scalar product.
Concerning the part e), let us take a sequence ¢, ¢, ... such that
lim ¢»=0: our purpose is to show that the sequence [(A (¢1) Xt, yi)ils

n —+» co

[(A () Xz, Y, ... satisfies to 1im |(A (Pn) Xk, yide| = 0, X and Vi

n -+ oo »
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being vectors of D. Suppose now that x.€ H;_; and y«€H;: we have no
loss of generality because of the fact that the result can be immediately
extended by the continuity of the scalar product to any n, while the
choice of x is a suitable one as vectors belonging to different tensorial
powers are orthogonal.

Thus we have 1im [(A () xe, yo)i| < lim Vi1 | ® x0), y2) K=
=Vk+1 [( limv Un @ x1), Yk)k" = 0; on the other side, the sequence

n —» oo

[(A (1) Xk, yi],- [(A () Xty Y], ... is all made of positive terms, from
which it follows that lim (A () xx, yi)e=0.

f -+ oo

This concludes the proof of the Theorem.

3. Uniqueness.

We are now interested to a result concerning a sort of uniqueness
of our operators. In fact, given a suitable operator-valued mapping
from a Hilbert space H to the set of linear closed operators on the Fock
space F, we will show that F is completely determined, provided a set of
postulates concerning the said operators is given.

THEOREM 2. Let of: ) — A () be a map from a Hilbert space H
to the set of the closed linear adjoint-endowed operators, which have
an invariant domain D, defined on a Fock space F: suppose moreover
that an operator A (p) exists satisfying to:

9 forall g9 in H: [A(p), A ()] =0 and [A* (9), A (§)] <
g(@, ¢) IF; »

ii) a ﬁnique—up-to-a-factor vector £2€D exists such that for all
peH A* (p) 2=0F (the null vector of F) and {2,2}=1.
Let the vector space Gy be defined as follows:

Gi={A (¢n) A () 2, fror any ¢y, ..., gbkeH};

then the mapping 7 from Hy to Gy defined by

T (U R .. @UEH— A () ... A (1) NeGy

is isometric.

Proor. We divide the proof in three steps. First of all we note
that, by denoting with G; the set Gi={A () 2 | ¢€H}, we have in G,
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{A@)R2AWN)2}={2,A*(@)AWD)2}= {2, AD)A* (@)} +{2, (p.P)R2} =
=(p, ¢), by using i) and ii). In the second place we observe that in
H; for all simmetrized Y= (/& ..Q0¢U:®...X¢gy) and & =
=1 ® .. 0 ¢: X ... ¢1) we have: :

@, D= 3 (1 N 1) (s ) (PO, GO

where n; (n;) is the number of the j indices fof which v¢;=¢; (¢:) and
m; is the number of the j indices for which p;=¢;, and where:

PO=(, ® ... ® )
PV=(01 ® ... ® 9i-1 ® i1 X ... ® x).

In fact, by using the continuity of the scalar product, we have:

(#, D)= (1//m k) s @ ¥, 2 (1/Vkmy) 0; ® ¢V)i=
———§ (1/k) 1/ Vm; i) (i, 3) (P9, D=
=(1/k 21/ Vs my) (d, 97) (D, D)+ ..
.‘..J}(l /0 2 (1 /Vrwcmy) W, 0) (P, éf_f))k=

=2/ Vg ms) (d, @) (PO, 0)

because of the fact that all the separately written terms are equal each
other and that all the possible products of the components of the
expansion of ¥ & @ are contained in each of these terms.

The last step consists in the use of the induction. As a matter of
fact we know that the statement holds for G;. Let us suppose that
it is true for n—1: then we have, by using isometry:

{A() . AW R, A(p) ... A(9) R}=
={A () ... A () 2, A* () ... A () R}=

1
=3 —1 (o) {A &) o A )2, A @) . A (@1
N (¢, 0:) {A (&) (/) (1) (i-1)
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A @inr) o A (1) Q)= T ——1
' an m;

@1" @:) (P, @),

At last, because of the precedently proved step, we have:

{AW) . AW 2, Ap) ... A (1) 2}=(D, V).

Thus the theorem is proved.
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