APPROXIMATION OF FIXED POINTS BY CESARO'S MEANS OF ITERATES (*)

di Silvio Massa (a Milano) (**)

Sommario. - Sia K un sottoinsieme chiuso e convesso di uno spazio di Banach uniformemente convesso, e sia T un'applicazione non espansiva di K in sé, dotata di punti fissi. In questa Nota si dimostra che, se $x \in K$ e $\{T^n(x)\}$ ammette punti limite, la successione delle medie secondo Cesaro di $\{T^n(x)\}$ converge a un punto fisso di T. Si osserva inoltre che il risultato precedente vale anche sotto condizioni più generali e si dànno controesempi per il caso di mappe quasi non espansive.

SUMMARY. - Let K be a closed convex subset of a uniformly convex Banach space and let T a nonexpansive selfmapping of K which has at least one fixed point. In this Paper we prove that, if $x \in K$ and $\{T^n(x)\}$ has some limit point, then the sequence of the Cesaro's means of $\{T^n(x)\}$ converges to a fixed point of T. We remark moreover that the above result still holds under more general conditions and we give some counter-examples for quasi-nonexpansive mappings.

1. Introduction.

Here and throughout the Paper, let X be a uniformly convex Banach space, K a closed convex subset of X, T a nonexpansive self-mapping of K, F(T) the set of the fixed points of T.

For every x in K, let $0(x) = \bigcup_{0}^{\infty} T^{n}(x)$ the orbit of x, L(x) the set of the limit points of $\{T^{n}(x)\}$, and $L(K) = \bigcup_{x \in K} L(x)$.

(*) Pervenuto in Redazione il 30 settembre 1977. Lavoro eseguito nell'ambito del G. N. A. F. A. del C. N. R.

(**) Indirizzo dell'Autore: Istituto di Matematica F. Enriques - Università degli Studi di Milano - Via C. Saldini, 50-20133 Milano.

Some Authors took an interest in the problem of constructing a sequence that converges to a fixed point of T: usually they give some sufficient conditions for the convergence of $\{T^n(x)\}$ or for the convergence of the sequence of the iterates of an asymptotically regular mapping constructed by T.

The purpose of this Paper is to prove that, if $F(T) \neq \emptyset$, the sequence of the Cesaro's means of $\{T^n(x)\}$ converges to a fixed point of T, for every x in K such that $L(x) \neq \emptyset$.

The advantage of this method is that, to locate the fixed points of T, it is not necessary to construct any mapping, but it is sufficient to know the sequence $\{T^n(x)\}$.

2. Results.

The following Theorem holds:

THEOREM. Let $T: K \to K$ be nonexpansive, and $F(T) \neq \emptyset$. Then $\forall x \in K$ such that $L(x) \neq \emptyset$, the sequence

$$M_n(x) = \frac{1}{n} \sum_{0}^{n-1} T^k(x)$$

converges to a fixed point of T.

REMARKS.

- 1. $L(x) \neq \emptyset \Rightarrow F(T) \neq \emptyset$ (see [3], Theorem 2.1); moreover $F(T) \neq \emptyset \Rightarrow \exists x \notin F(T): L(x) \neq \emptyset$ (consider for instance a linear map $T: l^2 \rightarrow l^2$, $T: e_n \mapsto e_{n+1}$).
- 2. If K is compact, then $\{M_n(x)\}$ converges to a fixed point for every x in K. Thus the mapping $M: x \mapsto \lim_{n \to \infty} M_n(x)$ is a retraction of K onto F(T). Remark that $M(y) = M(x) \quad \forall y \in \overline{0(x)}$.
- 3. If L(x) is finite, the process for the location of the fixed point \overline{y} determined by x can be simplified, provided that we start from a point of L(x).

Indeed let $L(x) = \{y_1, y_2, ..., y_n\}$. We have

$$\overline{y} = \frac{1}{n} (y_1 + y_2 + ... + y_n) = \frac{1}{n} \sum_{k=0}^{n-1} T^k (y_i).$$

- 4. In the Theorem, the assumption $F(T) \neq \emptyset$ can be replaced (if the other assumptions are still satisfied) by the assumption $\{M_n(y)\}$ bounded for some $y \in L(K)$ (1) or even by the assumption $\{M_n(x)\}$ bounded for some x such that $L(x) \neq \emptyset$ (2).
- 5. It is easy to prove, making use of the results of [4], that the Theorem still holds in the reflexive strictly convex spaces. More generally it holds in a strictly convex space for the points $x \in K$ such that, for some $y \in L(x)$, $\{M_n(y)\}$ has a weakly convergent subsequence.
- 6. If T is quasi-nonexpansive (3) (but not necessarily nonexpansive), the Theorem fails, even if T is continuous and F(T) is a singleton. Indeed let $X=\mathbb{C}$, $K=\{z: |z| \leq 1\}$.

$$\begin{aligned} \rho \cdot \exp\left(2\,i\,\theta + i\,\,\frac{\pi}{2}\right) & \text{if } 0 \leq \theta \leq \frac{\pi}{2} \\ T \colon \rho \cdot \exp\left(i\,\theta\right) & \mapsto & \rho \cdot \exp\left(i\,\frac{\theta}{2} + \frac{5}{4}\,\pi i\right) & \text{if } \frac{\pi}{2} < \theta < \frac{3\pi}{2} \\ \rho \cdot \exp\left(i\,\theta - \frac{3}{2}\,\pi\,i\right) & \text{if } \frac{3\pi}{2} \leq \theta < 2\pi. \end{aligned}$$

 $F(T) = \{0\}$, T is continuous and quasi-nonexpansive. We have $T^{3k}(1)=1$, $T^{3k+1}(1)=i$, $T^{3k+2}(1)=-i$ and then $M_n(1) \to \frac{1}{3} \notin F(T)$.

- 7. If X=1R, the Theorem holds for quasi-nonexpansive and continuous mappings. Indeed let K = [a, b], T quasi-nonexpansive and continuous. We consider the only two possible cases:
- i) $F(T) = \{u\}$. $\{T^n(x)\}$ converges to u or has two limit points, equidistant from u. In any case $M_n(x) \rightarrow u$.
- ii) F(T) = [c, d]. $\{T^n(x)\}$ is necessarily monotone, therefore it converges (to a fixed point, by the continuity of T) and this implies $\lim M_n(x) = \lim T^n(x).$
 - (1) This assumption is equivalent to $F(T) \neq \emptyset$ (see [4]).
 - (2) It is sufficient to observe that $y \in L(x) \Rightarrow ||\widetilde{M}_n(x) M_n(y)|| \leq ||x y||$. (3) i. e. $F(T) \neq \emptyset \land ||T(x) u|| \leq ||x u|| \forall x \in K \forall u \in F(T)$.

- 8. The Theorem of n. 7 fails if T is quasi-nonexpansive but not continuous, even if K is compact. Indeed let K = [0, 2], T(x) = 0 if $0 \le x \le 1$, $T(x) = \frac{x+1}{2}$ if $1 < x \le 2$. $T^n(2) \to 1 \Rightarrow M_n(2) \to 1 \notin F(T)$.
- 9. The Theorem of n. 7 does not hold under the only assumption that T is continuous, even if $F(T) \neq \emptyset$ (and K is compact). Indeed let K = [0,3], $T(x) = 3 \frac{x}{2}$ if $0 \le x \le 2$, T(x) = 6 2x if $2 \le x \le 3$. $F(T) = \{2\}$ and $M_n(x) \rightarrow \frac{6+x}{4}$ if $0 \le x \le 2$, $M_n(x) \rightarrow \frac{6-x}{2}$ if $2 \le x \le 3$.

3. Proof of the Theorem.

Let $y \in L(x)$; $\Lambda(y)$ the (real) linear variety spanned by $\{T^n(y)\}$; $C = \overline{co}(\{T^n(y)\})$. It is well-known (see [3]) that there exists an affine isometry $S: \overline{\Lambda(y)} \to \overline{\Lambda(y)}$ such that $S|_C = T|_C$. We set

$$W = \overline{\Lambda(y)} - y = \{ w \in X : w = z - y, z \in \overline{\Lambda(y)} \}$$

and

$$U: w=z-y \mapsto S(z)-S(y) \quad \forall w \in W.$$

W is a (real) Banach space contained in X and U is a linear isometry of W into itself.

LEMMA 1. For every $w \in W$

(3.1)
$$\frac{1}{n} \sum_{0}^{n-1} U^{k}(w) \rightarrow 0.$$

Indeed, $\forall w \in W$ there exists (see [1])

$$\overline{w} = \lim \frac{1}{n} \sum_{k=0}^{n-1} U^{k}(w)$$

and then, for $n \ge \overline{n}$, we have

$$\left|\left|\sum_{k=0}^{n-1}U^{k}\left(w\right)\right|\right|\geq\frac{n}{2}\left|\left|\overline{w}\right|\right|.$$

Case a) Let w = S(y) - y. For every $n \ge 1$ it is

(3.2)
$$S^{n}(y) = y + \sum_{k=0}^{n-1} U^{k}(w).$$

If $\overline{w} \neq 0$, for $n \geq n$ we have

$$||S^{n}(y)-y|| = \left\| \sum_{0}^{n-1} U^{k}(w) \right\| \ge \frac{n}{2} ||\overline{w}||$$

which is absurd, since $\{S^n(y)\}=\{T^n(y)\}$ is bounded (4).

Case b) Let $w=S^p(y)-y$. (3.1) holds for p=1; let it hold for p-1 and remark that

$$S^{p}(y) - S(y) = S(S^{p-1}(y)) - S(y) = U(S^{p-1}(y) - y).$$

Then

$$\frac{1}{n} \sum_{k=0}^{n-1} U^{k} (S^{p}(y) - y) = \frac{1}{n} \sum_{k=0}^{n-1} \{ U^{k} (S^{p}(y) - S(y)) + U^{k} (S(y) - y) \} =
= \frac{1}{n} \sum_{k=0}^{n-1} U^{k+1} (S^{p-1}(y) - y) + o (1) =
= \frac{1}{n} \sum_{k=0}^{n-1} U^{k} (S^{p-1}(y) - y) + o (1).$$

Case c) w whatever. We may write $w = \overline{z} - y$, $\overline{z} \in \Lambda(y)$. $\forall \varepsilon > 0 \ \exists z = \sum_{i=1}^{p} \alpha_i S^{n_i}(y)$ such that $||z - \overline{z}|| < \varepsilon$.

$$\left\| \frac{1}{n} \sum_{k=0}^{n-1} U^{k} (\overline{z} - y) \right\| = \frac{1}{n} \left\| \sum_{k=0}^{n-1} U^{k} (\overline{z} - z) + U^{k} (z - y) \right\| \le$$

$$\leq ||\overline{z} - z|| + \frac{1}{n} \left\| \sum_{k=0}^{n-1} U^{k} \left\{ \sum_{i=1}^{p} \alpha_{i} (S^{n_{i}} (y) - y) \right\} \right\| \le$$

$$\leq ||\overline{z} - z|| + \sum_{i=1}^{p} |\alpha_{i}| \cdot \left\| \frac{1}{n} \sum_{k=0}^{n-1} U^{k} (S^{n_{i}} (y) - y) \right\|.$$

LEMMA 2. $\{M_n(y)\}$ converges to a fixed point of T. Indeed, if we set w=S(y)-y, by (3.2) we have

$$M_n(y) = \frac{1}{n} \sum_{0}^{n-1} S^k(y) = y + \frac{1}{n} \{ (n-1) w + (n-2) U(w) + ... + U^{n-2}(w) \}.$$

(4) Recall that $F(T) \neq \emptyset \Rightarrow \{T^n(x)\}$ and so $\{M_n(x)\}$ bounded $\forall x \in K$.

Therefore

(3.3)
$$(U-I)(M_n(y)-y) = -w + \frac{1}{n} \sum_{k=0}^{n-1} U^k(w) \rightarrow -w = y - S(y).$$

As $\{M_n(y)\}\$ is bounded, $\exists \{n_i\}: M_{n_i}(y) \longrightarrow \overline{y}$ (weakly).

As U-I is linear and continuous in the strong topology of W, it is also continuous in the weak topology (5); therefore

$$(U-I)$$
 $(M_{n_i}(y)-y) \longrightarrow (U-I)$ $(y-y)=S(y)-S(y)-\overline{y}+y$

and, from (3.3) S(y) = y = T(y) (since $y \in C$).

We are left the proof that $M_n(y) \rightarrow \overline{y}$. Remark that

$$S(\overline{y}) = U(\overline{y} - y) + S(y)$$

and, for every $k \ge 1$

$$S^{k}(\overline{y}) = U^{k}(\overline{y} - y) + S^{k}(y).$$

Therefore

$$\overline{y} = \frac{1}{n} \sum_{0}^{n-1} S^{k} (\overline{y}) = \frac{1}{n} \sum_{0}^{n-1} \{ U^{k} (\overline{y} - y) + S^{k} (y) \} =$$

$$=M_n(y)+\frac{1}{n}\sum_{0}^{n-1}U^k(\overline{y}-y)$$

and this complete the proof of Lemma 2.

For every $\varepsilon > 0$ there exists $p = p(\varepsilon)$ such that $||T^p(x) - y|| < \varepsilon$ and therefore $||T^{p+k}(x) - T^k(y)|| < \varepsilon \ \forall k > 0$.

We have

$$||M_n\left(T^p\left(x\right)\right)-M_n\left(y\right)||=\frac{1}{n}\left\|\sum_{k=0}^{n-1}T^{p+k}\left(x\right)-T^k\left(y\right)\right\|<\varepsilon$$

and, moreover, for n > p

$$||M_n(T^p(x))-M_n(x)|| = \frac{1}{n} \left\| \sum_{p=1}^{p+n-1} T^k(x) - \sum_{0=1}^{n-1} T^k(x) \right\| =$$

(5) See [2], V. 3. 15.

$$= \frac{1}{n} \left\| \sum_{n=1}^{p+n-1} T^{k}(x) - \sum_{n=0}^{p-1} T^{k}(x) \right\| \le \frac{1}{n} \sum_{n=0}^{p-1} ||T^{n+k}(x) - T^{k}(x)|| \le \frac{p}{n} \operatorname{diam } 0 (x).$$

Therefore $M_n(x) \to \overline{y}$ for $n \to \infty$ and the Theorem is proved.

REFERENCES

- [1] G. Birkhoff, The mean ergodic theorem, Duke Math. J., 5 (1939), pp. 19-20.
- [2] N. DUNFORD J. T. SCHWARTZ, Linear operators. I. General Theory, Interscience, New York 1958.
- [3] M. EDELSTEIN, On nonexpansive mappings in Banach spaces, Proc. Cambridge Philos. Soc., 60 (1964), pp. 439-447.
- [4] M. EDELSTEIN, On some aspects of fixed point theory in Banach spaces, in The geometry of metric and linear spaces, Michigan 1974, Springer Verlag 1975.