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SoMMARIO. - Sia K un sottoinsieme chiuso e convesso di uno spazio di Banach
uniformemente convesso, e sia T uwnapplicazione non espansiva di K in
sé, dotata di punti fissi. In questa Nota si dimostra che, se xgK e {T" (x)}
ammette punti limite, la successione delle medie secondo Cesaro di
{T n (x)} converge a un punto fisso di T. Si osserva inoltre che il risultato
precedente vale anche sotto condizioni pitt generali e si danno controesem-
pi per il caso di mappe quasi non espansive.

SUMMARY. - Let K be a closed convex subset of a uniformly convex Banach
space and let T a nonexpansive selfmapping of K which has at least one
fixed point. In this Paper we prove that, if xeK and {T"(x)} has some
limit point, then the sequence of the Cesaro’s means of {T"(x)} con-
verges to a fixed point of T. We remark moreover that the above result
still holds under more general conditions and we give some counter-examples
for quasi-nonexpansive mappings. ’

1. Introduction.

Here and throughout the Paper, let X be a uniformly convex
Banach space, K a closed convex subset of X, T a nonexpansive self-
mapping of K, F (T) the set of the fixed points of T.

For every x in K, let 0 (x)= OG T" (x) the oi'bit' of x, L (x) the
0
set of the limit points of {7”(x)}, and LK= U L.

2e K
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Some Authors took an interest in the problem of constructing a
sequence that converges to a fixed point of T: usually they give some
sufficient conditions for the convergence of {T" (x)} or for the con-
vergence of the sequence of the iterates of an asymptotically regular
mapping constructed by T.

The purpose of this Paper is to prove that, if F )+, the
sequence of the Cesaro’s means of {T"(x)} converges to a fixed
‘point of T, for every x in K such that L (x)3= Q.

The advantage of this method is that, to locate the fixed points
of T, it is not necessary to construct any mapping, but- it is sufficient to
know the sequence {T” (x)}.

2. Results.

The following Theorem holds:

- THEOREM. Let T: K—> K be nonexpansive, and F (T)%=@. Then
Vx€K such that L (x)+ O, the sequence

. 1n |
: n o
converges to a fixed point of ‘T.

REMARKS.

1. L(x) OHF(T)+ S (see [3], Theorem 2.1); moreover
FMDh+J # dx¢F (T): L (x)+= D (consider for instance a linear map
T: P>P, T: ent eny).

2. If K is compact, then {M, (x)} converges to a fixed point for
every x in K. Thus the mapping M: x — lim M, (x) is a retraction

n - oo

of K onto F(T). Remark that M (y)=M (x) yeﬁc).

3. If L (k) is finite, the process for the location of the fixed point

y determined by x can be simplified, provided that we start from a
point of L (x). :
Indeed let L (x)={y1,ys, ..., y.}. We have

1741

y=-— (y1+yz+...+yn)=7 2 T* (y).

l==(



APPROXIMATION OF FIXED POINTS ETC. 129

4. In the Theorem, the assumption F (T)3Q can be replaced (if
the other assumptions are still satisfied) by the assumption {M.(y)}
bounded for some yeL (K) (*) or even by the assumption {M, (x)}
bounded for some x such that L (x)+3 (. '

5. 1t is easy to prove, making use of the results of [4], that the
Theorem still holds in the reflexive strictly convex spaces. More gene-
rally it holds in a strictly convex space for the points xeK such that,
for some yeL (x), {M. (y)} has a weakly convergent subsequence.

6. If T is quasi-nonexpansive (%) (but not necessarily nonexpansive),
the Theorem fails, even if T is continuous and F (T) is a singleton. -
Indeed let X=Q, K={z: [z]| = 1}.

‘

p-exp(2i9+i -—E—) if Oéﬂé% :

T: p-exp (i) — p-eXp(i%-l——i-ni) if —<f< —

3 ' 3
p-exp(i0———2——7ri) if -22§0<2n'.

1

F(T) ={0}, T is continuous and quasi-nonexpansive. We have -

T* (1)=1, T**'(1)=i, T**?(1)=—i and then M,(1)—> %— ¢F (T).

7. If X=IR, the Theorem holds for quasi-nonexpansive and
continuous mappings. Indeed let K=[a, b], T quasi-nonexpansive and
continuous. We consider the only two possible cases: '

i) F(M={u}. {T"(x)} converges to u or has two limit
points, equidistant from u. In any case M, (x) —> u. '

ii) F(M)=[ec, d]. {T” (x)} is necessarily monotone, therefore it
converges (to a fixed point, by the continuity of T) and this implies
- lim M, (x)= lim T" (x).

(1) This assumption is eq.uivalent‘to F (T):]:@ (see [4]).
() It is sufficient to observe that yeL (x) = ”Mn (x)—M, (y)” = Hx-—-—-y”.
G) i. e F(T):{:@/\-HT(x)——u” = “x——u” VxeK MueF (T). -
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- 8. The Theorem of n. 7 fails if T is quasi-nonexpansive but not
continuous, even if K is compact. Indeed let K=[0, 2], T (x)=0 if

0=x=1, TW="11 if 1<x52. '@ > 1M, <@~ 1¢F D)

9. The Theorem of n. 7 does not hold under the only assumption
that T is continuous, even if F(T)+ O (and K is compact). Indeed let

K=10,3], T(x)=3—-—2— if 0=x=2, T(x)=6—2x if 2=x=3. F(T)=

64x

={2} and'an(x)—>—-Z— if 0=x=2, M, (x) _)6;x if 2=x=3.

3. Proof of the Theorem.

Let yeL (x); A (y) the (real) linear variety spanned by {T" (y)};
C=co ({ T"(y»)}). It is well-known (see [3]) that there exists an
affine isometry S: A (y) = A (y) such that Sle=T]|c. We set

 W=A @) —y={weX: w=z—y, z€A (y)}
and
U: w=z—y—S§(2)—S(y) YweW.

W is a (real) Banach space contained in X and U is a linear isometry
of W into itself. :

- LemMA 1. For every weW

1‘ n—1
(3.1) — I U*(w)—>0.
’ 0

Indeed, ¥ weW there exists (see [11)
n—1
= Ilm — 2’ U* (w)

and then, for n=n, we have

n—1

I3 v o0 | 221

CASE a) Let w=S (y)—y. For every n=1 it is

G2 S ()=y+ = U* (w).

k=0
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If w0, for n=n we have

IIS" 0 —yll = H z Uk (W)H —’|IW||

‘which is absurd, since {S" (y)}:{T” M} is bounded *.

CASE b) Let w=587 (y)—y. (3.1) holds for p=1; let it hold for
p—1 and remark that v

| S*()—S =S (S* ' (y))—S ) =U (5*1 (y)—y).
Then

n— ﬁ—l
%kfl (S (y)— y)—— 2 (U (=S ON+U* (S 6)—-3)}=
n—1 /
—kfo U (871 (y)—y)+o (1) =

=T U )=+ 1),

k=0

CASE ¢) w whatever. We may write w=z— ¥, z_em). Me>0 dz=

= X a8t (y) such that ||z—z|| <e.
=1

i=

1 n—1 1 n—1 _
I—— > U* (z—-y)”=—h— > U*(z—z)+U* (z—y)”g
k=0 k=0 -
< [o—ell 4| 204 |2 s 010 || =
— 4 - n—1 n.
< ezl + 2 o |2 U (" 5)—) E

LEMMA 2. {M, (y)} converges to a fixed point of T.
Indeed, if we set w=S (y)—y, by (3.2) we have

My ()= 2 8 Q) =y+o (1= D) w(1=2) U 09)+ .+ U™ G0)},

() Recall that F(T) 3= = {T"(x)} and so {M,(x)} bounded \txeK.
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Therefore

n—1

(33) U- I)(M - y)-——w+— ZU"(w)—> —w=y— S(y)

As {M. ()} is bounded, I{nm}: My, (y)—xy (weakly). | |
As U—I is linear and continuous in the strong topology of W, it
is-also continuous in the weak topology (°); therefore

U—D) (Mo () =) — U=1) G—1)=8 §)—S () — 7+

and, from '(3“.3) ‘S(}):}-:T (3-5 ‘(sin.ce 3_:€C).
We are left the proof that M, (y) -—->§ Remark that
SG=U{y—y)+S )
and, for every k=1 |
S* ) =U* (y—y)+S§* (y).
Therefore

N1

y= T 8 = T (U G- +5* ()=

n—1

"Mn(YH- ZU"(}' -=Y)

~and this complete the proof of Lemma 2.

For every €>0 there exists p=p (¢) such that ||T? (x)— yl|<e and
therefore ||T7+* (x)—T* (y)|| <& Mk>0.
We have

I, (72 )=, | = - | Z 7748 (o7

and, moreover, for n>p

+n—1 n—1

. (77 0D —Mo Ol == |2 T 00— T | =

) See {21, V. 3. 15.
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1 p4n—1 »—1
” Z T(x)— = T*(x)
n 0

1 27
= 2T @-T @ =

< -115:- diam 0 (%)

Therefore M, (x)—>_§ for n—> o and the Theorem is proved.
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